

UNIVERSITY
OF TRENTO

 DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’INFORMAZIONE

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.disi.unitn.it

CONCEPT SEARCH

Fausto Giunchiglia, Uladzimir Kharkevich, and Ilya Zaihrayeu

August 2008

Technical Report # DISI-08-037

Also: in the 6th Annual European Semantic Web Conference 2009
(ESWC2009)

.

Concept Search

Fausto Giunchiglia, Uladzimir Kharkevich, and Ilya Zaihrayeu

Department of Information Engineering and Computer Science
University of Trento, Italy

{fausto,kharkevi,ilya}@disi.unitn.it

Abstract. In this paper we present a novel approach, called Concept
Search, which extends syntactic search, i.e., search based on the com-
putation of string similarity between words, with semantic search, i.e.,
search based on the computation of semantic relations between concepts.
The key idea of Concept Search is to operate on complex concepts and to
maximally exploit the semantic information available, reducing to syn-
tactic search only when necessary, i.e., when no semantic information is
available. The experimental results show that Concept Search performs
at least as well as syntactic search, improving the quality of results as a
function of the amount of available semantics.

1 Introduction

Historically, there have been two major approaches to information retrieval that
we call syntactic search and semantic search. Syntactic search use words or multi-
word phrases as atomic elements in document and query representations. The
search procedure is essentially based on the syntactic matching of document and
query representations. Search engines, exploiting syntactic search, are known to
suffer in general from low precision while being good at recall. Semantic search
is based on fetching document and query representations through a semantic
analysis of their contents using natural language processing techniques and, later,
on retrieving documents by matching these semantic representations. The idea
is that, differently from syntactic search, semantic search exploits the meaning
of words, thus avoiding many of the well known problems of syntactic search,
e.g., the problems of polysemy and synonymy. Semantics-based approaches, in
general, allow to reach a higher precision but lower recall [11].

In this paper we propose a novel approach called Concept Search (C-Search
in short) which extends syntactic search with semantics. The main idea is to
keep the same machinery which has made syntactic search so successful, but to
modify it so that, whenever possible, syntactic search is substituted by semantic
search, thus improving the system performance. This is why we say that C-
Search is semantics enabled syntactic search. Semantics can be enabled along
different dimensions, on different levels, and to different extents forming a space
of approaches lying between purely syntactic search and fully semantic search.
We call this space the semantic continuum. In principle, C-Search can be tuned
to work at any point in the semantic continuum taking advantage of semantics

when and where possible. As a special case, when no semantic information is
available, C-Search reduces to syntactic search, i.e., results produced by C-Search
and syntactic search are the same.

The remainder of the paper is organized as follows. In Section 2, we first dis-
cuss information retrieval (IR) in general, and then focus on syntactic search. In
this section, we provide a general model of IR which will be latter extended to se-
mantic search. In Section 3, we introduce and describe the semantic continuum.
In Section 4, we describe how C-Search is positioned within the semantic contin-
uum. In Section 5, we show how C-Search can be efficiently implemented using
inverted index technology. Section 6 presents experimental results. In Section 7,
we discuss the state-of-the-art in semantic search and compare our approach
with other related approaches. Section 8 concludes the paper.

2 Syntactic Search

The goal of an IR system is to map a natural language query q (in a query
set Q), which specifies a certain user information needs, to a set of documents
d in the document collection D which meet these needs, and to order these
documents according to their relevance. IR can therefore be represented as a
mapping function:

IR : Q → D (1)

In order to implement an IR System we need to decide (i) which models (Model)
are used for document and query representation, for computing query answers
and relevance ranking, (ii) which data structures (Data Structure) are used for
indexing document representations in a way to allow for an efficient retrieval,
(iii) what is an atomic element (Term) in document and query representations,
and (iv) which matching techniques (Match) are used for matching document
and query terms. Thus, an IR System can be abstractly modelled as the following
4-tuple:

IR System = 〈Model, Data Structure, Term, Match〉 (2)

The bag of words model, i.e., the model in which the ordering of words in a
document is not considered, is the most widely used model for document repre-
sentation. The boolean model, the vector space model, and the probabilistic model
are the classical examples of models used for computing query answers and rel-
evance ranking [13]. Conventional search engines rank query results using the
cosine similarity from the vector space model with terms weighted by different
variations of the tf-idf weight measure. Various index structures, such as the
signature file and the inverted index, are used as data structures for efficient
retrieval. Inverted index, which stores mappings from terms to their locations in
documents, is the most popular solution [13]. Finally, in syntactic search, Term
and Match are instantiated as follows:

– Term - a word or a multi-word phrase;
– Match - a syntactic matching of words or phrases.

