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Abstract

Mader proved that every loopless undirected graph contains a pair (u,v) of nodes
such that the star of v is a minimum cut separating v and v. Nagamochi and Ibaraki
showed that the last two nodes of a “max-back order” form such a pair and used this
fact to develop an elegant min-cut algorithm. M. Queyranne extended this approach to
minimize symmetric submodular functions. With the help of a short and simple proof,
here we show that the same algorithm works for an even more general class of set functions.
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Main Section

Let V be a finite set. A value d({S,T}) is given for every unordered pair of disjoint subsets
S, T of V. For convenience, function d is called a map on V, even if it is actually defined on
a subset of 2" x 2¥. We also rely on the shorthand d(S,T) = d({S,T}) and leave the fact
that d(S,T) = d(T, S) as understood. Function d is called monotone if d(S,T") < d(S,T) for
any S, T disjoint and 7" C T'. Finally, d is consistent if d(A,W U B) > d(B, W U A) whenever
A, B,W are disjoint sets such that d(A, W) > d(B,W). As an example, when G = (V, E) is
an undirected graph, then d(S,T) = |{st € E : s € S,t € T'}| for any disjoint sets S,T C V,
is a monotone and consistent map on V. A subset S of V is said nontrivial when § £ S £ V.
We give an efficient algorithm to solve the following problem (minimum bipartition problem):

Given a finite set V and a monotone and consistent map d on V, find a
nontrivial subset S of V' for which d(S,V \ S) is minimum.

A maz-back order for (V,d) is an ordering vi,ve, ..., v, of the elements in V such that
d(vi, {v1,...,vi-1}) 2 d(vj, {v1,...,vi—1})  for2<i<j<n

Let s and ¢ be two elements of V. An st-set is a subset S of V' with |S N {s,t}| = 1.
An ordered pair (s,t) of elements of V is good if d({t},V \ {t}) < d(S,V \ S) holds for
every st-set S. Before the end of this section we will prove the following lemma:
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Lemma 1 Let v1,...,v, be a maz-back order for (V,d). Then (v,_1,v,) is good for (V,d).

Lemma 1 gives an efficient procedure, called a_Good_Pair, to find a good pair. When (s, t)
is a good pair two cases are possible: either {t} is an optimal solution to our problem, or no
optimal solution S to the problem is an st-set. This motivates the following definitions: Let
s and t be any two elements of V. Consider identifying s and t into a single new element v
thus obtaining a new set Vy; = V' \ {s,t} U {vs}. Now, to reconsider a subset X of Vj; as a
subset of V', we define (X) = X if vy ¢ X and (X) = X \ {vst} U {s,t} if vy € X. When §
and T are disjoint subsets of Vy; then (S) and (T') are disjoint subsets of V' and we define:

dst(S, T) = d(<S> ) <T>)

Note that, when d is a monotone and consistent map on V, then ds is a monotone and
consistent map on Vy. To conclude, the following algorithm solves the minimum bipartition
problem.

Algorithm 1 MIN_BIPARTITION (V,d)

1. if |V| = 2 then return either of the two nontrivial subsets of V;
2. (s,t) + a_Good_Pair(V,d);
3. return the best set among {t} and (Min_Bipartition(Vs,dg));

We have now enough motivation to prove Lemma 1.

Proof of Lemma 1:  The lemma is true for n = 3 since d(vy,v1) > d(vs,v1) implies
d({v1,v3},v2) > d({v1,v2},v3) for d is consistent. Let S be any v,v,_1-set. We must show
that:

d(S,V\S) 2 d({vn},V \ {vn}) (1)
Clearly, vy,v,,v3,04,. ..,V is a max-back order for (Vy,y,,dy,v,). Thus, either (1) follows
by induction or S is a vjve-set. Since d is monotone, vi,Vy,ys, V4, ..., vy is max-back for

(Viywss duyws) and either (1) follows or S is a vouz-set. Assume therefore that S is both a
v1v9-set and a vovs-set. But then S is not a viv3-set and to derive (1) it suffices to show that
V2, Upyvgy Vd, - - -, U 18 max-back for (V,4q,dy,05).- Assume on the contrary dy,q, (vg,v2) >
dyyvs (Vo vs,v2). However d(ve,v1) > d(vs,vi) and d(vs, {vi,v2}) > d(vg,{v1,v2}) since
v1,...,Up is max-back for (V,d). Since d is monotone and consistent, we get d(vs, {vi,va}) >
d(vk, {v1,v2}) 2 d(vk, v2) = ooy (Vk,V2) > dojos (Voy0g,v2) = d({v1,v3},v2) 2 d(vs, {v1,v2}),
a contradiction. |

Some Applications

A couple of observations and a list of applications will follow. In Application 1, Queyranne’s
important result on minimizing symmetric submodular functions is derived as a special case
of our framework. The generalization is strict as shown in Applications 2 and 3.



Note that Algorithm 1 can also be used to solve maximization problems when —d is a
monotone and consistent map. In practice it follows that we can maximize d'(S,V \ S) over
the nontrivial subsets S of V' whenever d’ is a map on V with the following properties:

(i) d'(S,T") > d'(S,T) for any S, T disjoint and 7' C T — (reverse monotonicity);

(ii) d'(A,W UB) >d'(B,W U A) whenever A, B,W are disjoint sets such that d'(4, W) >
d'(B,W) - (consistency);

In contrast, maximizing d(S,V \ S) for a generic monotone and consistent map d is an
NP-complete problem since it contains as a special case the max-cut problem, which is
known to be NP-complete [4].

Application 1 (symmetric submodular functions [9])

Consider a finite set V and a real function f on 2. We are interested in finding a
nontrivial subset of V' which minimizes f. For this reason we consider an ordered pair (s, t)
of elements of V' to be good if {t} is an st-set minimizing f. For any two disjoint subsets S, T
of V let us define

dg(S,T) = f(S) + (1) = F(SUT)

If f is symmetric (that is, f(S) = f(V \ S) for every subset S of V'), then a pair is good

with respect to f if and only if it is good with respect to d;.

Note that dy is consistent. Assume indeed A, B, W to be disjoint and such that d¢(A4, W) >
dg(B,W). This means f(A4) + f(W) — f(AUW) > f(B) + f(W) — f(BUW). But then
di(A,BUW) = f(A)+ f(BUW) - f(AUBUW) > f(B)+ f(AUW) — f(AUBUW) =
df(B,AUW).

So we are interested in characterizing those f for which d; is monotone, that is, d¢(S,T1) <
df(S, Ty UT3) for any S, T, Ty, all disjoint and non-empty. In terms of f this means, f(S) +
f(T) = f(SUT1) < f(S)+ f(T1UT) — f(SUT1UTy), or equivalently, f(SUT1UT3) + f(T1) <
F(ThUT,)+ f(SUTy). Hence dy is monotone if and only if f satisfies the submodular inequality
f(ANB)+ f(AUB) < f(A) + f(B) for any sets A and B such that A\ B,B\ A,AN B and
V'\ A\ B are all non-empty.

In [8], Nagamochi and Ibaraki called such a function f crossing submodular and observed
that the approach proposed by Queyranne in [9] to minimize symmetric submodular func-
tions (where the submodular inequality has to hold for any sets A and B), was also valid for
symmetric crossing submodular functions.

Algorithm 1 was first employed by Nagamochi and Ibaraki [7] to find minimum cuts
in undirected graphs. A simple proof of the validity of Nagamochi and Ibaraki’s min-cut
algorithm had been obtained by Frank [2] and Stoer and Wagner [10], while Queyranne was
deriving his important, but less simple, extension. Recently, in [3], Fujishige gave another
short proof of the validity of Nagamochi and Ibaraki’s min-cut algorithm and indicated how
to employ his arguments to obtain a compact proof of Queyranne’s result.

In the next application we show that our simple approach actually embraces an even
broader class of problems.



Application 2 (short distance partitions)

Let G be a graph. A symmetric distance A(u,v) is given for every two nodes u,v. Assume
we want to bipartition the node set V of G as to keep the maximum distance among two
nodes on different sides of the partition as small as possible. Even if this problem can easily
be solved directly, define d(S,T) = maxz{A(s,t) : s € S, t € T}. Note that d is a monotone
and consistent map in general. Consider the graph (V, E) = ({a, b, ¢,d}, {ab,bc, cd,da)}) and
for every u,v € V define the distance A(u,v) as the length of a shortest path between u and
v. (Hence A(a,c) = A(b,d) = 2, and A(a,b) = A(b,¢) = A(c,d) = A(a,d) = 1). The sets
S ={a,c} and T = {a,d} show that the function f on 2V defined by f(S) =d(S,V \ S) for
every S CV, is not crossing submodular in this special case.

Application 3 (critical cuts)

Let (G,w) be a weighted graph. Assume to be interested in those spanning trees T' of G
such that maz{w(e) : e € T'} is as small as possible. Then it is natural to define the cost of
a cut 6(S) as the minimum of w(e) for e € §(S) and to search for a cut of maximum cost.
This is clearly a bottleneck problem and admits a direct and simple solution.

Define d(S,T) = min{w(e) : e has an endpoint in S and the other in T'}. Note that —d
is a monotone and consistent map. This is indeed a reformulation of the above problem on
short distance partitions (see Application 2). Hence we also have that the function f on 2V
defined by f(S) = d(S,V \ S) for every S C V, is not crossing supermodular in general. (A
function f is called crossing supermodular if f(ANB)+ f(AUB) > f(A)+ f(B) for any sets
A and B such that A\ B,B\ A, AN B and V \ A\ B are all non-empty).

Application 4 (minimum cuts in hypergraphs [5])

Hypergraphs generalize graphs. When G = (V, H) is an hypergraph, then the hyperedges
in H are arbitrary subsets of the node set V. Thus a graph is an hypergraph in which every
hyperedge has cardinality 2. Klimmek and Wagner [5] proposed a Nagamochi-Ibaraki type
algorithm to find a minimum cut in an hypergraph. Indeed, the cut function of an hyper-
graph is symmetric and submodular [5, 9]. Consider the bottleneck version of this problem,
that is, finding a cut which minimizes the maximum weight of an hyperedge belonging to
it. Submodularity is lost but still we would have to deal with a monotone and consistent map.

Application 5 (partitions minimizing ambivalence)

Let G be a graph. Partition the node set V as S U (V' \ S) in such a way as to minimize
the number of nodes with neighbors in both sides of the partition. This problem can be
formulated as an hypergraph min cut problem (for every node v, we have an hyperedge h,
made of the neighbors of v in G). The problem hence falls in the framework of Stoer and
Wagner [10], but also in that of Queyranne [9], or finally in our framework.
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