

UNIVERSITY
OF TRENTO

 DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’INFORMAZIONE

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.disi.unitn.it

FAST LOCAL SUPPORT VECTOR MACHINES FOR LARGE
DATASETS

Nicola Segata and Enrico Blanzieri

November 2008

Technical Report # DISI-08-063

.

Fast Local Support Vector Machines for Large Datasets

Nicola Segata
DISI, University of Trento
segata@disi.unitn.it

Enrico Blanzieri
DISI, University of Trento
blanzier@disi.unitn.it

Abstract

Local SVM is a classification method that
combines instance-based learning and statis-
tical machine learning. It builds an SVM on
the feature space neighborhood of the query
point in the training set and uses it to predict
its class. There is both empirical and theo-
retical evidence that Local SVM can improve
over SVM and kNN in terms of classification
accuracy, but the computational cost of the
method permits the application only on small
datasets. Here we propose FastLSVM, a clas-
sifier based on Local SVM that decreases the
number of SVMs that must be built in order
to be suitable for large datasets. FastLSVM
precomputes a set of local SVMs in the train-
ing set and assigns to each model all the
points lying in the central neighborhood of
the k points on which it is trained. The pre-
diction is performed applying to the query
point the model corresponding to its near-
est neighbor in the training set. The em-
pirical evaluation we provide points out that
FastLSVM is a good approximation of Local
SVM and its computational performances on
big datasets (a large artificial problem with
100000 samples and on a very large real prob-
lem with more than 500000 samples) dramat-
ically ameliorate SVM ones improving also
the generalization accuracies.

1 Introduction

The direct integration of k-nearest neighbors (kNN)
with support vector machines (SVM) has been pro-
posed in [1]. The algorithm is called kNNSVM, and
it builds a maximal margin classifier on the neighbor-
hood of a test sample in the feature space induced
by a kernel function. Theoretically, it permits better

generalization power since it can have, for some val-
ues of k, a lower radius/margin bound with respect
to SVM as shown in [2]. It has been successfully ap-
plied for remote sensing tasks in [1] and on 13 small
benchmark datasets [3], confirming the potentialities
of this approach. kNNSVM can be seen as a method
of integrating locality in kernel methods (compatible
with the traditional strategy of using local kernel func-
tions [4]) and as a modification of the SVM approach
in order to obtain a local learning algorithm [5] able
to locally adjust the capacity of the training systems.

The main drawback of the original idea of Local SVM
concerns the computational performances. The pre-
diction phase is in fact very slow since for each query
point it is necessary to train a specific SVM before per-
forming the classification, in addition to the selection
of its k-nearest neighbors on which the local SVM is
trained. In [6] it has been independently proposed a
similar method in which however the distance function
for the kNN operations is performed in the input space
and it is approximated with a “crude” distance metric
in order to improve the computational performances.

In this work we developed a fast local support vector
machine classifier, called FastLSVM, introducing vari-
ous modifications to the Local SVM approach in order
to make it scalable and thus suitable for large datasets.
Differently from [6] we maintain the feature space met-
ric for the nearest neighbor operations and we do not
adopt any approximation on the distance function and
thus on the neighborhood selection. We aim, in fact,
to be as close as possible to the original formulation
of kNNSVM in order to maintain its theoretical and
empirical advantages over SVM. Moreover, our intu-
ition is that, in general, as the number of samples in
the training size increases, also the positive effect of
locality on classification accuracy increases. Roughly
speaking, the idea is to precompute a set of local SVMs
covering (with redundancy) all the training set and to
apply to a query point the model to which its nearest
neighbor in the training set has been assigned. The

training time complexity analysis reveals that the ap-
proach is asymptotically faster than the state-of-the-
art accurate SVM solvers and the training of the local
models can be very easily paralyzed. Notice that the
issue of scalability for the local SVM approach is par-
ticularly appealing also because our intuition is that
locality can play a more crucial role as the problem be-
comes larger and larger and the ideal decision function
is complex and highly non-linear.

Multiple approaches have been proposed in order to
overcome SVM computational limitation for large and
very large datasets approximating the traditional ap-
proach; some of the more recent are those based on
minimum enclosing ball approximated algorithms [7],
on using editing or clustering techniques to select
the more informative samples [8], on training SVM
between clusters of different class nearest to the
query point [9] and on parallel algorithms for training
phase [10, 11]. It is important to underline, however,
that what we are proposing here is not a method to
approximate SVM in order to enhance performances.
Our main purpose is to make kNNSVM, which has
been shown to be more accurate of SVM for small
datasets, suitable for large scale problems. Indirectly,
since the method is asymptotically faster than SVM, it
can be seen as an alternative to SVM for large datasets
on which traditional SVM algorithms cannot be ap-
plied.