In the simplest case, syntactic matching is implemented as search for equivalent
words. These words are often stemmed. Furthermore, some systems perform
approximate matching by searching for words with common prefixes or words
within a certain edit distance with a given word.

There are several problems which may negatively affect the performance of
syntactic search, as discussed below.
Polysemy. The same word may have multiple meanings and, therefore, query
results, computed by a syntactic search engine, may contain documents where
the query word is used in a meaning which is different from what the user had
in mind. For instance, a document D1 (in Figure 1) which talks about baby in
the sense of a very young mammal is irrelevant if the user looks for documents
about baby in the sense of a human child (see query Q1 in Figure 1). An answer
for query Q1, computed by a syntactic search engine, includes document D1,
while the correct answer is the empty set.

A small baby dog runs after a huge white cat. D1:

A laptop computer is on a coffee table. D2:

A little dog or a huge cat left a paw mark on a table. D3:

Babies and dogs Q1: Computer table Q3: Carnivores Q4: Paw printQ2:

Documents:

Queries:

Fig. 1. Queries and a document collection

Synonymy. Two different words can express the same meaning in a given con-
text, i.e., they can be synonyms. For instance, words mark and print are synony-
mous when used in the sense of a visible indication made on a surface, however,
only documents using word print will be returned if the user query was exactly
this word. An answer for query Q2 (in Figure 1), computed by a syntactic search
engine, is the empty set, while the correct answer includes the document D3.
Complex concepts. Syntactic search engines fall short in taking into account
complex concepts formed by natural language phrases and in discriminating
among them. Consider, for instance, document D2 (in Figure 1). This document
describes two concepts: a laptop computer and a coffee table. Query Q3 (in
Figure 1) denotes concept computer table which is quite different from both
concepts described in D2, whereas a syntactic search engine is likely to return
D2 in response to Q3, because both words computer and table occur in this
document. The correct answer is the empty set.
Related concepts. Syntactic search does not take into account concepts which
are semantically related to the query concepts. For instance, a user looking for
carnivores might not only be interested in documents which talk about carnivores
but also in those which talk about the various kinds of carnivores such as dogs
and cats. An answer for query Q4 (in Figure 1), computed by a syntactic search,
is the empty set, while the correct answer might include documents D1 and D3,
depending on user information needs and available semantic information.

3 The Semantic Continuum

In order to address the problems of syntactic search described in Section 2,
we extend syntactic search with semantics. In the following, we identify three
dimensions where semantics can improve syntactic search and represent these
dimensions in the cartesian space shown in Figure 2.

NL2FL

W2P

+Noun Phrase

+Lexical

knowledge

+Verb Phrase

…
C-Search

(0, 0, 0)

Pure Syntax

NL

 (FL)

1

Word

String

Similarity

+Statistical

Knowledge

1

(Complete

 Ontological

 Knowledge)

…

1 (Free Text)

KNOW

+Descriptive Phrase

NL&FL

Full Semantics

(1, 1, 1)

Fig. 2. Semantic Continuum

From natural language to formal language (NL2FL-axis in Figure 2). To
solve the problems related to the ambiguity of natural language, namely, the
problems of polysemy and synonymy, we need to move from words, expressed in a
natural language, to concepts (word senses), expressed in an unambiguous formal
language. An overview of existing approaches to sense based IR is presented
in [17]. In the NL2FL-axis, 0 represents the situation where only words are
used, while 1 represents the situation where only concepts are used. When we
move from words to concepts, it is not always possible to find a concept which
corresponds to a given word. The main reason for this problem is the lack of
background knowledge [8], i.e., a concept corresponding to a given word may not
exist in the lexical database. To address this problem, indexing and retrieval in
the continuum are performed by using both syntactic and semantic information,
i.e., a word itself is used as a concept, when its denoted concept is not known.
From words to phrases (W2P-axis in Figure 2). To solve the problem related
to complex concepts, we need to analyze natural language phrases, which denote
these concepts. It is well known that in natural language concepts are expressed
mostly as noun phrases [19]. An example of a noun phrase parsing algorithm and
its application to document indexing and retrieval is described in [23]. There are
approaches in which the conceptual content of noun phrases is also analyzed
(see e.g. [1]). In general, concepts can be expressed as more complex phrases
(e.g., verb phrases) and possibly as a free text. In the W2P-axis, 0 represents
the situation where only single words are used, while 1 represents the situation
where complex concepts, extracted from a free text, are used.
From string similarity to semantic similarity (KNOW-axis in Figure 2).
The problem with related concepts can be solved by incorporating knowledge
about term relatedness. For instance, it can be statistical knowledge about word
co-occurrence (see e.g. [6]), lexical knowledge about synonyms and related words

