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Abstract. Classification schemes, such as the DMoZ web directory,
provide a convenient and intuitive way for humans to access classified
contents. While being easy to be dealt with for humans, classification
schemes remain hard to be reasoned about by automated software agents.
Among other things, this hardness is conditioned by the ambiguous na-
ture of the natural language used to describe classification categories.
In this paper we describe how classification schemes can be converted
into OWL ontologies, thus enabling reasoning on them by Semantic Web
applications. The proposed solution is based on a two phase approach in
which category names are first encoded in a concept language and then,
together with the structure of the classification scheme, are converted
into an OWL ontology. We demonstrate the practical applicability of
our approach by showing how the results of reasoning on these OWL
ontologies can help improve the organization and use of web directories.

1 Introduction

A classification scheme, or a classification for short, is a rooted tree whose nodes
are assigned natural language labels and are populated with a (possibly empty)
set of documents. Since the invention of classification by Aristotle in the 4th
century BC, classifications have been used (and are still used) pervasively to rep-
resent various kinds of human knowledge. For example, classifications have been
used in libraries (DDC?, LCC? and Colon classification®); in Personal Knowledge
Management (favorites, personal e-mails and folder hierarchies); and, lately, on
the Web (Amazon*, Google®, Yahoo!).

While classifications are heavily used to categorize web contents, the evolu-
tion of the web foresees a more formal structure which can serve this purpose
— ontology, defined in Computer Science as a specification of a conceptualiza-
tion [10]. Ontologies are core artifacts of Semantic Web, an extension of the cur-
rent Web, in which information is given formal semantics such that computers

! See http://www.tnrdlib.bc.ca/dewey.html.

2 See http://www.loc.gov/catdir/cpso/lcc.html.
% See http://www.iskoi.org/doc/colon.htm.

4 See http://www.amazon.com.

% See http://www.google.com.

5 See http://www.yahoo.com.



can use inference rules to conduct automated reasoning on pieces of this infor-
mation [1]. The key factor which makes this possible is the fact that ontologies
are expressed in a formal language, suitable for automated reasoning.

In this paper we bridge the gap between informal classifications and formal
ontologies by describing an approach to encoding classification labels in a formal
language such that, together with the structure of the classification scheme, they
can be then converted into OWL [2] ontologies (more precisely, into lightweight
ontologies, as described in [9]). In principle, the proposed approach allows for au-
tomated reasoning on classifications through reasoning on corresponding OWL
ontologies. Moreover, the conversion is fully automated. Web directories can be
encoded into OWL ontologies without user intervention. We demonstrate the
practical applicability of our approach by showing how the results of reasoning
on these OWL ontologies can help improve the organization and use of classifi-
cation schemes. While encoding classifications into a formal language is not new,
the main novelty of this paper consists of converting classifications into OWL
ontologies, which demonstrates a proof of concept that classifications can be
seamlessly integrated in the Semantic Web infrastructure. The fully automated
algorithm described in this paper is also novel, as well the characterization of
the expressivity of the formal language (i.e. OWL Lite, OWL DL, OWL Full)
needed to encode classifications.

The rest of the paper is structured as follows. In Section 2 we describe a
comparison between classification schemes and ontologies. In Section 3 we de-
scribe how to convert classification schemes into OWL ontologies and how the
generated OWL ontolgies can be enriched with additional axioms. In Section
4 we report the experimental results. Section 5 presents how this work helps
in optimizing classifications. In Section 6 we discuss the related work and we
conclude the paper in Section 7.

2 Classification Schemes vs Ontologies

In this section we discuss commonalities and differences between classifications
and ontologies. In order to ground our discussion on well defined terms, below
we give the definitions of these two kinds of artifacts.

A classification is a 5-tuple C = (N, E, L, D, cl) where N is a finite set of
nodes, F is a set of edges on N, such that (N, E) is a rooted tree; L is a finite
set of labels expressed in natural language, such that for any node n; € N, there
is one and only one label I; € L; D is a set of documents and ¢l is a function
which maps every d; € D to a non-empty set of nodes {n;} C N. In Figure 1
we show an example of a classification. Although classifications have no explicit
formal semantics for edges, in this example we labeled each edge with the name
of a hypothetical relation that may hold between the linked nodes.