An attempt to computationally unburden the Local
SVM approach of [6] has been proposed in [12] where
the idea is to train multiple SVMs on clusters retrieved
with a k-means based algorithm; however, differently
from this work the method does not follow directly the
idea of kNNSVM, it can build only linear models, the
clustering considers together training and testing sets,
the neighborhood is retrieved only in input space and
the testing point can lie in very peripheral regions of
the local models. Moreover the clusters have problems
of class balancing and their dimensions cannot be con-
trolled thus not assuring the SVM optimization to be
small enough. The computational performances (only
empirically tested on a small dataset) are in fact much
worse than SVM (although better than their local ap-
proach) and seems to decrease asymptotically much
faster than SVM.

The present paper discusses a subset of the topics of
a more general and empirically tested work1. In the
rest of the introduction we briefly review the main top-
ics necessary to understand the FastLSVM approach
discussed in Section 2. Section 3 details the experi-
ments we conducted before drawing some conclusions
and discussing further extensions in Section 4.

1The larger work is going to be submitted to a machine
learning journal.

1.1 The k-nearest neighbors classifier

Let assume to have a classification problem with sam-
ples (xi, yi) with i = 1, . . . , n, xi ∈ Rp and yi ∈
{+1,−1}. Given a point x′, it is possible to or-
der the entire set of training samples X with re-
spect to x′. This corresponds to define a function
rx′ : {1, . . . , n} → {1, . . . , n} that reorders the indexes
of the n training points as follows:

rx′(1) = argmin
i=1,...,n

‖xi − x′‖

rx′(j) = argmin
i=1,...,n

‖xi − x′‖ i 6= rx′(1), . . . , rx′(j − 1)
for j = 2, . . . , n

In this way, xrx′ (j) is the point of the set X in the j-th
position in terms of distance from x′, namely the j-
th nearest neighbor, ‖xrx′ (j) − x′‖ is its distance from
x′ and yrx′ (j) is its class with yrx′ (j) ∈ {−1, 1}. In
other terms: j < k ⇒ ‖xrx′ (j) − x′‖ ≤ ‖xrx′ (k) −
x′‖. With this definition, the majority decision rule of
kNN for binary classification is defined by kNN(x) =
sign(

∑k
i=1 yrx(i)).

1.2 Support vector machines

SVMs [13] are classifiers based on statistical learn-
ing theory [14]. The decision rule is SV M(x) =
sign(〈w, Φ(x)〉H + b) where Φ(x) : Rp → H is a map-
ping in a transformed Hilbert feature space H with
inner product 〈·, ·〉H. The parameters w ∈ H and
b ∈ R are such that they minimize an upper bound
on the expected risk while minimizing the empirical
risk. The empirical risk is controlled through the set
of constraints yi(〈w, Φ(xi)〉H + b ≥ 1− ξi with ξi ≥ 0,
i = 1, . . . , n, where yi ∈ {−1, +1} is the class label
of the i -th nearest training sample. The presence of
the slack variables ξi’s allows some misclassification on
the training set. Reformulating such an optimization
problem with Lagrange multipliers αi (i = 1, . . . , n),
and introducing a positive definite kernel (PD) func-
tion2 K(·, ·) that substitutes the scalar product in the
feature space 〈Φ(xi), Φ(x)〉H, the decision rule can be
expressed as SV M(x) = sign(

∑n
i=1 αiyiK(xi, x) + b).

PD kernels avoids the explicit definition of H and
Φ [15]; the most popular are the linear (LIN) ker-
nel 〈x, x′〉, the radial basis function (RBF) kernel
exp ‖x− x′‖2/σ, and the inhomogeneous polynomial
(IPOL) kernel (〈x, x′〉 + 1)d. SVM has been shown
to have important generalization properties and nice
bounds on the VC dimension [14]. In particular we
refer to the following theorem.

Theorem 1 (Vapnik [14] p.139) The expectation
of the probability of test error for a maximal sep-

2We refer to kernels functions with K and to the number
of nearest neighbors with k.

arating hyperplane is bounded by: EPerror ≤
E

{
min

(
sv
n , 1

n

[
R2

∆2

]
, p

n

)}
, where n is the cardinality

of the training set, sv is the number of support vec-
tors, R is the radius of the sphere containing all the
samples, ∆ = 1/|w| is the margin, and p is the dimen-
sionality of the input space.

Theorem 1 states that the maximal separating hyper-
plane can generalize well as the expectation on the
margin is large, since a large margin minimizes R2/∆2.
Computationally, SVM takes O(n2) time for comput-
ing the kernel values, O(n3) time for solving the prob-
lem and O(n2) space for storing the kernel values as
discussed in [7, 16]. Some implementation adopting
decomposition techniques have a scaling time factor
approaching fn ·n2 where fn is the number of features.

