An application of biregularity to quaternionic Lagrange interpolation

A. Perotti

Department of Mathematics, University of Trento, Via Sommarive, 14, I-38050 Povo Trento ITALY

Abstract. We revisit the concept of totally analytic variable of one quaternionic variable introduced by Delanghe [1] and its application to Lagrange interpolation by Güerlebeck and Sprössig [2]. We consider left-regular functions in the kernel of the Cauchy-Riemann operator

\[\partial = 2 \left(\frac{\partial f}{\partial z_1} + j \frac{\partial f}{\partial z_2} \right) = \frac{\partial}{\partial x_0} + i \frac{\partial}{\partial x_1} + j \frac{\partial}{\partial x_2} - k \frac{\partial}{\partial x_3}. \]

For every imaginary unit \(p \in S^2 \), let \(C_p = (1, p) \cong \mathbb{C} \) and let \(J_p = p_1 J_1 + p_2 J_2 + p_3 J_3 \) be the corresponding complex structure on \(\mathbb{H} \). We identify totally regular variables with real–affine holomorphic functions from \((\mathbb{H}, J_p) \) to \((C_p, L_p) \), where \(L_p \) is the complex structure defined by left multiplication by \(p \). We then show that every \(J_p \)-biholomorphic map, which is always a biregular function, gives rise to a Lagrange interpolation formula at any set of distinct points in \(\mathbb{H} \).

Keywords: Quaternionic regular function, biregular function, Lagrange interpolation

PACS: 02.30.-f, 02.30.Fn, 02.60.Ed

PRELIMINARIES

We identify the space \(\mathbb{C}^2 \) with the set \(\mathbb{H} \) of quaternions by means of the mapping that associates the pair \((z_1, z_2) = (x_0 + ix_1, x_2 + ix_3)\) with the quaternion \(q = z_1 + z_2 j = x_0 + ix_1 + jx_2 + kx_3 \in \mathbb{H} \). A quaternionic function \(f = f_1 + f_2 j \in C^1(\Omega) \) is (left) regular (or hyperholomorphic) on \(\Omega \) if

\[\partial f = 2 \left(\frac{\partial f}{\partial z_1} + j \frac{\partial f}{\partial z_2} \right) = \frac{\partial f}{\partial x_0} + i \frac{\partial f}{\partial x_1} + j \frac{\partial f}{\partial x_2} - k \frac{\partial f}{\partial x_3} = 0 \quad \text{on} \ \Omega. \]

We will denote by \(\mathcal{R}(\Omega) \) the space of regular functions on \(\Omega \) (cf. e.g. \([8] \) and \([7]\) for properties of these functions). The space \(\mathcal{R}(\Omega) \) contains the identity mapping and every holomorphic mapping \((f_1, f_2) \) on \(\Omega \) defines a regular function \(f = f_1 + f_2 j \). The original definition of regularity given by Fueter (cf. \([8]\) or \([3]\)) differs from that adopted here by a real coordinate reflection. Let \(\gamma \) be defined by \(\gamma(z_1, z_2) = (z_1, z_2) \). Then \(f \) is regular on \(\Omega \) if and only if \(f \circ \gamma \) is Fueter–regular on \(\gamma(\Omega) = \gamma^{-1}(\Omega) \).

A regular function \(f \in C^1(\Omega) \) is called biregular if \(f \) is invertible and \(f^{-1} \) is regular.

Holomorphic functions with respect to a complex structure \(J_p \)

Let \(J_p = p_1 J_1 + p_2 J_2 + p_3 J_3 \) be the orthogonal complex structure on \(\mathbb{H} \) defined by a unit imaginary quaternion \(p = p_1 i + p_2 j + p_3 k \) in the sphere \(S^2 = \{ p \in \mathbb{H} \ | \ p^2 = -1 \} \). Let \(C_p = (1, p) \) be the complex plane spanned by 1 and \(p \) and let \(L_p \) be the complex structure defined on \(\mathbb{T} \mathbb{C}_p \cong \mathbb{C} \) by left multiplication by \(p \). If \(f = f^0 + i f^1 : \Omega \rightarrow \mathbb{C} \) is a \(J_p \)-holomorphic function, i.e. \(df^0 = J_p^* (df^1) \) or, equivalently, \(df + iJ_p^* (df) = 0 \), then \(f \) defines a regular function \(\tilde{f} = f^0 + pf^1 \) on \(\Omega \). We can identify \(\tilde{f} \) with a holomorphic function

\[\tilde{f} : (\Omega, J_p) \rightarrow (C_p, L_p). \]