An ontology is an explicit specification of a conceptualization [10]. They are
often thought of as directed graphs whose nodes represent concepts and whose
edges represent formal relations between concepts. The backbone structure of
the ontology graph is a taxonomy in which all the relations are sub-class-of,
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Fig. 1. An example of a classification with link semantics made explicit.

whereas the remaining structure of the graph supplies auxiliary information
about the modeled domain and may include relations like part-of, located-in,
is-parent-of, and others [11]. Classes can be associated with instances through
the instance-of relation. In Figure 2 we show an example of a small ontology.
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Fig. 2. An example of an OWL ontology.

Even if both ontologies and classifications can often be represented in the
form of a graph, ontologies and classifications are quite different in their uses,
purpose, language, applications, and in other aspects which we summarize as
follows:

— Users: a typical user of classifications is a human (e.g., a classifier in a
library classification), whereas ontologies are primarily used by machines
and, as such, they are the key enablers of the Semantic Web;

— Purpose: classifications are primarily used for the organization of (large)
document collections into categories and subcategories. Ontologies are pri-
marily used for modeling a particular domain such that the resulting model
represents a shared view of a group of individuals [16];



— Language: as from the definition, classifications use natural language to
describe nodes’ categories. Natural language is well understood by humans
but, due to its ambiguous nature, it is hard to be “understood” and reasoned
about by machines. In contrast, ontologies are codified in a formal language
which is unambiguously interpreted by machines, and they are often used
for automated reasoning;

— Nodes: in an ontology, nodes normally represent atomic concepts (e.g., car,
wine). In a classification, a label can represent a rather complex concept (e.g.,
“Open Source and Linux in Education”) or an individual (e.g., “Napoleon
Bonaparte”);

— Edges: in an ontology graph, edges have a well defined semantics and they
usually encode sub-class-of, part-of and other relations. In a classifica-
tion, an edge implicitly represents either: (i) a specification relation which
can be thought of as an is-a relation (e.g., an edge from “Animals” to “Hu-
mans”) or as a part-of relation; or, (ii) a facet relation which encodes the
fact that the label of the child node represents an aspect of meaning of the
parent node [3];

— Instances: in an ontology, node instances are representatives of the node
class and of all its ancestor classes in the sub-class-of hierarchy. In a
classification, node instances are not necessarily representatives of the class
denoted by the node label, and can be documents which are about objects
described by the set of labels of the nodes on the path from the given node
to the root.

As shown above, classifications and ontologies are quite different and they
have their cons and pros with respect to each other. In the next section, we show
how we can bridge the gap between them thus combining their pros within a
single knowledge representation structure.

3 From Classifications to OWL Ontologies

In this section we show how a classification, as defined in Section 2, can be con-
verted into an OWL ontology. Particularly, we show how classification elements,
namely: labels, nodes, edges, documents, and document-node links are encoded
into OWL structures. Note that encoding classification labels requires converting
from a natural language to a formal language, whereas encoding classification
nodes and edges requires only structural manipulation. In Section 3.1 we discuss
how we solve the former problem and in Section 3.2 we show how we solve the
latter one. In Section 3.3 we show how we encode classification documents and
document-node links as class instances. In Section 3.4 we show how the resulting
OWL ontology can be enriched with a set of axioms such that it can be better
suited for automated reasoning. Finally, in Section 3.5 we discuss which subset of
the OWL language is required in order to encode classifications into ontologies.



3.1 From Labels to Concepts of Labels

In the conversion of natural language labels into a formal language we follow the
approach presented in [4], which describes how these labels can be converted into
a propositional concept language. The underlying idea of this approach is that
senses of words, appearing in a label, are converted into atomic concepts, whereas
punctuation and syntactic relations between words in the label are converted into
logical connectives (such as conjunction M and disjunction L) and parenthesis.
As discussed in [9], the extension of these concepts is the set of documents about
the objects or individuals referred to by the (lexically defined) concepts.

In the analysis of natural language labels we use WordNet lexical database [15],
and we exploit the natural language processing (NLP) pipeline presented in [19].
The algorithm exploits the structure of the classification, WordNet relations such
as hypernymy, and the most frequent sense heuristic to disambiguate the mean-
ing. At this step, we retrieve the senses of each word, we leave only one sense per
ambiguous word, and then we convert the disambiguated senses’ synsets as well
as the words which are not found in WordNet into atomic concepts and encode
them as OWL classes.

3.2 From Concepts at Labels to Concepts at Nodes

As discussed in Section 2, edges in a classification represent either a specification
or a facet relation, which can be generalized to the following observation: the
meaning of a child node consists of what the meaning of its label and the meaning
of the parent node have in common. We formalize this observation in the notion
of concept of node [5,8,6,7], which is defined as follows:
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IF'11C; if n; is not the root of C, where n; is the parent of n;

where C; is the concept of node n; and lf is the concept of label of node n;.
Concepts at nodes are converted into classes in OWL.

Classification edges are implicitly encoded in the definitions of OWL classes
representing concepts at nodes. Namely, since these classes are defined as the
intersection of the concept at node of the parent and the concept at label of
the child node, then the structure of the classification can be reconstructed by
analyzing node class definitions.

3.3 From Documents to Class Instances

We convert a document into an instance of the OWL Thing class. Moreover, if
a document has a title and a description (as web directory documents normally
have), then we encode them in rdfs:label and rdfs:comment properties accord-
ingly. We convert document-node links of a document by defining the rdf:type
relation from the instance, representing the document, to the class(es) represent-
ing the node(s) in which the document is classified.



3.4 Semantic Enrichment

Since OWL classes, which correspond to word senses, are mapped to synsets in
WordNet, we can exploit the relations between synsets and relations between
words within synsets in order to enrich the resulting OWL ontologies with ad-
ditional relations between classes. The enrichment is based on these two rules:

— Rule 1: In WordNet, synsets are organized into hierarchies based, for ex-
ample, on the hypernym (i.e., is-a or is-kind-of) relation [15]. If two OWL
classes (c1-1 and c1-2) correspond to two senses (sen-1 and sen-2) be-
longing to two synsets (syn-1 and syn-2) among which there is a hypernym
relation defined in WordNet (e.g., syn-2 is a hypernym for syn-1), then we
define an rdfs:subClass0f relation between these two classes (i.e., c1-1
rdfs:subClass0f cl-2).

— Rule 2: Antonym relations in WordNet are defined among words within
synsets (and not among synsets). We translate these relations into owl:disjo
intWith relations among classes corresponding to senses of the two antonym
words. Classes, associated with these two senses, are declared to be disjoint.

The enrichment of classification OWL ontologies according to the two rules
described above allows us to make these ontologies more suitable for reasoning
as the underline axiom base grows.

3.5 OWL Sublanguage

OWL ontologies, generated from classifications, fall into the OWL Lite or OWL
DL subset of OWL. There are two factors which require OWL DL:

— the logical disjunction that may appear after the conversion of natural lan-
guage labels and which is converted into the owl:union0f construct;

— disjoint axioms that may appear at the semantic enrichment step and which
are converted into the owl:disjointWith construct.

Both above mentioned constructs are forbidden in OWL Lite. Note that the
conversion to OWL does not require the use of constructs of OWL Full which
leaves us within a decidable subset of OWL.

4 Evaluation

To evaluate our approach, we selected four subtrees with the maximum depth
of 3 from the DMoz web directory. In Table 1 we report statistical data of the
datasets. There are 476 nodes in the selected subtrees, which have 548 tokens
in total, out of which, 527 tokens are found in WordNet (i.e., WordNet cover-
age is 96.17%). Out of the set of words found in WordNet, 223 (i.e., 42.31%)
are ambiguous with the average polysemy of 3.36. In our experiments we used
WordNet version 2.0.