1.3 The kNNSVM classifier

The method [1] combines locality and searches for a
large margin separating surface by partitioning the en-
tire Hilbert feature space through a set of local max-
imal margin hyperplanes. In order to classify a given
point x′, we need first to find its k nearest neighbors
in the feature space H and, then, to search for an opti-
mal separating hyperplane only over these k neighbors.
In practice, this means that an SVM is built over the
neighborhood of each test point x′. Accordingly, the
constraints become:yrx(i)

(〈w, Φ(xrx(i))〉+ b
) ≥ 1 −

ξrx(i), with i = 1, . . . , k, where rx′ : {1, . . . , n} →
{1, . . . , n} is a function that reorders the indexes of
the training points:

rx′(1) = argmin
i=1,...,n

‖Φ(xi)− Φ(x′)‖2

rx′(j) = argmin
i=1,...,n

‖Φ(xi)− Φ(x′)‖2

i 6= rx′(1), . . . , rx′(j − 1) for j = 2, . . . , n

In this way, xrx′ (j) is the point of the set X in the
j-th position in terms of distance from x′ and the thus
j < k ⇒ ‖Φ(xrx′ (j)) − Φ(x′)‖ ≤ ‖Φ(xrx′ (k)) − Φ(x′)‖.
The computation is expressed as ||Φ(x) − Φ(x′)||2 =
〈Φ(x), Φ(x)〉H+ 〈Φ(x′), Φ(x′)〉H− 2 · 〈Φ(x), Φ(x′)〉H =
K(x, x) + K(x′, x′) − 2 ·K(x, x′). If the kernel is the
RBF kernel or any polynomial kernels with degree 1,
the ordering function can be built using the Euclidean
metric. For non-linear kernels (other than the RBF
kernel) the ordering function can be quite different to
that produced using the Euclidean metric.

The decision rule of this method is:

kNNSVM(x) = sign

(
k∑

i=1

αrx(i)yrx(i)K(xrx(i), x) + b

)

(1)
For k = n, kNNSVM becomes the usual SVM whereas,
for k = 2 with LIN or RBF kernels, corresponds to the

NN classifier. The method is computationally expen-
sive because, for each test point, it computes the kNN
in H, train an SVM and finally perform SVM predic-
tion. Implementing kNN simply sorting the distances,
takes O(n log n · k3 ·m) time for m testing samples.

The bound on the expectation of the probabil-
ity of test error for kNNSVM becomes EPerror ≤
E{min(sv

k , 1
k [R2

∆2], p
k)}. Whereas SVM has the same

bound with k = n, apparently the three quantities in-
crease due to k < n. However, in the case of kNNSVM
R2/∆2 decreases because: R (in the local case) is
smaller than the radius of the sphere that contains
all the training points and the margin ∆ increases or
at least remains unchanged. The former point is easy
to show, while the second point (limited to the case of
linear separability) is stated in the following theorem.

Theorem 2 ([2]) Given a set of n points X = {xi ∈
Rp}, each associated with a label yi ∈ {−1, 1}, over
which is defined a maximal margin separating hyper-
plane with margin ∆X , if for an arbitrary subset X ′ ⊂
X there exists a maximal margin hyperplane with mar-
gin ∆X′ then the inequality ∆X′ ≥ ∆X holds.

Proof 1 (Sketch of the proof.) Observe that for
X ′ ⊂ X the convex hull of each class is contained
in the convex hull of the same class in X. Since the
margin can be seen as the minimum distance between
the convex hulls of different classes and since given
two convex hulls H1, H2 the minimum distance between
them cannot be lower than the minimum distance be-
tween H ′

1 and H2 with H ′
1 ⊆ H1, we have the thesis.

For and alternative and rigourous proof see [2].

As a consequence of Theorem 2, kNNSVM has the
potential of improving over both 1NN and SVM for
some 2 < k ≤ n as empirically confirmed in [3] on 13
small-size classification problems.

2 FastLSVM: a Local SVM approach
for large datasets

In this section we present FastLSVM, a modified ver-
sion of Local SVM that allows for the use on large
datasets. As a first step, we can generalize the deci-
sion rule of Local SVM considering the case in which
the local model is trained on a set of points that are
the k-nearest neighbors of a point that, in general, is
different from the query point. The modified decision
function for a query point x and another (possibly dif-
ferent) point t is:

kNNSVMt(x) = sign

(
k∑

i=1

αrt(i)yrt(i)K(xrt(i), x) + b

)

where rt(i) is the kNNSVM ordering function (see
above) and αrt(i) and b come from the training of an
SVM on the k-nearest neighbors of t in the feature
space. In the following we will refer to kNNSVMt(x)
as being centered in t and to t as the center of the
model. The original decision function of kNNSVM
corresponds to the case in which t = x, and thus
kNNSVMx(x) = kNNSVM(x).

2.1 A first approximation of Local SVM.

In the original formulation of kNNSVM, the training
of an SVM on the k-nearest neighbors of the query
point must be performed in the prediction step. Al-
though this approach is convenient when we have a
rather large training set and very few points to classify,
it introduces a considerable overhead in the prediction
step which is not acceptable in the great majority of
classification problems. As a first approximation of
Local SVM, we propose to compute and maintain in
memory a set of Local SVMs centered on each point of
the training set. This unburdens the prediction step
in which it is sufficient to select a model for the query
point and use it to perform the classification. In par-
ticular, we chose to select the precomputed model to
classify a point x with the model centered on its near-
est point in the training. Formally the classification
of a point x with this method is kNNSVMt(x) with
t = xrx(1). The set of precomputed local SVMs in
the training set with corresponding central points is
S = {(t, kNNSVMt)

∣∣ t ∈ X}. Notice that in situa-
tions where the neighbourhood contains only one class
the local model does not find any separation and so
considers all the neighbourhood to belong to the pre-
dominant class thus simulating the behaviour of the
majority rule.

2.2 Introducing the assignment
neighborhood

With the previous modification of kNNSVM we made
the prediction step much more computationally effi-
cient, but a considerable overhead is added to the
training phase. In fact, the training of an SVM for
every point of the training set can be slower than the
training of a unique global SVM (especially for non
small k values), so we introduce another modification
of the method which aims to drastically reduce the
number of SVMs that need to be precomputed. The-
oretically, this can cause a loss in classification accu-
racy, so we must take care of not reducing too much
the number of SVMs and to maintain the more repre-
sentative ones. The modification is based on assigning
to the local model centered in a point c not only c
itself but also the first k′ (with k′ < k) nearest neigh-
bors of c. In this way we aim to make a compromise

(controlled by k′) between the kNNSVM approach, in
which the test point is surrounded by the samples used
to build the model, and the need of decreasing the to-
tal number of SVM trained. The set of points used to
select the k-nearest neighbors for the models is defined
as follows.

Definition 1 Given k′ ∈ N, a k′-neighborhood cover-
ing set of centers Ck′ ⊆ X is a subset of the training
set such that the following holds:

⋃

c∈Ck′

{xrc(i) | i = 1, . . . , k′} = X.

Definition 1 means that the union of the sets of the
k′-nearest neighbors of Ck′ corresponds to the whole
training set. Theoretically, for a fixed k′, the mini-
mization of the number of local SVMs that we need
to train can be obtained computing the SVMs cen-
tered on the points contained in the minimal k′-
neighborhood covering set of centers3 C. However,
since the computing of the minimal C is not a sim-
ple and computationally easy task, we choose to select
each ci ∈ C as follows:

ci = xj ∈ X
with j = min

(
z ∈ {1, . . . , n}

∣∣xz ∈ X \Xci

)

where Xci =
⋃

l<i

{
xrcl

(h)

∣∣ h = 1, . . . , k′
}

.
(2)

The idea of this definition is to recursively take as cen-
ters those points which are not k′-neighbors of any
point that has already been taken as center. So c1 = x1

corresponds to the first point of X since, being c1 the
first center, the union of the neighbors of the other
centers is empty; c2, instead, is the point with the
minimum index taken from the set obtained eliminat-
ing from X all the k′-neighbors of c1. The procedure is
repeated until all the training points are removed from
X. X must be thought here as a random reordering
of the training set. This is done in order to avoid
the possibility that a training set in which the points
are inserted with a particular spatial strategy affects
the spatial distribution of the k′-neighborhood cover-
ing centers. The reason why we adopt this non stan-
dard clustering method is twofold: from one side we
want each cluster to contain exactly k samples in order
to be able to derive rigourous complexity bounds, from
the other side in this way we are able to select a vari-
able number of samples that are in the central region
(at least form a neighborhood viewpoint) of each clus-
ter. Moreover the proposed clustering strategy follows
quite naturally from kNNSVM approach.

3From now on we simply denote Ck′ with C because we
do not discuss here particular values for k′.

Differently from the first approximation in which a lo-
cal SVM is trained for each training sample, in this
case we need to train only |C| SVMs centered on each
c ∈ C obtaining the following models:

kNNSVMc(x), ∀c ∈ C.
Now we have to link the points of the training set
with the precomputed SVM models. This is necessary
because a point can lie in the k′ neighborhood of more
than one center. In particular we want to consider the
assignments of each training point to a unique model
such that it is in the k′ neighborhood of the center on
which the model is built. Formally this is done with
the function cnt(t) : X → C that assigns each point in
the training set to a center:

cnt(xi) = xj ∈ C
with j = min

(
z ∈ {1, . . . , n}∣∣xz ∈ C and xi ∈ Xxz

)
where Xxz

=
{
xrxz (h)

∣∣ h = 1, . . . , k′
}

.
(3)

With the cnt function, each training point is assigned
to the first center whose k′-nearest neighbors set in-
cludes the training point itself. The order of the ci

points derives from the randomization of X used for
defining C. In this way each training point is univo-
cally assigned to a center and so the decision function
of this approximation of Local SVM, called FastLSVM,
is simply:

FastLSVM(x) = kNNSVMc(x) with c = cnt(xrx(1))
(4)

Algorithm 1 presents the pseudo-code of FastLSVM
implementing the formal definition of Equation 2 for
selecting the centers and Equation 3 to assign each
training point to a unique corresponding center and
thus to the SVM model trained on the center neigh-
borhood.