We have \(L_p = J_{\gamma(p)} \), where \(\gamma(p) = p_1 i + p_2 j + p_3 k \). More generally, we can consider the space of holomorphic maps from \((\Omega, J_p) \) to \((\mathbb{H}, L_p) \)

\[Hol_p(\Omega, \mathbb{H}) = \{ f : \Omega \rightarrow \mathbb{H} \text{ of class } C^1 \ | \ \overline{\partial}_p f = 0 \text{ on } \Omega \} = \text{Ker}(\overline{\partial}_p) \]
where ∂_p is the Cauchy–Riemann operator with respect to the structure J_p

$$\partial_p = \frac{1}{2}(d + pJ_p^* \circ d).$$

For any positive orthonormal basis $\{1, p, q, pq\}$ of \mathbf{H} ($p, q \in \mathbb{S}^2$), let $f = f_1 + f_2q$ be the decomposition of f with respect to the orthogonal sum

$$\mathbf{H} = \mathbb{C}_p \oplus (\mathbb{C}_p)q.$$

Let $f_1 = f^0 + pf^1$, $f_2 = f^2 + pf^3$, with f^0, f^1, f^2, f^3 the real components of f w.r.t. the basis $\{1, p, q, pq\}$. Then the equations of regularity can be rewritten in complex form as

$$\partial_p f_1 = J^*_q(\partial_p f)_2,$$

where $\overline{f}_2 = f^2 - pf^3$ and $\partial_p = \frac{1}{2}(d - pJ_p^* \circ d)$. Therefore every $f \in \text{Hol}_p(\Omega, \mathbf{H})$ is a regular function on Ω.

The energy quadric

In [4] and [6] was introduced the energy quadric of a regular function f. It is a family (depending on the point $z \in \Omega$) of positive semi-definite quadrics which contains a lot of information about the (Dirichlet) energy of f and the holomorphic properties of the function. In particular, this concept can be used to show that there are regular functions that are not J_p-holomorphic for any p, and that an affine biregular function is always J_p-biholomorphic for some p: there exists p such that $f \in \text{Hol}_p(\mathbf{H}, \mathbf{H})$ and $f^{-1} \in \text{Hol}_p(\mathbf{H}, \mathbf{H})$.

TOTALLY REGULAR FUNCTIONS

Definition 1 A regular function $f \in \mathcal{R}(\Omega)$ is called totally regular if the powers f^k are regular on Ω for every integer $k \geq 0$ and f^k is regular on $\Omega' = \{x \in \Omega \mid f(x) \neq 0\}$ for every integer $k < 0$.

Theorem 1 Let $f \in \mathcal{R}(\Omega)$ with image $\text{Im}(f)$ contained in a (real) plane H. Then there exists $p \in \mathbb{S}^2$ such that $f \in \text{Hol}_p(\Omega, \mathbf{H})$. If f is non–constant, the complex structure J_p is uniquely determined.

If $f = \sum_{\alpha=0}^4 x_\alpha a_\alpha + b \in \mathcal{R}(\mathbf{H})$, $a_\alpha, b \in \mathbf{H}$, is (real) affine and f has Jacobian matrix of maximum rank 2, the same conclusion of Theorem 1 follows.

Corollary 2 If $f \in \mathcal{R}(\Omega)$ and $\text{Im}(f)$ is contained in \mathbb{C}_p for some $p \in \mathbb{S}^2$, then f is a J_p–holomorphic function, and therefore it is totally regular.

Remark 1 The decomposition $f = f_1 + f_2q$ of a function $f \in \text{Hol}_p(\Omega)$ w.r.t. any orthonormal basis $\{p, q, pq\}$ defines totally regular components $f_1, f_2 \in \text{Hol}_p(\Omega, \mathbb{C}_p)$.

We now prove the converse of Corollary 2 for affine functions. Using the energy quadric of a function, we are able to show that the regularity of f and f^2 is sufficient to get that $f \in \text{Hol}_p(\mathbf{H}, \mathbb{C}_p)$ and to obtain the total regularity of f.

Theorem 3 If $f \in \mathcal{R}(\mathbf{H})$ is affine and f^2 is regular, then f has maximum rank 2 and there exists $p \in \mathbb{S}^2$ such that $f \in \text{Hol}_p(\mathbf{H}, \mathbb{C}_p)$.

Corollary 4 If $f \in \mathcal{R}(\mathbf{H})$ is affine and f^2 is regular, then f is totally regular.

The condition on the rank of f given in Theorem 3 was proved, in the context of Fueter–regularity, in [2]\1.2 (cf. also [3]\10). The preceding results tell that the set of affine totally regular functions coincides with the set

$$\{f \text{ affine } \mid f \in \bigcup_{p \in \mathbb{S}^2} \text{Hol}_p(\mathbf{H}, \mathbb{C}_p)\}.$$

Note that every subspace $\text{Hol}_p(\mathbf{H}, \mathbb{C}_p)$ is a commutative algebra w.r.t. the pointwise product.
Remark 2

The biregular function f in [2], as an application of totally analytic variables, a Lagrange's Interpolation Theorem was proved. Given

$$v_p(x) = x_0 + (\gamma(p) \cdot \bar{x})p.$$

In particular, we get the variables $v_i = x_0 + x_1i = z_1 \in Hol_p(H, C_p)$, $v_j = x_0 + x_2j \in Hol_p(H, C_j)$, $v_k = x_0 - x_3k \in Hol_k(H, C_k)$. We can also consider the totally regular variables $v'_p = v_p q \in Hol_p(H, C_p)$, which satisfy the additive property

$$\frac{1}{|p + q|}(v'_p + v'_q) = v'_{p+q} \in Hol_{p+q}(H, C_{p+q}).$$

For every $a \in H, a \neq 0$, let $\text{rot}_a(q) = aqa^{-1}$ be the three–dimensional rotation of H defined by a. In [5] was studied the effect of rotations on regularity and holomorphicity of functions. As an application of those results, we get that v_p can be seen as one component of a biregular function.

Theorem 5

a) For every $p \in S^2$, the function v_p is regular on H and belongs to the space $Hol_p(H, C_p)$. Therefore v_p is totally regular.

b) For any $p, q \in S^2, q \perp p$, let $a \in H$ be such that $\text{rot}_{\gamma(a)}(i) = p, \text{rot}_{\gamma(a)}(j) = q$. There exists an affine biregular function $f_a = v_p + w_a q$, with totally regular components $v_p, w_a \in Hol_p(H, C_p)$. The function $f_a \in Hol_p(H, H)$ is J_p–biholomorphic, with inverse of the same type as f_a:

$$f_a^{-1} = f_a' = v_{\gamma(a)} + w_a' q' \in Hol_{p}(H, H) \quad (a' = \gamma(a)^{-1}, \gamma(p) = \text{rot}_a^{-1}(i), q' = \text{rot}_a^{-1}(j)).$$

Remark 2 The biregular function f_a is defined by the simple formula $f_a = \text{rot}_{\gamma(a)} a$.

Quaternionic Lagrange Interpolation

In [2], as an application of totally analytic variables, a Lagrange’s Interpolation Theorem was proved. Given k distinct points $b_1, \ldots, b_k \in H$ and k values $u_1, \ldots, u_k \in H$, one wants to construct a Lagrange polynomial in the module of regular functions, i.e., a polynomial $L \in \mathcal{R}(H)$ such that $L(b_j) = u_j$ for every $j = 1, \ldots, k$.

Theorem 6 Given a J_p–biholomorphic mapping $f = f_1 + f_2 q \in Hol_p(H, H)$ ($q \perp p$), there exist (infinitely many) $\alpha, \beta \in C_p$ such that $g = \alpha f_1 + \beta f_2 \in Hol_p(H, C_p)$ is totally regular and satisfies the conditions

$$g(b_i) \neq g(b_j) \quad \forall \ i \neq j \ (i, j = 1, \ldots, k).$$

The numbers α, β can also be found in the real field.

Then every J_p–biholomorphic mapping f gives rise to a Lagrange interpolation function (a polynomial if f is a polynomial function), given by the formula

$$L = \sum_{j=1}^{k} l_j u_j, \quad \text{where} \quad l_j(x) = \prod_{i \neq j} (g(x) - g(b_i))(g(b_j) - g(b_i))^{-1} \in Hol_p(H, C_p).$$

The functions l_j^m are regular on H for every integer $m > 0$ and $L \in \mathcal{R}(H)$. The powers of L are regular if also the values u_j belong to the subalgebra C_p.

Example 1 If we take the function f_a of Theorem 5 as J_p–biholomorphic mapping, and $\alpha, \beta \in \mathbb{R}$, then $g = \alpha f_1 + \beta f_2$ is the linear function

$$\text{rot}_{\gamma(a)}(\alpha z_1 + \beta z_2) \circ \text{rot}_a.$$
ACKNOWLEDGMENTS

The work was partially supported by MIUR (PRIN Project “Proprietà geometriche delle varietà reali e complesse”) and GNSAGA of INdAM.

REFERENCES

6. A. Perotti, Every biregular function is biholomorphic, Advances in Applied Clifford Algebras, in press.