Table 1. Statistics of the dataset

Dataset  |Nodes |Average |Average|Tokens|Words |Noun [Adjective
Branching |Subtree |Per with Senses [Senses
Factor Depth |Label |Senses in
WordNet
Countries®| 245 6.26 3 1.07 261 256 5
Europe? 75 4.22 3 1.12 86 36 0
Asia‘® 76 4.24 3 1.18 89 88 1
Africa’ 80 4.31 3 1.15 94 93 1

@ http://dmoz.org/Regional /Countries/.

® http://dmoz.org/Regional /Europe,.
¢ http://dmoz.org/Regional /Asia/.
¢ http://dmoz.org/Regional /Africa/.

4.1 Correctness

We evaluated the most critical step of the NLP pipeline, i.e., the word sense dis-
ambiguation (see Section 3.1) algorithm, whose performance results are reported
in Table 2. The accuracy of this step largely affects the correctness of the results
of reasoning on these OWL ontologies, as we show in Section 5.5.

Table 2. Accuracy of the word sense disambiguation algorithm

Dataset |Ambiguous Tokens|Disambiguation Accuracy(%)
Countries 92 76.54
Europe 38 77.01
Asia 47 80.89
Africa 46 79.13

4.2 OWL Sublanguage

In Table 3 we report statistical data for the generated OWL ontologies.

Table 3. Statistics of the generated OWL ontologies

Ontology |Nodes|Sense |Label |Node |[Class |IndividuallintersectionOf|unionOf
Classes|Classes|Classes|Axioms |Axioms |Constructs Con-
structs
Countries| 245 261 245 245 873 0 265 4
Europe 75 86 75 75 155 183 76 10
Asia 76 89 76 76 203 125 80 9
Africa 80 94 80 80 212 253 84 9




Noteworthy, most of the constructs in the generated ontologies are valid in
OWL Lite. There are only few owl:union0Of constructs, which require the use
of OWL DL for the representation of these ontologies.

5 Optimizing Classifications

In this section we show some practical examples of reasoning on classification
OWL ontologies. For instance, we show how they can be checked for consistency,
how their structure can be rationalized, and how nodes with similar contents to
a given node can be found.

5.1 Consistency

We used Protégé OWL Plugin [14] and its reasoning capabilities to detect logical
inconsistencies within the classification OWL ontologies. We used reasoning ca-
pabilities of both Pellet 1.5 and Fact++ OWL reasoners launched with Protégé.
None of the reasoners reported that the classification OWL ontologies were in-
consistent.

5.2 Rational Forms

Classifications may not be perfect. For this reason we may need to reconstruct
a classification based on the “most specific subsumer” relation. Nodes get par-
ents which most specifically describe them, still being more general. The new
structure is called, a rational form of a classification. The idea behind the ratio-
nalization of classifications is to build a classification which better corresponds
to a taxonomic structure. The classification given in Figure 3(b) is a rational
form of the classification given in Figure 3(a). Note that classification semantics
does not change when going from classification to rational form of classification
as the set of concepts at nodes remains the same.

Courses

Programming
Language

Courses

Object-oriented

Programrming c Object-oriented Pascal
Language Programming
| o ‘ ‘ Pascal | Language
ta) (b

Fig. 3. (a) Classification; (b) Rational form of the classification given in (a)



5.3 Minimizing Effort

The reasoner found an equivalent relation between node class /Regional/Countri-
es/Italy and node class /Regional/Europe/Italy. This is an example of how
reasoning on classification OWL ontologies can help web directory editors find
interrelated parts of the web directory and, thus, improve its organizational
structure without manual inspection.

5.4 Computing See-Also Links

Apart from the four ontologies, we experimented with another classification
OWL ontology and we observed that the individuals asserted to the OWL
class which corresponds to the classification node /Games and Activities/Kids
and Teens/Football are inferred as the individuals of the OWL class which
corresponds to the classification node /Sports Athletics Funs/Youth and High
School/Soccer, and vice versa. This kind of reasoning can be used for find-
ing similar documents populated in different nodes, which will help in building
see-also links.

5.5 FErrors

Apart from correct relations, we found also some incorrect ones. For example,
the reasoner found an erroneous more specific relation between node class /Re-
gional/Europe/Georgia and node class /Regional/Countries/United States.
As discussed earlier, this problem is caused by the lack of accuracy of the word
sense disambiguation algorithm. Evaluating the correctness and completeness
characteristics of the computed set of relations between ontology classes is out-
side the scope of the current paper. Interested readers are referred to [5] for a
complete account.

6 Related Work

The current work is a representative of a recent trend in the Semantic Web
community towards the use of lightweight semantics (as opposed to expressive
logic languages) and lightweight ontologies [9] (as opposed to full-fledged ontolo-
gies), the generation of which can be potentially supported by ordinary users
which constitute the long tail of the Semantic Web. The trend has been formed
through a number of scientific publications (e.g., see [18,4,17,13]) and is cur-
rently supported by a number of R&D projects (e.g., MATURE?, OpenKnowl-
edge®) and systems (e.g., OntoWiki?). The current work contributes to this trend
by proposing an approach in which classifications, which are often called (infor-
mal) lightweight ontologies [9] and whose most representative instantiations on

" MATURE, Integrated Project (IP), FP7-216356, see http://mature-ip.eu.
8 OpenKnowledge, STREP, FP6-27253, see http://www.openk.org/
9 OntoWiki, see http://ontowiki.net/Projects/OntoWiki.
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the web are web directories, can be automatically converted into formal OWL
ontologies, ready to be embedded in Semantic Web applications.

There are few lines of work which are close in spirit to our approach. For in-
stance, in [18], the authors propose a method to converting thesauri to OWL on-
tologies in which they provide a detailed account of how elements of a thesaurus
are converted into OWL structures. This approach is based on a manual anal-
ysis of thesauri, whereas our approach allows for a fully automatic conversion.
Another approach, discussed in [17], comes from the Digital Library community
and presents a conceptual structure and transition procedure to support the
shift from a traditional knowledge organization system (KOS) and, particularly,
a thesaurus, towards a full-fledged and semantically rich KOS. While providing
an in-depth analysis of the shortcomings of the traditional KOSs and of the ben-
efits of semantic KOSs as well as providing a set of rules for converting thesaurus
elements into ontology constructs, the approach lacks a specification of how a
KOS can be converted into an ontology language, such as OWL — the ultimate
conversion step discussed in detail in the current paper.

The approach described in [12] allows us to convert a hierarchical classifica-
tion into an OWL ontology by deriving OWL classes from classification labels
and by arranging these classes into a hierarchy (based on the rdfs:subClassOf
relation) following the classification structure. The approach is based on some
application-dependent assumptions such as that one label represents one atomic
concept, and that relations between labels can be defined as sub-class-of re-
lations in some particular context (e.g., concept “ice” is more specific than con-
cept “non-alcoholic beverages” when considered in the context of procurement).
These assumptions do not hold in a general case and are not made in our ap-
proach. Apart from this, our approach differs from [18,17,12] in that it is generic
and, therefore, suitable for automatic conversion in OWL of any knowledge rep-
resentation structure whose core can be represented in the form of a classification
as defined in this paper.

7 Conclusions

In this paper we have presented a fully automated approach to converting generic
classification schemes into OWL ontologies. The proposed approach allows us to
leverage on top of classifications, being the interfaces to knowledge for humans,
and ontologies, being the interfaces to knowledge for machines on the Semantic
Web. Furthermore, as shown above, our approach provides immediate advantage
and it allows to help the user in building better classifications more suited for
reasoning. Potentially, the approach allows for a cost-free seamless integration of
a vast amount of classification structures on the web and in personal repositories
into the Semantic Web infrastructure, thus reducing the problem of the lack of
semantically rich data. The first experimental results, reported in this paper,
show that reasoning on classification OWL ontologies can be used for building
practical Semantic Web applications.
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