Although not deeply discussed and experimented here,
notice that it is not required that all local models share
the same hyperparameters. In fact, it is possible to set
different parameters for different local models, being
able of better capturing local properties of the data.
This can be done with local model selection, e.g. per-
forming cross validation (CV) on the local models or
estimating the parameters using local data statistics
(as proposed in [7] for RBF kernel, based on distance
distribution). In particular setting the σ parameter of
RBF kernel locally, leads to a very similar goal of tra-
ditional RBF-SVM with variable width that demon-
strated good potentialities for classification as shown
for example in [17].

2.3 Complexity bounds

FastLSVM requires O(|C| · n log n + |C| · k3) for train-
ing, thus overcoming SVM performance O(n3). No-

Algorithm 1 FastLSVM TRAIN (training set x[],
training size n, neighborhood size k, assignment neigh-
borhood size k’)

1: models[] ⇐ null //the set of models

2: modelP trs[] ⇐ null //the set pointers to the models

3: c ⇐ 0 //the counter for the centers of the models

4: indexes[] ⇐ {1, . . . , n} //the indexes for centers selection

5: Randomize indexes //randomize the indexes

6: for i ⇐ 1 to n do
7: index ⇐ indexes[i] //get the i-th index

8: if modelP trs[index] = null then //if the point

has not been assigned to a model. . .

9: localPoints[] ⇐ get ordered kNN of x[i]
10: models[c] ⇐ SVMtrain on localPoints[]
11: modelP trs[index] ⇐ models[c]
12: for j = 1 to k′ do //assign the model also to

the first k′ < k nearest neighbors of the center

13: ind ⇐ get index of localPoints[j]
14: if modelP trs[ind] = null then
15: modelP trs[ind] ⇐ models[c]
16: end if
17: end for
18: c ⇐ c+1
19: end if
20: end for
21: return models, modelP trs

tice that for k = k′ = n we have a global SVM com-
putable, as expected, in O(n log n+n3) = O(n3) since
|C| = 1. kNNSVM testing is instead slightly slower
than SVM: O(n ·k ·m) against O(n ·m). Although not
considered in the implemented version, FastLSVM can
take great advantages from data-structures supporting
nearest neighbors searches [18]. For example, using the
recently developed cover tree data-structure [19] allow-
ing kNN searches in k log(n) with n log n construction
time, FastLSVM can further decrease its training com-
putational complexity to O(n log n+|C|·log n·k+|C|·k3)
which is much lower than SVM complexity for fixed
and non-high values of k. Similarly, for testing, the
required time becomes O(log n · k · m). Another not
implemented modification able to reduce computa-
tional complexity consists in avoiding the training of
local SVMs with samples of one class only. Moreover,
FastLSVM can be very easily parallelized differently
from SVM for which parallelization, although possi-
ble [10, 11], is a rather critical aspect; for FastLSVM
is sufficient that, every time the points for a model
are retrieved, the training of the local SVM is per-
formed on a different processor. In this way the time
complexity of FastLSVM can be further lowered to
O(|C| · n log n + |C| · k3/nprocs).

It can be argued that some modern SVM solvers,
mainly based on decomposition strategies, scales bet-
ter than O(n3); in particular, in [16] the authors state
that, generally, the dual problem can be solved accu-
rately in Ω(nf ·n2) where nf is the number of features.

However, asymptomatically, FastLSVM is faster than
every SVM solver taking more than |C| · n log n for
training (n log n using cover trees).

Another advantage of FastLSVM over SVM is the
space complexity. Since FastLSVM performs SVM
training on small subregions (assuming a reasonable
low k), there are no problems of fitting the kernel ma-
trix into main memory. The overall required space
is O(n + k2), i.e. linear in n, that is much lower than
SVM space complexity of O(n2) which forces, for large
datasets, the discarding of some kernel values thus in-
creasing SVM time complexity due to the need of re-
computing them.

3 Empirical evaluation

In this work we used LibSVM (version 2.85) [20] for
SVM enabling shrinking and caching, and our imple-
mentation of FastLSVM that uses LibSVM for train-
ing and prediction of the local SVMs and a simple
brute-force implementation of kNN. The experiments
are carried out on an AMD Athlon

TM
64 X2 Dual Core

Processor 5000+, 2600MHz, with 3.56Gb of RAM.

3.1 kNNSVM - FastLSVM comparison

In order to understand if FastLSVM is a good
approximation of kNNSVM, we compared the two
methods on the 13 small datasets of [3] using
the SVM results as references. We present the
10-fold cross validation (CV) accuracies obtained
with the three methods using the LIN, RBF,
HPOL and IPOL kernels. The model selection
is performed internally to each fold minimizing
the empirical risk with 10-fold CV choosing C ∈

{1, 5, 10, 25, 50, 75, 100, 150, 300, 500}, the σ parameter
of the RBF kernel among {2−10, 2−9, . . . , 29, 210} and
the degree of the polynomial kernels is bounded to 5.
The dimension of the neighborhood for the kNNSVM
classifier, i.e. k, is chosen among the first 5 odd natural
numbers followed by the ones obtained with a base-2
exponential increment from 9 and the cardinality of
the training set, namely in {1, 3, 5, 7, 9, 11, 15, 23, 39,
71, 135, 263, 519, |training set|}. The k′ parameter of
FastLSVM is fixed to 1/4 · k. To assess the statistical
significance of the differences between the 10-fold CV
of kNNSVM and FastLSVM with respect to SVM we
use the two-tailed paired t-test (α = 0.05) on the two
sets of fold accuracies.

The results are reported in Table 1. We can no-
tice that the generalization accuracies are generally
a little worse for FastLSVM than kNNSVM, but the
overall advantage over SVM is maintained. In fact
FastLSVM demonstrates 12 cases in which the classi-
fication accuracies are significantly different (according
to the t-test) to the SVM ones, and all 12 cases are in
favour of FastLSVM without cases in which it is signif-
icantly worse than SVM. In total, there are 7 cases in
which the significant improvements of kNNSVM over
SVM are not maintained by the FastLSVM algorithm;
this can be due to the choice of k′, in fact, a lower
value of k′ guaranties much lower differences between
FastLSVM and kNNSVM. However, since our final ob-
jective is the application of the approach to large and
very large problems on which it is reasonable to hy-
pothesize that locality can assume an even more im-
portant role, and since FastLSVM is still better than
SVM, the empirical comparison between FastLSVM
and kNNSVM on small datasets let us to conclude
that FastLSVM is a good approximation of kNNSVM.

Table 1: 10-fold CV accuracies of SVM, kNNSVM and FastLSVM with LIN, RBF, HPOL and IPOL kernels
on 13 small datasets. The statistical significative differences of kNNSVM and FastLSVM with respect to SVM
(two-tailed paired t-test with α = 0.05) are in bold.

dataset
LIN kernel RBF kernel HPOL kernel IPOL kernel

SVM
kNN- Fast-

SVM
kNN- Fast-

SVM
kNN- Fast-

SVM
kNN- Fast-

SVM LSVM SVM LSVM SVM LSVM SVM LSVM

iris 0.97 0.96 0.95 0.95 0.96 0.95 0.97 0.96 0.96 0.97 0.97 0.97
wine 0.97 0.98 0.97 0.99 0.99 0.99 0.97 0.99 0.98 0.97 0.99 0.97

leukemia 0.95 0.93 0.93 0.71 0.93 0.88 0.95 0.93 0.93 0.95 0.93 0.93
liver 0.68 0.74 0.73 0.72 0.73 0.72 0.71 0.74 0.74 0.70 0.73 0.72

svmguide2 0.82 0.86 0.84 0.84 0.84 0.84 0.82 0.84 0.82 0.83 0.86 0.85
vehicle 0.80 0.86 0.85 0.85 0.84 0.85 0.84 0.86 0.86 0.85 0.85 0.86
vowel 0.84 1.00 0.99 0.99 1.00 1.00 0.98 1.00 1.00 0.99 1.00 1.00
breast 0.97 0.97 0.96 0.97 0.97 0.97 0.97 0.96 0.96 0.97 0.96 0.96

fourclass 0.77 1.00 1.00 1.00 1.00 1.00 0.81 1.00 1.00 1.00 1.00 1.00
glass 0.62 0.69 0.69 0.69 0.67 0.70 0.72 0.72 0.72 0.70 0.71 0.70
heart 0.83 0.82 0.83 0.83 0.82 0.81 0.82 0.82 0.82 0.82 0.82 0.82

ionosphere 0.87 0.93 0.88 0.94 0.93 0.94 0.89 0.93 0.91 0.91 0.93 0.92
sonar 0.78 0.88 0.85 0.89 0.90 0.89 0.88 0.89 0.88 0.88 0.89 0.88

Table 2: Percentage accuracy and computational (in seconds) results for SVM and FastLSVM on the 2SPIRAL
dataset. The parameters reported are the one permitting the lowest empirical risk, found with 5-fold CV.

Method k k’ C σ valid. acc. test. acc. # of SVM train. time (s) test. time (s)

RBF-SVM - - 26 2−10 81.30 81.39 1 6185 392

LIN-FastLSVM 250 62 210 - 88.37 88.46 3202 222 484
RBF-FastLSVM 1000 250 28 2−5 88.48 88.43 853 165 492

IPOL-FastLSVM 500 125 210 - 88.32 88.41 1657 240 3415

3.2 The 2SPIRAL dataset

The two classes of the 2SPIRAL artificial dataset are
defined as follows:

{
x(1)(τ) = c · τd · sin(τ)
x(2)(τ) = c · τd · cos(τ)

d = 2.5, τ ∈ [0, 10π]

using c = 1/500 for the first class (yi = +1) and c =
−1/500 for the second class (yi = −1).

The points are sampled with intervals of π/5000 on
the τ parameter obtaining 50000 points for each class.
A Gaussian noise with zero mean and variance propor-
tional to the distance between the point and the near-
est internal twist is added on both dimensions. We
this procedure we generated three different datasets of
100000 points each for training, validation and testing.

We compare FastLSVM and SVM using LIN, RBF and
IPOL (with degree 2) kernels. Since LIN and IPOL
kernels can only build linear and quadratic decision
functions in the input space, they cannot give satis-
factory results for global SVM and thus we do not
loose generality in presenting SVM results with the
RBF kernel only. For model selection we adopt grid
search with 5-fold CV. For both methods, C and σ of
RBF kernel are chosen in {2−10, 2−9, . . . , 29, 210}. It
is possible that values higher than 210 for C and lower
than 2−10 for σ could give higher validation accuracy
results, but the computational overhead of SVM be-
comes too high to be suitable in practice (e.g. RBF-
SVM with C = 211, σ = 2−11 requires more than 24
hours). For FastLSVM we fix k′ = k/4 (intuitively a
good compromise between accuracy and performance),
while k is chosen among {0.25%, 0.5%, 1%, 2%, 4%,
8%, 16%, 32%} of training set size.

Table 2 shows the results obtained for SVM and
FastLSVM. We have that RBF-FastLSVM improves
over RBF-SVM in test accuracy of 8.65%, LIN-
FastLSVM of 8.69% and IPOL-FastLSVM of 8.63%.
The improvements on classification accuracies are ac-
complished by a dramatic increase of computational
performances for training phase: while the time
needed to compute the global SVM on the training
set is more than 100 minutes (6185 seconds), the
training of FastLSVM requires no more than 4 min-

utes. The best prediction time, instead, is achieved by
SVM although RBF-FastLSVM and LIN-FastLSVM
give comparable performances; the prediction time of
IPOL-FastLSVM is, instead, about an order of mag-
nitude higher than RBF-SVM.

3.3 The CoverType dataset

The binary CoverType dataset (retrieved from Lib-
SVM homepage [20]) has 581012 samples with 54 fea-
tures. We randomly chose 25000 samples for test-
ing, the others for training. Smaller training sets
(from 1000 to 500000 samples) are obtained randomly
sub-sampling the training data. We apply SVM and
FastLSVM with RBF kernel using the same model se-
lection strategy of the 2SPIRAL problem stopping it
without giving the best parameters, and thus without
performing the classification, if at least one fold of 5
fold CV does not terminate within 6 hours.

Table 3: Percentage accuracies and performances (in
seconds) of SVM and FastLSVM on CoverType data.

SVM FastLSVM

n
test train. test. test. train. test.
acc. time time acc. time time

1000 74.32 0 2 74.77 0 5
2000 76.25 1 3 76.28 0 10
3000 77.83 1 6 77.84 1 14
4000 78.83 3 9 79.34 2 20
5000 80.19 4 10 80.35 10 26
7500 82.36 11 16 82.47 43 42

10000 83.48 34 19 83.64 10 29
15000 85.56 148 32 85.78 15 73
20000 86.45 138 32 86.69 20 97
30000 88.14 588 51 88.25 59 146
40000 89.44 933 64 89.48 78 193
50000 90.22 1814 71 90.32 103 238
75000 91.78 4862 128 91.84 391 361

100000 92.81 7583 152 92.84 439 476
150000 - - - 94.07 505 716
200000 - - - 94.63 813 952
250000 - - - 95.35 1196 1188
300000 - - - 95.52 1663 1427
350000 - - - 95.83 3573 1663
400000 - - - 95.95 2879 1980
450000 - - - 96.18 3600 2140
500000 - - - 96.36 4431 2370
556000 - - - 96.47 5436 2633

The accuracy and performance results at increasing
training set sizes are reported in Table 3.

SVM accuracies are lower than FastLSVM ones for ev-
ery training set size. From a computational viewpoint,
FastLSVM can train the model on the whole train-
ing set faster than SVM on 100000 samples (less than
1/5 of the data); moreover, starting from n = 30000
FastLSVM training is at least one order of magnitude
faster than SVM, and the difference is more and more
relevant as n increases. It is important to underline
that the whole dataset permits a much higher classi-
fication accuracy than the random sub-sampled sets,
so it is highly desirable to consider all the data. Since
we implemented FastLSVM without supporting data-
structures for nearest neighbors, we must compute,
for all test points, the distances with all the training
points, leading to a rather high testing time.

4 Conclusions

Starting from the kNNSVM classifier, we presented
FastLSVM, which is scalable for large datasets and
maintains the advantages in terms of classification ac-
curacy of the original formulation of Local SVM. Dif-
ferently from Local SVM, FastLSVM precomputes the
local models in the training set trying to minimize
the number of SVM that needs to be built assigning
the models not only to the central point but to the
k′ most central samples. Furthermore training of the
local model can be very easily parallelized. The pre-
diction is performed applying to the query point the
SVM model to which its nearest neighbor in the train-
ing set has been assigned. The method demonstrated
empirically to be a good approximation of kNNSVM
and to substantially overcome SVM both in terms of
classification accuracy and training time performance
on an artificial large dataset and a real very large
dataset. Moreover we discussed some improvements to
the method such as kNN supporting data-structures,
which can further sensibly increase the training and
testing performances of FastLSVM.

References

[1] E. Blanzieri and F. Melgani. An adaptive SVM near-
est neighbor classifier for remotely sensed imagery.
IEEE Int Conf on Geoscience and Remote Sensing
Symposium (IGARSS-2006), pages 3931–3934, 2006.

[2] E. Blanzieri and F. Melgani. Nearest neighbor clas-
sification of remote sensing images with the maximal
margin principle. Geoscience and Remote Sensing,
IEEE Transactions on, 46(6):1804–1811, 2008.

[3] N. Segata and E. Blanzieri. Empirical assessment
of classification accuracy of Local SVM. Techni-
cal Report DISI-08-014, Dip. Ingegneria e Scienza
dell’Informazione, University of Trento, 2008.

[4] V.L. Brailovsky, O. Barzilay, and R. Shahave. On
global, local, mixed and neighborhood kernels for sup-

port vector machines. Pattern Recognition Letters,
20(11-13):1183–1190, 1999.

[5] L. Bottou and V. Vapnik. Local learning algorithms.
Neural Comput, 4(6):888–900, 1992.

[6] H. Zhang, A.C. Berg, M. Maire, and J. Malik. SVM-
KNN: Discriminative nearest neighbor classification
for visual category recognition. Proc of the 2006
IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition, 2:2126–2136, 2006.

[7] I.W. Tsang, J.T. Kwok, and P.M. Cheung. Core Vec-
tor Machines: Fast SVM Training on Very Large Data
Sets. The Journal of Machine Learning Research,
6:363–392, 2005.

[8] H. Yu, J. Yang, J. Han, and X. Li. Making SVMs
Scalable to Large Data Sets using Hierarchical Clus-
ter Indexing. Data Mining and Knowledge Discovery,
11(3):295–321, 2005.

[9] M. Dong and J. Wu. Localized Support Vector Ma-
chines for Classification. Neural Networks, 2006.
IJCNN’06. International Joint Conference on, pages
799–805, 2006.

[10] L. Zanni, T. Serafini, and G. Zanghirati. Parallel Soft-
ware for Training Large Scale Support Vector Ma-
chines on Multiprocessor Systems. The Journal of
Machine Learning Research, 7:1467–1492, 2006.

[11] J.X. Dong, A. Krzyzak, and C.Y. Suen. Fast SVM
training algorithm with decomposition on very large
data sets. IEEE Trans Pattern Anal Mach Intell,
27(4):603–18, 2005.

[12] H. Cheng, P.N. Tan, and R. Jin. Localized Support
Vector Machine and Its Efficient Algorithm. Proc.
SIAM IntlConf. Data Mining, 2007.

[13] C. Cortes and V. Vapnik. Support-vector networks.
Machine Learning, 20(3):273–297, 1995.

[14] V.N. Vapnik. The Nature of Statistical Learning The-
ory. Springer, 2000.

[15] B. Schölkopf and A.J. Smola. Learning with kernels:
support vector machines, regularization, optimization,
and beyond. MIT Press, 2002.

[16] L. Bottou and C.J. Lin. Support Vector Machine
Solvers. Large-Scale Kernel Machines, 2007.

[17] Q. Chang, Q. Chen, and X. Wang. Scaling gaussian
rbf kernel width to improve svm classification. Neu-
ral Networks and Brain, 2005. ICNN&B ’05. Interna-
tional Conference on, 1:19–22, 13-15 Oct. 2005.

[18] E. Chávez, G. Navarro, R. Baeza-Yates, and J.L. Mar-
roqúın. Searching in metric spaces. ACM Computing
Surveys (CSUR), 33(3):273–321, 2001.

[19] A. Beygelzimer, S. Kakade, and J. Langford. Cover
Trees for Nearest Neighbor. Proceedings of the 23rd
International Conference on Machine learning, Pitts-
burgh, PA, 2006., pages 97–104, 2006.

[20] C.C. Chang and C.J. Lin. LIBSVM: a library for
support vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