(see e.g. [14]), or ontological knowledge about classes, individuals, and their re-
lationships (see e.g. [15]). In the KNOW-axis, 0 represents the situation where
only string similarity is used during the term matching process, while 1 repre-
sents the situation where complete ontological knowledge is used during term
matching.

The three-dimensional space contained in the cube (see Figure 2) represents
the semantic continuum where the origin (0,0,0) is a purely syntactic search, the
point with coordinates (1,1,1) is a fully semantic search, and all points in between
represent search approaches in which semantics is enabled to different extents.
C-Search can be positioned anywhere in the semantic continuum with syntactic
search being its base case, and semantic search being the optimal solution, at
the moment beyond the available technology.

4 Concept Search

C-Search is implemented according to the model of Equations 1 and 2 from
Section 2. In our proposed solution, C-Search reuses retrieval models (Model)
and data structures (Data Structure) of syntactic search with the only difference
in that now words (W) are substituted with concepts (C) and syntactic matching
of words (WMatch) is extended to semantic matching of concepts (SMatch).
This idea is schematically represented in the equation below:

Syntatic Search
Term(W → C), Match(WMatch → SMatch)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ C-Search

Let us consider in details how the words in W are converted into the complex
concepts in C and also how the semantic matching SMatch is implemented.

4.1 From Words To Complex Concepts (W → C)

Searching documents, in C-Search, is implemented using complex concepts ex-
pressed in a propositional Description Logic (DL) language (i.e., a DL language
without roles). Complex concepts are computed by analyzing meaning of the
words and phrases.

Single words are converted into atomic concepts uniquely identified as lemma-
sn, where lemma is the lemma of the word, and sn is the sense number in
WordNet. For instance, the word dog used in the sense of a domestic dog, which
is the first sense in WordNet, is converted into the atomic concept dog-1. The
conversion of words into concepts is performed as follows. First, we look up and
enumerate all meanings of the word in WordNet. Next, we perform word sense
filtering, i.e., we discard word senses which are not relevant in the given context.
In order to do this, we follow the approach presented in [22], which exploits POS
tagging information and WordNet lexical database for disambiguation of words
in short noun phrases. Differently from [22] we do not use the disambiguation
technique which leaves only the most probable sense of the word, because of its
low accuracy. If more than one sense is left after the word sense filtering step

then we keep all these senses. If no senses from WordNet are found then lemma
is used as the identifier for the atomic concept. In this case, C-Search is reduced
to syntactic search.

Complex concepts are computed by extracting phrases and by analyzing their
meaning. Noun phrases are translated into the logical conjunction of atomic
concepts corresponding to the words. For instance, the noun phrase A little dog
represents a concept, whose extension is the set of all dogs of a small size. It is
translated into the concept little-4 u dog-1.

Concepts in natural language can be described ambiguously. For instance,
the phrase A little dog or a huge cat represents a concept which encodes the
fact that it is unknown whether the only animal described in the document is
a little dog or a huge cat. In order to support complex concepts which encode
uncertainty (partial information) coming from the coordination conjunction OR
in natural language, we introduce the notion of descriptive phrase. We define
descriptive phrase as a set of noun phrases, representing alternative concepts,
connected by OR:

descriptive phrase ::= noun phrase {OR noun phrase} (3)

Descriptive phrases are translated into logical disjunction of formulas corre-
sponding to the noun phrases. For instance, phrase A little dog or a huge cat is
translated into concept (little-4udog-1)t (huge-1u cat-1). To locate descriptive
phrases we, first, follow a standard NLP pipeline to locate noun phrases, i.e.,
we perform sentence detection, tokenization, part-of-speech (POS) tagging, and
noun phrase chunking. The first step allows as to locate noun phrases. As a sec-
ond step, that we call descriptive phrase chunking, we locate descriptive phrases
satisfying Formula 3. Our implementation is based on GATE [4].

Queries usually are short phrases (i.e., 1-3 words) and, as shown in [22], stan-
dard NLP technology, primarily designed to be applied on full-fledged sentences,
is not effective enough in this application scenario. An atomic concept, in a query,
can be computed incorrectly, because of the selection of a wrong part-of-speech
tag. In order to address this problem, for short queries, we use a POS-tagger
which is specifically trained on short phrases [22]. On the other hand, for long
queries (i.e., 4 words or more), we use the standard NLP technology.

Even if atomic concepts are computed correctly, complex concepts can be
erroneously computed. One of the reasons is that a complex concept can be rep-
resented as a sequence of words without following the grammar for noun phrases.
For instance, the query cat huge is converted into two atomic concepts cat-1 and
huge-1, while the correct concept might be cat-1uhuge-1. Another reason is that
a query describing more than one concept, without properly separating them,
can be recognized as a single complex concept. For instance, the query dog cat is
converted into the concept dog-1ucat-1, while the user might be actually looking
for a document describing both animals, i.e., dog-1 and cat-1. The examples de-
scribed above show that, in general, it is unknown how atomic concepts Aq

1, . . . ,
Aq

n, extracted from short queries, should be combined in order to build complex

query concepts. To represent this uncertainty we use the following query

(Aq
1 AND . . . AND Aq

n) AND (Aq
1 t · · · tAq

n) (4)

where the first part (Aq
1 AND . . . AND Aq

n) encodes the fact that it is known
that the query answer should contain documents which are relevant to all the
atomic concepts in the query. The second part, i.e., the complex concept Aq

1 t
· · · t Aq

n, can be equivalently rewritten as (Aq
1) t (Aq

2) t · · · t (Aq
1 u Aq

2) t · · · t
(Aq

1u· · ·uAq
n) and, therefore, encodes the fact that it is unknown which complex

concept (e.g., Aq
1 uAq

2, or Aq
1 u · · · uAq

n) should be actually described.

4.2 From Word to Concept Matching (WMatch → SMatch)

In C-Search, we allow the search of documents describing concepts which are
semantically related to query concepts. We assume that, when a user is searching
for a concept, she is also interested in more specific concepts.1 For example,
the extension of concept (little-4 u dog-1) t (huge-1 u cat-1) is a subset of the
extension of concept carnivore-1. Therefore, documents describing the former
concept should be returned as answers to the query describing the latter concept.
Formally a query answer A(Cq, T) is defined as follows:

A(Cq, T) = {d | ∃Cd ∈ d, s.t. T |= Cd v Cq} (5)

where Cq is a complex query concept extracted from the query q, Cd is a complex
document concept extracted from the document d, and T is a terminological
knowledge base (the background knowledge) which is used in order to check
if Cd is more specific then Cq. Equation 5 states that the answer to a query
concept Cq is the set of all documents d, such that, there exists concepts Cd in
d which is more specific than the query concept Cq.

During query processing we need to compute A(Cq, T) for every query con-
cept Cq in the query. One approach is to sequentially iterate through each con-
cept Cd, compare it to the query concept Cq using semantic matching [9], and
collect those concepts for which semantic matching returns more specific (v).
However, this approach may become prohibitory expensive as there may be thou-
sands and millions of concepts described in documents. In order to allow for the
efficient computation of A(Cq, T), we propose a new approach described below.

Let us assume, as it is the case in the current implementation, that T con-
sists of the terminological knowledge base TWN generated from WordNet and
extended by words (represented as concepts) for which no senses in WordNet
are found. One small fragment of TWN is represented in Figure 3. TWN can be
thought of as an acyclic graph, where links represent subsumption axioms in the
form Ai v Aj , with Ai and Aj atomic concepts.

Concepts Cd and Cq, are created by translating descriptive phrases into
propositional DL formulas (see Section 4.1 for details). The resulting concepts
are disjunctions (t) of conjunctions (u) of atomic concepts (A) without negation,
1 This could be easily generalized to any set of semantically related concepts. The

impact of this choice onto the system performance is part of the future work.

cat-1 lion-1

carnivore-1

canine-2 feline-1

dog-1 wolf-1

is a subsumption relation

Fig. 3. Example of terminological knowledge base TWN

i.e., Cd ≡ t u Ad and Cq ≡ t u Aq. For example, a possible document concept
and query concept are:

Cd ≡ (little-4 u dog-1) t (huge-1 u cat-1)
Cq ≡ (small-4 u canine-2) t (large-1 u feline-1)

By substituting Cd with tuAd, Cq with tuAq, and T with TWN in Equation 5,
we obtain:

A(t uAq, TWN) = {d | ∃(t uAd) ∈ d, s.t. TWN |= t uAd v t uAq} (6)

Let by CtuAq denote the set of all complex document concepts t u Ad (in all
documents d), which are equivalent to or more specific than tuAq, in formulas

CtuAq = {t uAd | TWN |= t uAd v t uAq} (7)

Then Equation 6 can be rewritten as follows:

A(t uAq, TWN) = {d | ∃(t uAd) ∈ d, s.t. (t uAd) ∈ CtuAq} (8)

In order to compute set CtuAq , as defined in Equation 7, we need to solve the
following subsumption problem

TWN |= t uAd v t uAq (9)

Given that TWN consists only of subsumption axioms between atomic concepts,
and that concepts t u Ad and t u Aq do not contain negations, the problem in
Equation 9 can be reduced to the set of subsumption problems

TWN |= uAd v Aq (10)

This problem reduction is obtained by sequentially applying the following three
equations:2

TWN |=t uAdvt uAq iff for all uAd in t uAd, TWN |=uAdvt uAq (11)

TWN |=uAdvt uAq iff there exists uAq in t uAq, TWN |=uAdvuAq (12)

TWN |=uAdv uAq iff for all Aq in uAq , TWN |=uAdvAq (13)

Notice that the second part of each equation is the same as the first part of the
following equation, and that the first part of Equation 11 and the last part of

2 Note, that in general, Equation 12 cannot be applied. One such case is when negation
is allowed, a counterexample is |= Ai v Aj t¬Aj . A second case is when T contains
axioms in the form Ai v AjtAj ; consider , e.g., T = {Ai v AjtAj} |= Ai v AjtAj .

Equation 13 are exactly Equations 9 and 10. This proves that the above problem
reduction is correct.

If by Cu
C we denote a set of all conjunctive components uAd, which are

equivalent to or more specific than concept C, i.e.,

Cu
C = {uAd | TWN |= uAd v C}, where C ∈ {Aq,uAq,t uAq} (14)

Given Equations 11, 12, and 13, the query answer A(Cq, TWN), as defined in 8,
can be computed by using the algorithm in the figure below. The five phases

Algorithm 1 Calculate A(t uAq, TWN)
1: Cu

tuAq ← ∅
2: for all uAq in t uAq do
3: i ← 0
4: Cu

uAq ← ∅
5: for all Aq in uAq do
6: Cu

Aq ← {uAd |TWN |=uAd v Aq}
7: if i = 0 then
8: Cu

uAq ← Cu
Aq

9: else
10: Cu

uAq ← Cu
uAq ∩Cu

Aq

11: end if
12: i ← i + 1
13: end for
14: Cu

tuAq ← Cu
tuAq ∪Cu

uAq

15: end for
16: CtuAq ← {t uAd | all uAd in t uAd belong to Cu

tuAq}
17: A ← {d | there exists t uAd in d, s.t., t uAd belongs to CtuAq}

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

of the algorithm can be explained as follows (the next section reports how these
phases are actually implemented and their output on a running example):

Phase 1 (line 6) We compute Cu
Aq , i.e., the set of all uAd, such that, uAd v Aq.

Phase 2 (lines 5-13) We compute set Cu
uAq , i.e., a set of all uAd, such that,

uAd v uAq. As it follows from Equation 13, uAd ∈ Cu
uAq only if for every

Aq in uAq, uAd ∈ Cu
Aq . To compute the set Cu

uAq , we intersect sets Cu
Aq for

all Aq in uAq.
Phase 3 (lines 2-15) We compute the set Cu

tuAq , i.e., the set of all uAd, such
that, uAd v t u Aq. As it follows from Equation 12, uAd ∈ Cu

tuAq if
uAd ∈ Cu

uAq at least for one uAq in tuAq. To compute the set Cu
tuAq , we

take the union of all the sets Cu
uAq for all uAq in t uAq.

Phase 4 (line 16) We compute the set CtuAq , i.e., the set of all complex doc-
ument concepts t u Ad, such that, t u Ad v t u Aq. As it follows from
Equation 11, tuAd ∈ CtuAq only if all the conjunctive components uAd in
t u Ad belong to Cu

tuAq . To compute the set CtuAq , we collect all t u Ad

which consist only from conjunctive components uAd in Cu
tuAq .

Phase 5 (line 17) We compute the query answer A(t u Aq, TWN) as defined
in Equation 8, i.e., by collecting all the documents which contain concepts
from CtuAq .

5 Concept Search via Inverted Indexes

In C-Search, every document is represented as an enumerated sequence of con-
junctive components uAd possibly connected by symbol “t”. For example, in
Figure 4 we show the sequences of uAd extracted from documents in Figure 1.
Rectangles in Figure 4 represent either conjunctive components uAd or the dis-

2

3

laptop-1 computer-1

carnivore-1 computer-1 table-1 paw-1 print-3baby-1

onpaw-1 mark-4leavehuge-1 cat-1little-4 dog-1 D3:

Q1: Q3: Q4:Q2:

2 31 4 5 table-176

AND dog-1

Documents:

Queries:

coffee-1 table-1beD2: 41 on 3

huge-1 white-1 cat-1runsmall-4 baby-3 dog-1 D1: 21

Fig. 4. Document and Query Representations

junction symbol “t”, a number in a square at the left side of a rectangle repre-
sents the position of the rectangle in the whole sequence. Note, that symbol “t”
is used to specify that conjunctive components uAd connected by this symbol
form a single disjunctive concept t uAd, namely:

t uAd ::= (uAd){(“ t ”)(uAd)} (15)

For example, the first three positions in the sequence for document D3 in Figure 4
represent the concept (little-4 u dog-1) t (huge-1 u cat-1).

The resulting document representations (see Figure 4) are indexed using a
positional inverted index. In a positional inverted index, as used in syntactic
search, there are two parts: the dictionary, i.e., a set of terms (t) used for index-
ing; and a set of posting lists P(t). A posting list P(t) is a list of all postings for
term t:

P (t) = [〈d, freq, [position]〉]
where 〈 d, freq, [position]〉 is a posting consisting of a document d associated
with term t, the frequency freq of t in d, and a list [position] of positions of t in d.

In C-Search, we adopt a positional inverted index to index conjunctive com-
ponents uAd by all more general or equivalent atomic concepts from TWN

3. For
example, in Figure 5 we show a fragment of the positional inverted inverted
index created by using the document representations in Figure 4. The inverted
index dictionary, in C-Search, consists of atomic concepts from TWN (e.g., con-
cepts baby-3 and canine-2 in Figure 5), and symbol “t” (e.g., the first term in
Figure 5). The posting list P (A) for an atomic concept A stores the positions
of conjunctive components uAd, such that, uAd v A. For instance, P(canine-2)
= [〈D1, 1, [1]〉; 〈D3, 1, [1]〉], which means that at first position in documents D1
3 In [7], we showed how searching for complex concepts can be implemented by index-

ing documents directly by these concepts. The problem of this method is that the
size of the inverted index vocabulary, in the worst case, is exponential with respect
to size of terminology T . In the current paper, we propose an approach in which we
index complex concepts by atomic concepts using the positional information in the
inverted index. The size of the vocabulary in this case is the same as the size of T .

Dictionary (t) Posting lists (P(t))

t [〈D3, 1, [2]〉]
baby-3 [〈D1, 1, [1]〉]

canine-2 [〈D1, 1, [1]〉; 〈D3, 1, [1]〉]
carnivore-1 [〈D1, 2, [1, 3]〉; 〈D3, 2, [1, 3]〉]
computer-1 [〈D2, 1, [1]〉]

feline-1 [〈D1, 1, [3]〉; 〈D3, 1, [3]〉]
leave [〈D3, 1, [4]〉]

little-4 [〈D1, 1, [1]〉; 〈D3, 1, [1]〉]
Fig. 5. Positional Inverted Index

and D3 there are conjunctive components (i.e., small-4 u baby-3 u dog-1 and
little-4 u dog-1) which are more specific than canine-2. The posting list P (t)
stores the positions of the symbol “t”.

Now, let us see how Algorithm 1 in Section 4.2 can be implemented by using
the positional information of conjunctive components uAd stored in the inverted
index. Notice that below instead of conjunctive components themselves we work
only with their positions.

Phase 1 Positions of conjunctive components uAd in the set Cu
Aq (line 6 in

Algorithm 1) are computed by fetching the posting list P (Aq) for an atomic
concept Aq. For instance (see Figure 5),

Cu
little-4 = [〈D1, 1, [1]〉; 〈D3, 1, [1]〉]

Cu
carnivore-1 = [〈D1, 2, [1, 3]〉; 〈D3, 2, [1, 3]〉]

Phase 2 The intersection of the sets of conjunctive components (line 10 in
Algorithm 1) is implemented by the intersection of corresponding posting
lists. For instance,

Cu
little-4ucarnivore-1 = [〈D1, 1, [1]〉; 〈D3, 1, [1]〉]

Phase 3 The union of the sets of conjunctive components (line 14 in Algo-
rithm 1) is implemented by uniting corresponding posting lists. For instance,

Cu
canine-2tfeline-1 = [〈D1, 2, [1, 3]〉; 〈D3, 2, [1, 3]〉]

Phase 4 Every concept in set CtuAq (line 16 in Algorithm 1) should consists
only from the conjunctive components in Cu

tuAq . In order to find the po-
sitions of such concepts, we take the union of the posting lists for Cu

tuAq

with the posting list for the symbol “t”. Then we filter out all the posi-
tions which does not comply with the pattern defined in Equation 15. For
instance, for complex query concept canine-2 t feline-1, we will find the
following complex document concepts:

〈D1, 1, [1]〉 ⇒ 1 | small-4 u baby-3 u dog-1 〈D1, 1, [3]〉 ⇒ 3 | huge-1 u white-1 u cat-1

〈D3, 1, [1, 2, 3]〉 ⇒ 1 | little-4 u dog-1 2 | t 3 | huge-1 u cat-1

Phase 5 The query answer (line 17 in Algorithm 1) is computed by collecting
the documents from all the postings. For instance,

A(canine-2 t feline-1, TWN) = {D1, D3}

If n is a number of atomic concepts Aq in the query concept t u Aq, then
to compute A(Cq, TWN) it takes n posting list merges (i.e., intersections and
unions). Note that, in a positional inverted index, the same number of posting
list merges is required to process a phrase query consisting of n + 1 words [13].

In C-Search, query concepts Cq can be combined into more complex queries
q by using the boolean operators AND and NOT. Query answer A(q, TWN) in
this case is computed by recursively applying the following rules:

A(qi AND qj , TWN) = A(qi, TWN) ∩A(qj , TWN)
A(qi NOT qj , TWN) = A(qi, TWN) 6 A(qj , TWN)

For instance, the query answer for query baby-1 AND dog-1 (in Figure 4) is com-
puted as follows: A(baby-1 AND dog-1, TWN) = A(baby-1, TWN)∩A(dog-1, TWN)
= ∅ ∩ {D1, D3} = ∅

Relevance of documents, in C-Search, is computed by adopting the cosine
similarity from the vector space model. Concepts are weighted by tf-idf weight
measure modified to take into account the semantic relatedness of concepts.

6 Evaluation

In order to evaluate our approach, we built two IR systems. The first system is an
instantiation of syntactic search and is build on top of Lucene4, an open source
IR toolkit used in many search applications5. Standard tokenization and English
Snowball stemmer were used for document and query preprocessing. The AND
operator was used as a default boolean operator in a query. The second system is
a semantics enabled version of Lucene, implemented following the methodology
described in Sections 4 and 5.

As a data-set for our experiments, we used the TREC ad-hoc document col-
lection6 (disks 4 and 5 minus the Congressional Record documents) and three
query sets: TREC6 (topics 301-350), TREC7 (topics 351-400) and TREC8 (top-
ics 401-450). Only the title for each topic was used as a query. The whole data-set
consists of 523,822 documents and 150 queries. In the evaluation we used the
standard IR measures and in particular the mean average precision (MAP) and
precision at K (P@K), where K was set to 5, 10, and 15. The average precision
for a query is the mean of the precision obtained after each relevant document
is retrieved (using 0 as the precision for not retrieved documents which are rel-
evant). MAP is the mean of the average precisions for all the queries in the
test collection. P@K is the percentage of relevant documents among the top K
ranked documents. MAP is used to evaluate the overall accuracy of IR system,

4 http://lucene.apache.org/java/docs/index.html
5 http://wiki.apache.org/lucene-java/PoweredBy
6 http://trec.nist.gov/data/test coll.html

while P@K is used to evaluate the utility of IR system for users who only see
the top K results.

First, in Table 1, we report the evaluation results for the two systems and
further, in figure 6, we provide recall-precision graphs, i.e., we plot precision as
a function of recall, for these systems.

Table 1. Evaluation results

TREC6 (301-350)
MAP P@5 P@10 P@15

Lucene 0.1361 0.3200 0.2960 0,2573
C-Search(Lucene) 0.1711(+25.7%) 0.3920(+22.5%) 0.3480(+17.6%) 0.3000(+16.6%)

TREC7 (351-400)
MAP P@5 P@10 P@15

Lucene 0.1138 0.3560 0.3280 0.3000
C-Search(Lucene) 0.1375(+20.8%) 0.4200(+18.0%) 0.3680(+12.2%) 0.3427(+14.2%)

TREC8 (401-450)
MAP P@5 P@10 P@15

Lucene 0.1689 0.4320 0.4000 0.3573
C-Search(Lucene) 0.2070(+22.6%) 0.4760(+10.2%) 0.4280(+7.0%) 0.4013(+12.3%)

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Recall

P
r
e

c
is

io
n

C-Search

Lucene

TREC6

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Recall

P
r
e

c
is

io
n

C-Search

Lucene

TREC7

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Recall

P
r
e

c
is

io
n

C-Search

Lucene

TREC8

Fig. 6. Recall-Precision Graphs

The experiments show that, on TREC ad-hoc data sets, C-Search performs bet-
ter than purely syntactic search, which supports the underlying assumption of
our approach. In particular, from Table 1 we observe that C-Search improves
precision P@K for all K in all three TREC data sets. This is coherent with the
intuition that semantics improve on precision. Notice that it means that we are
able to show users more relevant documents at the top of the list. From Fig-
ure 6 we observe that the recall-precision graphs for C-Search are above those
for Lucene, which means that the improvement in precision achieved by C-Search
does not decrease recall.

7 Related work

The fact that the syntactic nature of classical IR leads to problems with preci-
sion was recognized in the IR community long ago (e.g., see [20]). There were
two major approaches to addressing this problem. The first is based on natural
language processing and machine learning techniques in which (noun) phrases
in a document corpus are identified and organized in a subsumption hierarchy
which is then used to improve the precision of retrieval (e.g., see [21]). The sec-
ond is based on using a linguistic database which is used to associate words in a
document corpus with atomic lexical concepts in this database and then to index

these documents with the associated concepts (e.g., see [18]). Our approach is
different from both these approaches. In fact, the former approach is still es-
sentially syntactic (and semantics is only implicitly derived with no guarantee
of correctness), while in the latter approach only atomic concepts are indexed,
whereas C-Search allows for indexing of complex concepts and explicitly takes
into account possible relations between them. More importantly, our approach
extends syntactic search and does not replace it as in the latter approach and,
therefore, supports the continuum from purely syntactic to fully semantic search.

In the Semantic Web community, semantic search is primarily seen as the
task of querying an RDF graph based on the mapping of terms appearing in
the input natural language query to the elements of the graph. An analysis of
existing semantic search systems is provided in [10]. Our approach is fundamen-
tally different because, similarly to classical IR, the input query is mapped to
document contents and not to elements of a knowledge representation structure.
Document retrieval approaches developed in the context of the Semantic Web
are surveyed in [12]. The matching of document and query representations, in
these approaches, is based on query expansion (e.g., see [3]), graph traversal (e.g.,
see [16]), and RDF reasoning (e.g., see [5]). Differently from these approaches,
C-Search is based on the semantic matching of complex concepts, where semantic
matching is implemented by using positional inverted index. Hybrid Search [2]
is similar to our approach in that it integrates syntactic search with semantic
search. Differently from us, in [2], semantic search is implemented on metadata
and is totally separated from syntactic search, implemented on keywords. In-
stead, in our approach semantic search is seamlessly integrated into syntactic
search by substitution words with concepts and at the same time keeping the
underlying machinery of syntactic search.

8 Conclusion

In this paper we have presented an approach where syntactic search is extended
with a semantic layer. The proposed approach performs as good as syntactic
search while allowing for an improvement whenever semantics are available and
can be exploited. The reported experimental results provide a proof of concept
of the quality of proposed solution.

We are still at the beginning and a lot of work still needs to be done. Future
work includes:

– the development of more accurate document relevance metrics based on both
syntactic and semantic similarity of query and document descriptions;

– the integration of more accurate algorithms for concept identification;
– providing support for queries in which concepts can be associated with a

semantic scope such as equivalence, more/less general, disjoint;
– improving the performance of the system. Even if the system is reasonably

fast in the sense that it provides answers in much less than a second, namely
in a time which is reasonable for the user to wait, it is slower than Lucene
and we believe that there is a lot of scope for improving its efficiency.

References

1. T. Andreasen, P. Anker Jensen, J. Fischer Nilsson, P. Paggio, B. S. Pedersen, and
H. E. Thomsen. Content-based text querying with ontological descriptors. Data
& Know. