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Abstract. We analyze the interplay of local flatness and geodesic deviation measured for causal geodesics starting

from the remark that, form a physical viewpoint, the geodesic deviation can be measured for causal geodesic,

observing the motion of (infinitesimal) falling bodies, but it can hardly be evaluated on spacelike geodesics. We

establish that a generic spacetime is (locally) flat if and only if there is no geodesic deviation for timelike geodesics

or, equivalently, there is no geodesic deviation for null geodesics.

1 Introduction

The presence of tidal forces, i.e. geodesic deviation for causal geodesics, can be adopted to give a notion
of gravitation valid in the general relativistic context, as the geodesic deviation is not affected by the
equivalence principle and thus it cannot be canceled out by an appropriate choice of the reference frame.
By direct inspection (see [MTW03]), one sees that the absence of geodesic deviation referred to all type of
geodesics is equivalent the fact that the Riemann tensor vanishes everywhere in a spacetime (M, g). The
latter fact, in turn, is equivalent to the locally flatness of the spacetime, i.e. There is a open covering of
M , {Ui}i∈I, such that every subspacetime (Ui, g!Ui) is a portion of Minkowski spacetime. However, from
a physical viewpoint, the geodesic deviation can easily be measured for causal geodesic, observing the
stories of (infinitesimal) falling bodies, but it can hardly be measured for spacelike geodesics. Therefore
the popular slogan “gravitation = curvature”, that is “absence of gravitation ⇔ (local) flatness”, seems
to encounter an obstruction on the physical ground to be rigorously proved. This is not the case because
we establish by Theorem 2.1 that, in a generic spacetime, the absence of geodesic deviation for timelike
geodesics – or, equivalently, for null geodesics – is equivalent to the local flatness.

1.1. Basic definitions and known results. If ∇ is a C1 affine connection [KN63, O’N83] on a C2

manifold M , the curvature tensor (field) is the tensor field defined, point by point, as the unique
multi-linear operator Rp : TpM ⊗ TpM ⊗ TpM → TpM with:

Rp(Xp, Yp)Zp = (∇X∇Y Z)p − (∇Y∇XZ)p − (∇[X,Y ]Z)p , (1)

for every p ∈M and for every triple of C2 vector fields X, Y, Z. It fulfills the following algebraic properties
[Wa84], valid for every p ∈M and all Xp, Yp, Zp ∈ TpM which will play a role in the rest of the paper.

Rp(Xp, Yp)Zp + Rp(Yp, Xp)Zp = 0 , (2)
Rp(Xp, Yp)Zp + Rp(Yp, Zp)Xp + Rp(Zp, Xp)Yp = 0 , provided ∇ is torsionfree . (3)
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A result, often mentioned but rarely proved in relativity txtbooks1, establishes that:

Theorem 1.1. Let M be a C2 n-dimensional manifold equipped with a C1 torsionfree affine connection
∇. The curvature tensor vanishes everywhere on M , if and only if M admits an atlas {(Ui, φi)}i∈I such
that, the connection coefficients of ∇ vanish in every local chart (Ui, φi),

(See the appendix for a proof.) In the following, for a C2 manifold M equipped with a C2 metric g,
the symbol ∇ denotes the Levi-Civita connection, i.e. the unique torsionfree, g-metrical (i.e. ∇g = 0),
affine connection. The curvature tensor, in this case, is called Riemann (curvature) tensor of g.

2 Local flatness and geodesic deviation.

A spacetime (M, g) is a smooth (i.e. C∞) four-dimensional manifold M , equipped with a smooth metric
g with Lorentzian signature (−,+,+,+). We state our definition of locally flat spacetime.

Definition 2.1. A spacetime (M, g) is locally flat if it admits a covering {Ui}i∈I made of open
subsets, such that every spacetime (Ui, g!Ui) is isometric to a spacetime (Vi, η4!Vi), Vi being an open set
in Minkowski spacetime M4 and η4 being the standard Minkowski metric of M4.

The issue about global flatness of a locally flat spacetime (M, g) – i.e. if (M, g) is globally isometric to
Minkowski spacetime (M4, η4) – is of topological nature and will not be addressed here. Locally flat
spacetims which are not globally flat can be constructed easily, taking some discrete-isometry-invariant
identifications in M4. From a pure mathematical point of view, Theorem 1.1 immediately implies that:

Lemma 2.1. A spacetime (M, g) is locally flat if and only if the Riemann tensor R vanishes everywhere.

Proof. Locally flatness yields R = 0 everywhere. If R = 0 everywhere, consider the atlas {(Ui, φi)}i∈I of
Theorem 1. The components of g are constant in each (Ui, φi) since the connection coefficients vanish and
∇g = 0. Using constant linear transformations, one diagonalizes the matrix-valued function representing
g in every Ui, obtaining the Minkowskian standard form of the metric in each Ui. !

As a second step, let us review the notion of geodesic deviation [MTW03, Wa84] starting with a definition.

Definition 2.2. Consider, in the spacetime (M, g), a pair ({γs}s∈I , J), such that I, J ⊂ R are open
nonempty intervals, for every fixed s ∈ I, J : t (→ γs(t) is a geodesic, t being a (common) affine parameter,
and the map I × J * (s, t) (→ γs(t) is smooth. Defining T := ∂

∂t and S := ∂
∂s , assume that

Tγs(t) , Sγs(t) are linearly independent and [T, S]γs(t) = 0 , for every (s, t) ∈ I × J . (4)

Such a pair ({γs}s∈I , J) will be called a smooth congruence of geodesics.

The constraint (4) assures that, as is physically expected, one can adapt a coordinate system to the
smooth class of geodesics, at least locally, such that two coordinates just coincide with t and s. For
nonnull geodesics, t can be chosen as the proper length parameter for spacelike geodesics, or the proper
time for timelike geodesics. At least when S is spacelike, ∇T S defines the relative speed, referred to the
parameter t, between infinitesimally close geodesics (say γs and γs+δs). Similarly, ∇T (∇T S) defines the
relative acceleration, referred to the parameter t, between infinitesimally close geodesics. Starting form

1A sketch of proof can be found in [MTW03] for Levi-Civita connections.
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∇T (∇T S), employing the definition (1), applying (4), and taking the geodesic equation ∇T T = 0 into
account, one finds the geodesic deviation equation:

∇T (∇T S) = −R(S, T )T . (5)

Let us restrict, from now on, to smooth congruences of causal geodesics with spacelike vectors S, since
they have a dynamical interpretation, describing the stories of of free falling bodies, ∇T (∇T S) being
the relative acceleration. The presence of tidal forces on free falling bodies, represented by the left-
hand side of (5), cannot be canceled by means of a suitable choice of the reference frame, but it is
a property of the geometry of the spacetime. Thus, the presence of geodesic deviation for a smooth
congruences of causal geodesics with spacelike S can be used to give a sensible, relativistic, definition of
gravitation, which is not affected by the equivalence principle. In locally flat spacetimes, where R = 0,
there is no geodesic deviation – so that gravitation disappears. It is interesting to study if the absence
of geodesic deviation for causal geodesics – i.e. the absence of gravitation – implies the local flatness of
the spacetime. It is important to remark that the full information about the curvature may be obtained
from the equation of geodesic deviation (5), if considering also smooth congruences of spacelike geodesics
[MTW03]. However, from the experimentalist’s viewpoint, ∇T (∇T S) can hardly be measured along
spacelike geodesics, excluding particular cases of spacetimes as static ones, and referring to a very special
choice of the field S. For this reason we stick to smooth congruences of causal geodesics with spacelike S
only. The following theorem shows that, actually, geodesic deviation of timelike geodesics, or equivalently,
geodesic deviation of null geodesics, encodes all information on the curvature.

Theorem 2.1. Consider a spacetime (M, g). The following facts are equivalent.
(a) (M, g) is locally flat;
(b) for every smooth congruence of geodesics ({γs}s∈I , J) such that, γs is a timelike geodesic and Sγs(t)

is spacelike ∀(s, t) ∈ I × J , there is no geodesic deviation, i.e. (∇T (∇T S))γs(t) = 0, for all (s, t) ∈ I × J ;
(c) for every smooth congruence of geodesics ({γs}s∈I , J) such that, γs is a null geodesic and Sγs(t)

is spacelike ∀(s, t) ∈ I × J , there is no geodesic deviation, i.e. (∇T (∇T S))γs(t) = 0, for all (s, t) ∈ I × J .

Proof. In view of Lemma 2.1 and of Eq.(5), (a) implies both (b) and (c). Let us demonstrate that
(b) implies (a). The idea is to prove, making use of (b), (2) and (3), that for each point p ∈ M , it
holds Rp(Xp, Yp)Zp = 0 for every choice of vectors Xp, Yp, Zp ∈ TpM . This is equivalent to say that
the Riemann tensor vanishes everywhere on M . At this point, Lemma 2.1 implies (a). Let us proceed
step-by-step along this way. Fix p ∈M and assume that (b) is valid. The following lemma holds, whose
proof stays in the appendix.

Lemma 2.2. If (M, g) is a spacetime, p ∈M , let Tp ∈ TpM \ {0} and Sp ∈ TpM \ {0} be, respectively
timelike and spacelike, vectors with g(Tp, Sp) = 0. There is a smooth congruence of geodesics ({γs}s∈I , J)
as in (b) of Theorem 2.1, fulfilling Tγs0 (t0) = Tp, and Sγs0 (t0) = Sp, for some (s0, t0) ∈ I × J .

In view of Lemma 2.2 and Eq.(5), one has that, for every p ∈M , Rp(Sp, Tp)Tp = 0 for all Tp, Sp ∈ TpM ,
respectively timelike and spacelike, with g(Tp, Sp) = 0. To extend this result to all possible arguments
of R, we start noticing that Rp(Sp, Tp)Tp = 0 is still valid if dropping the requirements Sp spacelike
and g(Tp, Sp) = 0. Indeed, if Sp ∈ TpM is generic, we can decompose it as Sp = S′p + cTp, where
c ∈ R and S′p is spacelike with g(Tp, S′p) = 0, for some timelike vector Tp. Then Rp(Sp, Tp)Tp =
Rp(S′p, Tp)Tp + cRp(Tp, Tp)Tp = 0 + cRp(Tp, Tp)Tp = 0, where we have used Eq.(3). Summarizing,
(b) implies that Rp(Sp, Tp)Tp = 0 for all Tp, Sp ∈ TpM with Tp timelike. Let us show that this last
constraint can be dropped, too. To this goal, fix Sp ∈ TpM arbitrarily and consider the bi-linear map
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TpM * Tp (→ FSp(Tp) := Rp(Sp, Tp)Tp. If we restrict FSp to one of the two open halves V (+)
p of the

light-cone at p, e.g. that containing the future-directed timelike vectors, we find FSp !
V (+)

p
= 0 in view of

the discussion above. Since FSp is analytic (it being a polynomial) and defined on the connected open
domain TpM , it must vanish everywhere on TpM . Summarizing, we have obtained that Rp(Sp, Tp)Tp = 0
for every vectors Tp, Sp ∈ TpM . To conclude, let us prove that the identity above holds true if replacing
the latter Tp with a generic vector Zp. Starting from Rp(Sp, Tp)Tp = 0, assuming Tp = Up + Vp and
Tp = Up − Vp, subtracting side-by-side the obtained results, taking bi-linearity into account, one finds:

Rp(Sp, Up)Vp + Rp(Sp, Vp)Up = 0, (6)

which is valid for every Sp, Up, Vp ∈ TpM . Identity (3) can be specialized here as:

Rp(Sp, Up)Vp + Rp(Up, Vp)Sp + Rp(Vp, Sp)Up = 0 . (7)

Summing side-by-side (6) and (7), taking Eq.(2) into account, it arises 2Rp(Sp, Up)Vp +Rp(Up, Vp)Sp = 0,
which can be recast as 2Rp(Sp, Up)Vp−Rp(Up, Sp)Vp = 0, where we employed Eq.(6) (with different names
of the vectors). Using Eq.(2) again, we can restate the obtained result as: 2Rp(Sp, Up)Vp+Rp(Sp, Up)Vp =
0. In other words Rp(Sp, Up)Vp = 0 for all vectors Sp, Up, Vp ∈ TpM , so that Rp = 0 as wanted. This
concludes the proof that (b) implies (a), in view of Lemma 2.1.

Let us finally demonstrate that (c) implies (a) by reducing to the proof of the implication (b) ⇒ (a).
Fix p ∈M and assume that (c) is valid. The following lemma holds, whose proof stays in the appendix.

Lemma 2.3. If (M, g) is a spacetime, p ∈M , let Tp ∈ TpM \ {0} and Sp ∈ TpM \ {0} be, respectively
timelike and spacelike and with g(Tp, Tp) = −g(Sp, Sp). Defining the null vectors N± := Tp ± Sp, there
are smooth congruences of geodesics ({γ±s }s∈I± , J±) as in (c) of Theorem 2.1, fulfilling Tγ±s0 (t0)

= N±
p ,

and Sγ±s0 (t0)
= Sp, for some (s±0 , t±0 ) ∈ I± × J±.

In view of the lemma and of Eq.(5), one has that, for every p ∈M , Rp(Sp, N±
p )N±

p = 0 for all N±
p , Sp ∈

TpM as in the hypotheses of the lemma. Consequently, if Tp and Sp, respectively timelike and spacelike,
satisfies g(Tp, Tp) = −g(Sp, Sp), it holds:

R(S, T )T = R(Sp, N
+
p − Sp)(N+

p − Sp) = −Rp(Sp, Sp)N+
p −Rp(Sp, N

+
p )Sp = −Rp(Sp, N

+
p )Sp ,

where we have used Eq. (2), and also

R(S, T )T = R(Sp, N
−
p + Sp)(N−

p + Sp) = Rp(Sp, Sp)N−
p + Rp(Sp, N

−
p )Sp = Rp(Sp, N

−
p )Sp .

Summing the two expressions found for R(S, T )T we have that, using Eq. (2) again:

2R(S, T )T = Rp(Sp, N
−
p )Sp −Rp(Sp, N

+
p )Sp = −2Rp(Sp, Sp)Sp = 0 .

We have found that Rp(Sp, Tp)Tp = 0 for all Tp, Sp ∈ TpM , respectively timelike and spacelike, with
g(Tp, Sp) = 0 (the requirement g(Tp, Tp) = −gp(Sp, Sp) may be dropped in view of multi-linearity of Rp).
Henceforth the proof goes on as in the proof of (b) ⇒ (a) given above. !

3 Summary

We have rigorously analyzed the popular statement “absence of gravitation ⇔ local flatness of the space-
time”, using a notion of gravitation based on the presence of geodesic deviation, measured along congru-
ences of causal geodesics representing the stories of free falling bodies. Spacelike geodesics have not been
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considered since on a hand they have not dynamical meaning, on the other hand, they are not suitable for
direct experimentation in general spacetimes. We have found that, in view of Theorem 2.1 the popular
statement holds true. That theorem is interesting also disregarding the definition of relativistic gravita-
tion we have adopted. Indeed it relates, through an if and only if clause, the curvature of a spacetime
with purely dynamical properties of free falling bodies which, ideally, may be measured experimentally.

A Appendix. Proof of some statements.

Proof of Theorem1.1. If the connection coefficients vanish in the local chart (Ui, ψi), the curvature
tensor vanishes therein as well. As {Ui, ψi}i∈I is an atlas of M , the curvature tensor vanishes everywhere
on M . The converse property is much less trivial to establish. We will exploit the well-known [Si79]:
Frobenius Theorem for first order PDE. Consider the Cauchy problem for the field X : Ω→ Rn,

Grad X(x) = F (x, X(x)) , X(p) = X0 (8)

where F : Ω×Rm → Rm, Ω ⊂ Rn being an open subset, F is a Cs function with s fixed in {1, 2, . . .}∪{∞},
p ∈ Ω, and X0 ∈ Rm. A unique solution exists in a sufficiently small neighborhood of p, and it is of class
Cs+1 (or C∞ when s =∞), provided the following conditions are fulfilled in Ω× Rn

∂F j
i

∂xk
+

m∑

r=1

∂F j
i

∂Xr
F r

k (x, X(x)) =
∂F j

k

∂xi
+

m∑

r=1

∂F j
k

∂Xr
F r

i (x, X(x)) , i, k = 1, 2 . . . , n , j = 1, 2, . . . ,m . (9)

(The conditions (9) are obtained using Schwartz commuting second-order partial derivatives theorem
for X and taking (8) into account.) Now consider a C2 manifold M equipped with a C1 torsionfree
connection ∇. Fix a point p ∈M and coordinate patch (Ω, ψ) about p, denoting by x ≡ (x1, . . . , xn) ∈ R
the values attained by ψ : Ω → Rn. From now on, with some obvious misuse of notation, we identify Ω
with the corresponding open set in Rn in order to exploit Frobenius’ theorem. We consider the Cauchy
problem in Ω× Rn2

for the composite vector field X ≡ (X(1), . . . , X(n)), given by

∇X(a) = 0 , X(a)(p) = V(a) , a = 1, . . . , n ,

where {Va}a=1,...,n is a base of TpM ≡ TpRn ≡ Rn. Making explicit the covariant derivatives∇ in the left-
hand side in terms of standard coordinate derivatives and connection coefficients (they are C1 functions in
our hypotheses), the system of equations takes the form (8) for the composite vector field X. Then, using
the expression of the curvature tensor in coordinates, and reminding that the connection is torsionfree,
one straightforwardly finds that the condition (9) is valid if the curvature tensor vanishes on Ω. Therefore
the vector fields X(a) exist in a neighborhood U ′ of p. These fields are obtained by parellely transporting
the basis of fields V(a) along any curve connecting p and q. Therefore they individuate a basis of TqM at
each q ∈ U ′. Finally, we notice that, in a neighborhood U ⊂ U ′ of p, there is a coordinate system φ with
coordinates y1, . . . , yn such that ∂

∂ya = X(a) for a = 1, 2, . . . , n. This is because the distribution of the C2

fields X(1), . . . X(n) is integrable: As the connection is torsion free, [X(a), X(b)] = ∇X(b)X(a) −∇X(a)X(b),
and ∇X(c) = 0 by hypotheses. The condition 0 = ∇X(b)X(a) = ∇ ∂

∂yb

∂
∂ya says that in the coordinate

patch (U,φ) the connection coefficients of ∇ vanish. Varying p ∈ M , the associated charts (U,φ) define
the wanted atlas. !

Proof of Lemma 2.2. Take two spacelike orthogonal vectors Up, Vp ∈ TpM such that they are also
orthogonal with Tp and Sp and consider a normal coordinate system [O’N83] D * (x0, x1, x2, x3) (→
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exp
(
x0Tp + x1Sp + x2Up + x3Vp

)
. D ⊂ R4 is a sufficiently small neighborhood of the origin of Rn. Since

∂
∂x0 |p = Tp is timelike, the vectors ∂

∂x0 have to be timelike by continuity, restricting the domain D
sufficiently about the origin. With this restriction, the embedded submanifold Σ through p, individu-
ated by (x0, x1, x2, x3) ∈ D and x0 = 0, turns out to be timelike, x1, x2, x3 are coordinates on Σ and

∂
∂x0 |(0,x1,x2,x3) is the (timelike) normal vector at each point of Σ. Finally consider the system of normal
coordinates t, s, s2, s3 about Σ [O’N83], individuated by G * (t, s, s2, s3) (→ expq(s,s2,s3)

(
t ∂

∂x0 |q(s,s2,s3)

)
,

where q(s, s2, s3) in the right-hand side indicates the point on Σ with coordinates x1 = s, x2 = s2, x3 = s3

and the exponential map is that in M . The open set G is a sufficiently small neighborhood of the origin of
R4 which, obviously, can always be taken of the form J×I×I×I, where I, J ⊂ R are open intervals con-
taining the origin of R. The wanted smooth congruence of geodesics is γs(t) := expq(s,0,0)

(
t ∂

∂x0 |q(s,0,0)

)
.

The vectors Sγs(t) = ∂
∂s and Tγs(t) = ∂

∂t are linearly independent and their commutator vanishes because
they are tangent to a coordinate system. Tγs(t) is timelike, since it is the tangent vector to geodesics
with timelike initial tangent vector ∂

∂x0 |(0,s,0,0). As requested, it also trivially arises that Tγ0(0) = Tp and
Sγ0(0) = Sp. As Sp is spacelike, Sγs(t) = ∂

∂s has to be spacelike everywhere by continuity (shrinking I
and J if necessary). !

Proof of Lemma 2.3. Starting from Tp and Sp, construct the coordinates x0, x1, x2, x3 about the
spacelike hypersufrace Σ, individuated by x0 = 0, exactly as in the proof of Lemma 2.2. Next, at each
point q ∈ Σ, define the null vectors N±

q(x1,x2,x3) :=
√

g(∂x1 ,∂x1 )
−g(∂x0 ,∂x0 )

∂
∂x0 |q(x1,x2,x3) ± ∂

∂x1 . Notice that those
fields are well-defined and coincides to N±

p if q = p. From now on we focus on the N+ case only, the
other case being closely similar. Since N+ is nowhere tangent to Σ by construction, one may define
a system of null-Riemannian coordinates t, s, s2, s3 about Σ [O’N83], individuated by the expression
G * (t, s, s2, s3) (→ expq(s,s2,s3)

(
tN+

q(s,s2,s3)

)
, where q(s, s2, s3) in the right-hand side indicates the point

on Σ with coordinates x1 = s, x2 = s2, x3 = s3 and the exponential map is that in M . The open set G
is a sufficiently small neighborhood of the origin of R4 which, obviously, can always be taken of the form
J+× I+× I+× I+, where I+, J+ ⊂ R are open intervals containing the origin of R. The wanted smooth
congruence of geodesics is γ+

s (t) := expq(s,0,0)

(
tN+

q(s,0,0)

)
. The vectors Sγ+

s (t) = ∂
∂s and Tγ+

s (t) = ∂
∂t are

linearly independent and their commutator vanishes because they are tangent to a coordinate system.
Tγ+

s (t) is null, since it is the tangent vector to geodesics with null initial tangent vector N+
(0,s,0,0). As

requested, it also trivially arises that Tγ+
0 (0) = N+

p and Sγ+
0 (0) = Sp. As Sp is spacelike, by continuity

(shrinking I+ and J+ if necessary), Sγs(t) = ∂
∂s has to be spacelike everywhere it is defined. !
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