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ABSTRACT. The Feynman path integral representation for the weak
solution of the Schrédinger equation with an inverse quartic oscilla-
tor potential is given in terms of a well defined infinite dimensional
oscillatory integral. An analytically continued Wiener integral rep-
resentation for the solution is provided and an explicit description
of the quantum dynamics associated to a not essentially self-adjoint
Hamiltonian is given.

Key words: Feynman path integrals, Schrodinger equation, ana-
lytic continuation of Wiener integrals, quartic oscillator.

AMS classification : 35C15, 35Q40, 28C20, 47D06, 35B60.

1. INTRODUCTION

Since their first introduction [17], Feynman path integrals had rep-
resented an alternative and suggestive formulation of quantum theory.
According to Feynman’s proposal, the solution of the time dependent
Schrodinger equation

{ 9 = — 1 Ay + Vi 1)
w(on 33) = ¢0(.’13)

describing the dynamics of the state of a d-dimensional quantum par-
ticle moving in a conservative force field given by a potential V' (m is
the mass of the particle and # is the reduced Planck constant), should
be represented by a ”"sum over all possible histories” of the system

Y(t,z) = “const / eFSMey(4(0)) Dy 7. (2)
{717(0)=x=}

The heuristic expression (2) is intended as an integral over the the
space of paths ~ arriving at time t at the point x, S; is the classical
action functional of the system evaluated along the path ~:

500 = [ Batrds— [ Ve
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and D~ denotes a heuristic “flat” Lebesgue-type measure on the space
of paths. Feynman’s representation creates a connection between the
classical Lagrangian description of the physical world and the quan-
tum one, making very intuitive the study of the ”semiclassical limit”
of quantum mechanics, that is the study of the detailed behavior of the
wave function 1 when the Planck constant is regarded as a small pa-
rameter converging to 0. Indeed, according to an heuristic application
of the stationary phase method [15], the asymptotic behavior of the
integral (2) should be determined by the paths which make stationary
the phase functional S;, that is, by Hamilton’s least action principle,
the classical orbits of the system.
Despite its fascinating features, the integral (2) is not defined in a math-
ematical rigorous way. Feynman himself was aware of the problem!,
nevertheless he extended the path integral approach to the description
of the dynamics of more general quantum systems, including the quan-
tum fields, and producing an heuristic calculus that, from a physical
point of view, works even in cases other arguments fail.

The first rigorous mathematical realization of a Feynman-type for-
mula is due to M. Kac [24, 25|, who noted that by considering the heat
equation with potential instead of the Schrodinger equation

{ —hifp = — A+ Vi )
lﬁ(O,x) = wo(l')

(obtained formally by the substitution ¢ — i) and by replacing the os-
cillatory term e o ()°@s in (2) with the fast decreasing one e~ Jo 7(s)*ds
it is possible to realize rigorously the heuristic path integral formula

Y(t,z) = “const / 75Oy (v(0) Dy 7. (4)
{71 (0)==}

in terms of a well defined Gaussian integral with respect to the Wiener

measure W:

W(t,z) = / e~ o VW h/mu)aldsy (i Tm(t) + 2)dW (W), (5)

Equation (5), the famous ” Feynman-Kac formula” [36], is the starting
point for the definition of Feynman path integral as the analytic contin-
uation of Wiener integrals [11, 13, 32, 26, 23]. Indeed by introducing in
equations (3) and (4) a suitable parameter )\, proportional for instance

TActually Feynman writes ”One must fell as Cavalieri must have felt in calcu-
lating the volume of a pyramid before the invention of the calculus ”
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to the the time ¢ as in the case A = Ay,
—Alh%w = —ﬁhQAdr + V(x)y
Y(t,z) = [ mn o VM mAelrtadsy, TR Nu(t) + 2)dW (w),

or to the Planck constant, as in the case A = Ag,
Xo2ip = 2 NAY + V()¢
1 t
W(t,x) = [ exado VW lmertadsy, (/3 Tmw(t) + z)dW (w),
or to the mass, as in the case A = A3,
S = 5= A — iV ()1,

Wity x) = [ e o VWA sy (T 0(8) + 2)dW (w),

and by allowing A to assume complex values, then one gets, at least
heuristically, Schrodinger equation and its solution by substituting re-
spectively Ay = —i, Ay = th, or A3 = —im. These procedures can be
made completely rigorous under suitable analyticity and growing con-
ditions on the potential V' and initial datum 1)y. Moreover, in some
particular cases, the study of the asymptotic behavior of the ”Wiener
integral representation” of the solution of the Schrodinger equation
when 7 | 0 has been applied to the semiclassical limit of quantum me-
chanics [9, 10].

An alternative mathematical definition of Feynman path integrals can
be obtained by means the ”infinite dimensional oscillatory integrals”
[6, 7, 14, 3], an infinite dimensional analogue of the classical oscilla-
tory integrals on finite dimensional spaces [22]. This approach has also
allowed the implementation of an infinite dimensional version of the
stationary phase method, applied to the study of semiclassical limits
(7, 34, 3, 2].

Other mathematical definitions of the Feynman integral has been pro-
posed, for instance by means of white noise calculus [21], or in terms of
finite dimensional approximations and Trotter-type formulae [18, 19],
or by means of nonstandard analysis [5]. However all the existing ap-
proaches present a common problem: the potentials V' which can be
handled are of the type ”quadratic plus bounded perturbation” (which
is Fourier transform of measure). It is important to stress that the
problem is not only technical, but quite fundamental. Indeed it has
been proved [39] that in one dimension, if the potential is time inde-
pendent and super-quadratic in the sense that V(z) > C(1 +|z|)?*€ at
infinity, C' > 0 and € > 0, then, as a function of (¢, z,y), the fundamen-
tal solution E(t,0,z,y) of the time dependent Schrédinger equation is
nowhere C*. Recently in [8] the case of potentials which are polynomial
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of the form .
V(z) = 53?9296 + Az,

(where Q? is a positive symmetric d X d matrix, A € R") has been han-
dles. In this case the quantum mechanical Hamiltonian H : D(H) C
L*(R?) — L?(R?) given on vector ¢ € C$°(R?) by

Ho@) = —6(x) + V(2)o(a) )

is essentially self-adjoint and determines uniquely a quantum dynamics.
The present paper is devoted to the study of quartic (double well)
polynomial potentials unbounded from below, of the form

1
V(z) = —Az|* + 53:9230, (7)

with A € Rt and Q2 being a positive symmetric d x d matrix. In this
case the quantum Hamiltonian H = —% + V is not essentially self-
adjoint as one can deduce by a limit point argument (see [35], theorem
X.9) and the quantum evolution is not uniquely determined. Nelson
[32] was the first one proposing Feynman path integrals as a tool defin-
ing the quantum dynamics in the case of not essentially self-adjoint
Hamiltonians. In [32], by means of a generalized Trotter product for-
mula and an analytic continuation technique, a strongly continuous
contraction semigroup

U(t): *(RY) — L*(RY), ¢t>0

is constructed and, given a ¢ € L?(R%), the vector v (t) = U(t)y
satisfies the Schrodinger equation in a distributional way, i.e. for any
¢ € L*(R?) sufficiently regular, one has

. d
ih— (0 (1)) = (Ho, $(1))-

Even if the starting point of Nelson’s derivation is a Wiener integral
representation of the solution of an heat equation with imaginary po-
tential, the evolution operators U(t) are defined in an abstract way by
means of a limiting procedure and, in general, a path integral represen-
tation for its matrix elements (¢, U(t)1)) cannot be defined (even for
very regular vectors ¢,1 € L?(R?)). A technical problem of Nelson’s
result, directly connected with the method of the proof (i.e. the ap-
plication of the Fatou-Privaloff theorem) is a restriction to the allowed
values of the mass parameter m, which cannot belong to a set N of
Lebesgue measure 0.

In the present paper we show that for the particular (unbounded from
below) potential of the form (7) both problems of Nelson’s paper can
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be overcome. Indeed by using the theory of infinite dimensional os-
cillatory integrals with polynomial phase function developed in [8] we
can give mathematical meaning, for suitable vectors ¢,v € L?(R?),
to the Feynman path integral representation for the weak solution of
the Schrédinger equation, i.e. the matrix elements (¢, e~#*1)). More
precisely, we provide the definition of (¢,e %)) in terms of an in-
finite dimensional oscillatory integral on a suitable Hilbert space of
paths and, thanks to a Parseval-type equality, we prove that it can
be computed in terms of a Wiener integral. This result provides a
link between two different approaches to the mathematical definition
of Feynman path integral (the analytic continuation approach and the
infinite dimensional oscillatory integral approach). Moreover we prove
that the Feynman integrals representing (¢, e"%%*)) coincide, for any
value of the mass m, with the matrix elements of the abstract evolution
operators U (t) constructed by Nelson.

In section 2 we recall the main results on infinite dimensional oscilla-
tory integrals, including the more recent developments. In section 3 the
path integral representation for the weak solution of the Schrodinger
equation with potential (7) is constructed. It is also proved that it
coincides with the dynamics defined by Nelson’s method. Section 4 is
devoted to an alternative description of the evolution operator defined
in section 3.

2. INFINITE DIMENSIONAL OSCILLATORY INTEGRALS

In the present section we present, the definition and the main results

on infinite dimensional oscillatory integrals, for more details we refer
to [6, 14, 3]. The leading idea is the extension of the main properties
of classical oscillatory integrals on R™ [22] to the case the integration
is performed on an infinite dimensional Hilbert space.
In the following we will denote by (#, (, )) a (finite or infinite dimen-
sional) real separable Hilbert space, whose elements are denoted by
z,y € H and the norm with || ||. In the case where A is finite di-
mensional, H = R”, an oscillatory (Fresnel) integrals on #, i.e. an
expression of the form

/ el £ () da (8)

(where f : R* — C is a measurable function, and i > 0 is a real pa-
rameter) can be defined even if f is not summable (and the integral (8)

is not well defined in Lebesgue sense) by means of a limiting procedure
[22, 14].
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Definition 1. A function f : R* — C s Fresnel integrable if and only
if for each Schwartz test function ¢ € S(R™) such that ¢(0) = 1 the
limat

lim (2if) /2 / e () er)da (9)

e—0

exists and is independent of ¢. In this case the limit is called the Fresnel
integral of f and denoted by

/ eﬁ(x’g”)f(x)dx (10)

Remark 1. It is important to stress that in the case f is not summa-
ble, for instance if f(x) = 1 Vx € R", the convergence of the Fresnel
integral is given by the cancellations due to the oscillatory behavior of
the integrand. This makes oscillatory integrals the suitable mathemati-
cal tool to represent the physical concept of coherent superposition, that
1s of interference. Oscillatory integrals, as well as their asymptotic
expansions when the parameter h | 0, find important applications in
several branches of physics where wave phenomena are fundamental,
such as for instance optics [37]. From this point of view, the extension
of the definition of oscillatory integrals to the case the integration is
performed on a (infinite dimensional) Hilbert space of paths and the
application to quantum mechanics appear very natural

The normalization constant (27ik)~"/? becomes fundamental in the
generalization of definition 1 to the infinite dimensional case. Indeed
in the case where the Hilbert space H is infinite dimensional, the oscil-
latory integral is defined as the limit of a sequence of finite dimensional
approximations [14, 3].

Definition 2. A function f : H — C is Fresnel integrable if and only
if for any sequence P, of projectors onto n-dimensional subspaces of
H, such that P, < P,y1 and P, — 1 strongly as n — oo (1 being the
identity operator in H), the finite dimensional approximations

o~

[ e (b owyi(P,a),
nH

are well defined (in the sense of definition 1) and the limit

o~

lim 2 {Fre:Po) £ (P 2V (Pyr) (11)

n—oo PoH

exists and is independent of the sequence {P,}.
In this case the limit is called the Fresnel integral of f and is denoted
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/ ez_ih@’x)f(x)dx.
H

An “operational characterization” of the largest class of “Fresnel
integrable functions” is still an open problem, even in finite dimen-
sion, but one can find some interesting subsets of it. In particular
[14, 3, 6] by considering a function f : # — C that is the Fourier trans-
form of a complex bounded variation measure py on H, ie. f(x) =
[, €™ dus(y) = fp(x), and a self adjoint trace-class operator L :
H—H, such that (I — L) is invertible, one can see that the function
e~ 2 (" L‘”) f(z) is Fresnel integrable and the corresponding Fresnel inte-
gral can be explicitly computed in terms of a well defined absolutely
convergent integral with respect to a o —additive measure, by means of
the following Parseval-type equality:

/ e (@)= 35 @19 £ (1) dz = (det(] — L))~ 2 / e~ U= (day)

i (12)

where det(I — L) = |det(I — L)|e~™ ™4 ~L) is the Fredholm deter-
minant of the operator (I — L), |det(I — L)| its absolute value and
Ind((I — L)) is the number of negative eigenvalues of the operator
(I — L), counted with their multiplicity.
In [8] equation (12) has been generalized to the case of polynomial
phase functions with quartic growth. In particular the results of [§]
show that, under suitable assumption an infinite dimensional oscilla-
tory integral on an Hilbert space H can be computed in terms of a
Gaussian integral. Indeed let us consider the abstract Wiener space
(i,H,B) built on H [20, 29] (see the appendix for the definition and
the main results on abstract Wiener spaces). Let V; : H — R be a
strictly positive, 4-th order homogeneous map, i.e. Vi(az) = o!V,(x)
for any @ € Ryz € H, which is continuous in the | |-norm. As a
consequence V} is continuous in the || ||-norm, moreover it can be ex-
tended by continuity to a random variable V; on B, with Vj|3 = V; and
the stochastic extension V; of V, : H — R exists and coincides with
Vi:B — R u—a.e. (see appendix for definition and properties of sto-
chastic extensions). Let us consider a self-adjoint trace class operator
B :H — H. The quadratic form on H x H:

x € H — (x, Br)

can be extended to a random variable on B, denoted again by (-, B - ).
Let us assume that the largest eigenvalue of B is strictly less than 1
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(or, in other words, that (I — B) is strictly positive). Then one can
prove that the random variable g( - ) := ea{-B) is y-summable
(see appendix). In this setting it is possible to extend Parseval type
equality (12) to the case of infinite dimensional oscillatory integral with
a polynomial (quartic plus quadratic) phase function of the following
form

/ el ¢= 35 @:82) 01V f () dr (13)
H

Theorem 1. Let B be self-adjoint trace class, (I — B) strictly positive,
f = [y, and let us suppose that the bounded variation measure [if
satisfies the following assumption

/ AOU-B)) | (dk) < oo, (14)
H

Then the infinite dimensional oscillatory integral (13) exists and is
given by:

/ E[ein(k)(w)ein e#(w,Bw)ef%‘_Q(w)]Iu,f(dk)
H

Moreover the function f on the real Hilbert space H can be extended
to those vectors y € HC in the complex Hilbert space HC of the form
y=zx,x €H, z€ C. It can be also uniquely extended to a random
variable on B, denoted again by f, defined by

[ (w) = f(2w) E/ kW) (dk), w € B, (15)

H
and the integral (13) is also equal to

e~ #V4@ean .Be) f(eim/4y)] (16)
where the expectation is taken with respect to the Gaussian measure |
on B.

3. THE WEAK SOLUTION OF SCHRODINGER EQUATION

Let us consider the Schrodinger equation

ihi2i(t,z) = — L Agp(z) + V(2)(t, 7)
{ (0, 2) = o () a7)

with V' given by (7), and the heuristic Feynman path integral repre-
sentation for its solution:

Y(t,z) = /() e Jo ¥ (@)ds= 5 Jo v (st 3 o V(@) sy ((0))dy.
¥(t)=x
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Analogously, given a vector ¢ € L*(R?), the inner product (¢,(t))
should be given by:

/Rd Qg(x) /(t) eZh ds_*fo 5)2%y s)ds—i—”‘ fo ( s)|4dsw ( ( ))d’ydiﬁ
Y

(18)
Theorem 1 allows one to give a rigorous mathematical meaning to the
heuristic expression (18) in terms of an infinite dimensional oscillatory
integral on a suitable Hilbert space.

In the following we shall put for notation simplicity m = 1 but the
whole discussion can be generalized to arbitrary values of the mass pa-
rameter. Let us consider the Cameron-Martin space H;, that is the
Hilbert space of absolutely continuous paths v : [0,#] — R¢, with

v(0) = 0 and inner product {v;,72) = fot A1 (8)32(s)ds. The cylin-
drical Gaussian measure on H; with covariance operator the identity
extends to a o-additive measure on the Wiener space C; = {w €
C([0,#];RY) | v(0) = 0}: the Wiener measure W. (i, H;, Cy) is an
abstract Wiener space.

Let us consider moreover the Hilbert space H = R? x H;, and the Ba-
nach space B = R? x C; endowed with the product measure N(dz) x
W (dw), N being the Gaussian measure on R? with covariance equal to
the d x d identity matrix. (i, H, B) is an abstract Wiener space.

Let us consider two vectors @, 1y € L*(RY) N F(R?) and the symmetric
operator B : H — H given by:

(z,7) — (y,n) = B(z,7),

t 2 s U
y = t92x+§22/ v(s)ds, n(s) = Q%(ts—%)—/ / Q*y(r)drdu.
0 o Ji
19)

Let us also introduce the homogeneous fourth order polynomial V;
given by Vi(z,7) = /\fot v(s) + z|*ds, and the function f : H — C
given by

f(@,7) = @mih)"2e= %" §(2)1o(v(t) + @) (20)

with this notation expression (18) can be realized as the following in-
finite dimensional oscillatory integral on #:

/ 3 (al401%) 35w 1) B@ ) AV £(5 3\ dpdly (21)
H

In the following we will denote by €2;, : = 1,...,d, the eigenvalues of
the matrix €.
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Theorem 2. Let us assume that for each i = 1,...,d the following
inequalities are satisfied

Let ¢,y € L2(RY) N F(RY). Let uy be the complex bounded variation
measure on R? such that fig = y. Let piy be the complex bounded vari-

ation measure on R? such that fiy(x) = (2mih) %225 = G(z). Assume
in addition that the measures po, 1y satisfy the following assumption:

/ / o % (yt-cos(2) 7 (1—cos(2t))z) (1~ tan(2t)) = (y-+cos(2) = (1—cos(Q))2)
R4 JRd

AT A0 o (d) 1y (dy) < 00 (23)

Then the function f : H — C, given by (20) is the Fourier transform
of a bounded variation measure py on ‘H satisfying

/ e I=B) 0 | (dydn) < oo (24)
H

(B being given by (19)) and the infinite dimensional oscillatory integral
(21) is well defined and is given by:

/ ( / ™ @yt VRn() (@) g 35 Jy (VAw(s)+2)Q? (Viw(s) +a)ds
R4 x H; R4 x Cy

e
it s)+z|tds e =
=i 2 VA >+dW(dw)de)uf(dydv)- (25)

This 1s also equal to

(Z-)d/2 / e 3n Jo (VAw(s)+2)Q* (Viw(s)+o)ds
RE x Cy

e~ fo Vho(s)tal*ds g gim/4 gy (/N uw (t) + €/ 42)W (dw)dz.  (26)

Moreover the latter is equal to the inner product (¢, U (t)o), with U(t),
t > 0, strongly continuous contraction semigroup and

d
(H being given on the smooth vector ¢ € CZ(R?) by (6)).

Proof: The proof of the first part of the theorem, i.e. equations (25)
and (26), is a direct application of theorem 1. Assumptions (22), re-
stricting the interval of values that the variable £ can assume, implies
that the operator (I — B) is positive. Assumptions (23) on the measures
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o, te implies the inequality (24), i.e. the condition (14) for the appli-
cation of theorem (1) (see [8] for more details). Let us now consider
the second part of the theorem, i.e. the construction of the semigroup
U(t), t > 0, and the proof that its matrix elements (¢, U(t)¢po) are
given by the infinite dimensional oscillatory integral (21).
Let us consider the heat equation with complex potential

—h2y(t,x) = =L AY(t,x) + iV (2)(t, 2)
i (21)

with V given by (7). For any vy € Ly(R?), the integral

Um(t)ll]o(aj) = / ei% f(;S |\/h/—mw(s)+$‘4ds

Ct
e 3 Ja (VAIm w(o) )0 Whalo)raldsy ( [Tm w(t) + o)W (dw)  (28)

is convergent and defines a contraction operator Uy, (), as
U ()0 ()| < [ |tho(v/A/mw(t) + 2)[W (dw)
Cy

< (2nthi/m)”/? / e 3"V gy (y)dy = Ko ()]0l (2), (29)
Rd

where K,,(t) is the heat semigroup K,,(f) = e3n®. By writing the

cylindrical approximations of the Wiener integral (28) one has

U (t)ib0(w) = Tim (Kon(t/) My (t/))" () (30)

where My (t) is the group given by the multiplication operator My (t) =
e~ By mimicking Nelson’s argument [32] one can see that the limit
(30) can be taken in L?, it defines a strongly continuous contraction
semigroup U,,(t) and for any vy € CZ(R%) the generator A,, is given
by
A =1 ! Upn(t _ (P A Z'V 31
m%—tl_{%;( m( )wo—%)—(% T )%o. (31)
As A is a negative operator, for any ¢ > 0 K,,(t) is an holomorphic
operator-valued function of m in the half plane Re(m) > 0. It follows
that for any vy € L? and for any n € N, the expression F,(m) :=
(K, (t/n) My (t/n))"y defines an L2-valued function holomorphic in
the half plane Re(m) > 0 and continuous on Re(m) > 0. Since the
sequence of functions {F}, },en is uniformly bounded on Re(m) > 0 by
||1o]| and converges for m > 0, by Vitali’s theorem it converges on the
whole domain Re(m) > 0 and the limit

Jim (Ko (8/m) My (8/7))" b0 = Un(£)o
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defines a an holomorphic L2-valued function U, ()1 on Re(m) > 0.
By analytic continuation, one can prove that U, () is a strongly con-
tinuous contraction semigroup whose generator in given on vectors
b € CZ(R?) by equation (31).

The purely quantum mechanical - Schrodinger case is obtained for m in
(27) purely imaginary, i.e. m = —i. Let us consider ¢, ¢ satisfying the
assumptions of the theorem. For m > 0, the inner product (¢, U, (t))
is given by

/ 6_# fot(v h/m w(s)+2)% (VA w(s)+x)ds
R4 x Cy

e Jo W/Am o)t sy, (/R w(t) + 2)§(x) W (dw)dz (32)

By a change of variable z — z/+/m the latter becomes

(6, Un(Oh) = m~92 [ i B/ it

e'tn Jo VRl taldoy (/i Tm w(t) + o/ /m)(z/Vm)W (dw)dz  (33)

By assumptions (22) and (23), the right hand side of (33) is an holo-
morphic function of m in the domain {Re(m) > 0} N{Im(m) < 0} and
continuous on the boundary. On the other hand, by previous considera-
tions, the matrix element (¢, U, (t)to) is an holomorphic function of m
in the domain {Re(m) > 0} and coincides with the functional integral
(33) on the half line m > 0. By uniqueness of analytic continuation,
both sides of (33) coincides on the domain {Re(m) > 0} N {Im(m) <
0}. In particular there exists the limit lim,, ,_;{(¢, Un(t)1) and, by
bounded convergence theorem, it is equal to (26). O

Remark 2. The results of theorem 2 hold also in the case the potential
V' is of the form:

1
V(z) = - Alz|* — 533923:, z €R
with A € Rt and Q2 a positive symmetric d x d matriz. In this case
conditions (22) can be dropped and condition (23) has to be replaced
by:

/ / o i (y+cosh(Q21) 7! (1—cosh(Q21))z) (14 tanh(2¢)) ~* (y-+cosh(22¢) ~! (1-cosh(Q21)))
Rd JRd

_hyQ-1tan T
o Q1 tanh(Qt) |u0|(dx)|u¢|(dy) < 0 (34)
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4. THE EVOLUTION OPERATOR

The explicit Wiener integral representation (26) for the matrix ele-
ments (@, U(t)1ho) allows one to describe more explicitly the evolution
operator U(t)s g+, i.e. the dynamics defined by the Feynman path in-
tegral.

Let us denote by Dy, 4, the sector of the complex plane given by:

Dy, g, ={2€C,z=pe" : p>0,¢0€ (6;,0,)}.
Let us denote by S; the subset of S(R?) made of the functions ¢ : R¢ —
C such that
(1) the function z — ¢(zx), z € R, 2 € Do,n/4 is analytic on Do /4
and continuous on Dy /4.
(2) the function x — ¢(e'iz), z € R? is in L2
Analogously, we shall denote by S, the subset of S(R?) made of the
functions ¢ : R¢ — C such that
(1) the function z — @(z2z), z € R%, 2 € D_/sy is analytic on
D_; /40 and continuous on D_g 4.
(2) the function x — ¢(e~*iz), z € R? belongs to L*(R?).
As an example, the functions of the form

6(z) = P(z)e = () (35)

(where P is a polynomial with complex coefficients) belong to Sy, while
the functions of the form

6(z) = P(z)e” 2 () (36)

belong to S;. As the Hermite functions, which can be obtained by
applying to suitable functions of the form (35) (resp (36)) the unitary

3

transformation ¢(z) — e2” ¢(z) (resp. ¢(z) — e 2% ¢(z)), form a
complete orthonormal system in L%(R?), it is simple to verify that
both & and S, are dense in L?(R?). In the following we shall denote
by S; C S resp. Sy C S, the dense subsets of L? made of vectors of
the form (35) resp. (36).

Let us denote by T : §; — S, the linear operator defined by

To(x) = e's%p(e'ix), peS
and by 77! : S, — &, its inverse, defined by
T7'¢(z) = e"3%(e" i)  $€ S

One can easily verify that 7" and T~! are both symmetric, this implies
that, for ¢ € Sy, € Si, one has (T 1, Tv) = (¢, ). Moreover they
are positive operators, so that they admit self-adjoint extensions [35].
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By means of an analytic continuation argument, one can see the fol-
lowing:

Lemma 1. Let v € S, and ¢ € S, then
(6, e7wt) = (T ¢, x0T Y))
=i | (e'ix) | p(Vhe'Tw(t) + e Fa)W (dw)dz (37)
Cy

Rd

where Hy is the free Hamiltonian given on S(R?) by Ho(z) = —%ZAw(a:).

Proof: Let us consider the function f : D_. /5,2 — C given by f(z) =
(¢, e~ 7Hoyh). By the spectral properties of Hy, f is analytic on D_r 9.7 /o
and continuous on D_; /3 /2. Let g : C — C defined by

g(z) = 2402 / 0/0) [ o(Es(t) + VEn)W (o)

by the analyticity properties of ¢, 1, one can easily verify that g is ana-
lytic on D_y /3 x/2 and continuous on the closure D_W/Q,W /2 of D_r /9 7/0.
Moreover, by Feynman-Kac formula, f and g coincide on R*. By the
uniqueness of analytic continuation they coincide on the whole domain
and by continuity f(i) = g(7), i.e.

(¢, e wtlolyy = 15 [ G(elin) [ ¢(VEe'Tw(t) + e'iz)W (dw)dz
Rd C

where the right hand side of the latter equality can be written as
(T=1¢, e~ wHolTap). 0
An analogous result can be obtained also when the free Hamiltonian
H, is replaced by the quartic oscillator Hamiltonian (6), where the
potential V' is given by (7). In the following we shall assume = 0
but the same reasonings can be generalized to arbitrary values of the
parameter ) € RT, provided that the time ¢ is sufficiently small (i.e.
it satisfies assumptions (22)).

Under the assumptions of theorem 2, the integral (26), i.e. the tran-
sition amplitude (¢, U(t)1y), is well defined and, for ¢ € Ss, 1)y € Sy,

can be written as

(6, U(t)vho) = (T, V(t)T¢), (38)
where V (t) is the Cy-contraction semigroup defined by the Feynman-
Kac type formula:

V() (x) = / eIk Jg WRst)battdsy SR () 4 )W (). (39)

Cy
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The operator-theoretic results of semi groups of the form (39) have

been investigated in [27] (see also [23], chapter 13.5). In particular the

generator A of the semigroup V() = er

¥ € S(R?) by

is given on smooth vectors

() = () - Q) Q) = +idlal
with domain
D)= (we H'EY) : = A+ Qu e @)
By considering a vector 1) € Sy, one can easily verify that
THT ' = i Ay,
so that formally, for ¢ € Sy, € §;

<T*1¢,e%ATw>=Zit" n(T1g, AVTy)

= Z 76, 7Ty = 3 C e, 1)
' (40)

and analogously

it —1)"
6.ty = 3 CV g, (a1
so that the time series of (T~'4, e%ATw> and (¢, e_%Hw> coincide. For
general vectors ¢y € Sy, which belongs to the domain of H™ for any
n € N, each term of the series (40) and (41) is well defined, however
the series are not convergent, but only asymptotic, and the equality
(38) has to be proved by means of theorem 2. By the contraction

property of the evolution operator U(t) and equation (38), one can
deduce that, for ¢ € Sy, € Sy, one has

(T p, e+ AT)| < ||g]l]]],

so that for ¢ € &y, the vector 6_%AT’(/J belongs to the domain of 7"
and on the dense domain S, the evolution operator can be explicitly
written as

Ut)=T Yer Ty, eS8,

Remark 3. One can consider the class of potentials V' such that the
relation

THyT™ =iAvy, Y eS8
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holds, with H being given on smooth vectors v by Hi(x) = —%A¢7(x)+
V(z)y(z) and Ay = ZAp(z) — Q(z)v(x), with Q a complez valued

function with Re(Q) é 0, so that Ay is formally dissipative (—Ay
is formally accretive). An m—accretive realization of —Ay in L?(R?)
generates a Cy-contraction semigroup erAv defined, on suitable vec-
tors ¢ € L?(R%) by a Feynman-Kac formula. It is easy to verify that
the class of potential V' with this property includes several higher order
polynomaal potential. This problem will be investigated in details in a

subsequent paper [33].
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APPENDIX A. ABSTRACT WIENER SPACES

Let (H,{, ), || ||) be a real real separable Hilbert space. Let v be the
finitely additive cylinder measure on H, defined by its characteristic
functional D(z) = e 2/#I’. Let | | be a “measurable” norm on #,
that is | | is such that for every e > 0 there exist a finite-dimensional
projection P, : H — H, such that for all P | P, one has

v({z e 1| [P(z)| > €}) <,

where P and P. are called orthogonal (P L P,) if their ranges are
orthogonal in (H, (, )). One can easily verify that | | is weaker than
|| ||- Denoted by B the completion of A in the | |-norm and by i the
continuous inclusion of A in B, one can prove that 4 = voi~!is a
countably additive Gaussian measure on the Borel subsets of B. The
triple (i, H,B) is called an abstract Wiener space. Given y € B* one
can easily verify that the restriction of y to H is continuous on H, so
that one can identify B* as a subset of H. Moreover B* is dense in
‘H and we have the dense continuous inclusions B* C ‘H C B. Each
element y € B* can be regarded as a random variable n(y) on (B, u).
A direct computation shows that n(y) is normally distributed, with
covariance ||y||?>. More generally, given y;,y, € B*, one has

/Bn(yl)n(yz)d,u = (Y1, Y2)-
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The latter result allows the extension to the map n : H — L*(B, p),
because B* is dense in H. Given an orthogonal projection P in H, with
n
P(z) = Z(ei, z)e;
i=1
for some orthonormal ey, ..., e, € H, the stochastic extension P of P

on B is well defined by

n
() =Y n(e)(-Jer

i=1
Given a function f : H — By, where (B, || ||5,) is another real separable
Banach space, the stochastic extension f of f to B exists if the functions
foP : B — B converge to f in probability with respect to p as P
converges strongly to the identity in H. If g : B — B, is continuous
and f := g|, then one can prove [20] that the stochastic extension of
f is well defined and it is equal to g u—a.e. Moreover for any h € H
the sequence of random variables

Z hin(ei), hz = <€i, h)
i=1

converges in L?(B, i), and by subsequences p a.e., to the random vari-
able n(h).
Given a self-adjoint trace class operator B : H — H, the quadratic
form on H x H:

x € H — (x, Br)
can be extended to a random variable on B, denoted again by (-, B - ).
Indeed for each increasing sequence of finite dimensional projectors P,
converging strongly to the identity, P,(z) = Y., e;{e;, ) ({e;} being
a CONS in #), the sequence of random variables

n
w€ B Y (es, Bejyn(e:) (w)n(e;)(w)
ij=1
is a Cauchy sequence in L'(B, ). By passing if necessary to a subse-
quence, it converges to (-, B -) u—a.e.
Let us assume that the largest eigenvalue of B is strictly less than 1 (or,
in other words, that (I — B) is strictly positive). Then one can prove
that the random variable g( - ) := e2{"»B") is y-summable. Indeed by
considering a CONS {e;} made of eigenvectors of the operator B, b;
being the corresponding eigenvalues, the sequence of random variables

g B—=C,  ws gy(w) = e3 Zim bl @)’
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converges to g(w) p-a.e..
On the other hand one has

n

oo l-b)a?
/Bgn(w)d,u(w) = H / Wd:ci = (H(l — b)) /2

i=1

so that [ g,du converges, as n — oo, to (det(I —B))~Y/2, where det (I —
B) denotes the Fredholm determinant of (I — B), which is well defined
as B is trace class. Moreover 0 < g, < g,41 for each n . It follows
that, as n — 0o, [ godp — [ gdu = (det(I — B)) /2. By an analogous
reasoning one can prove that for any y € H, the sequence of random
variables f:

W fo(w) = eXi=t yin(e:) () o3 ey bi([n(e:) ()]

where y; = (y, e;), converges p—a.e. as n goes to oo to the random
variable f(-) = e"®(-)ez{-B*) and that

/ Fadp — / fdp = (det(I — B))/2e3@U=B""n)  (42)

(see [29, 26]).
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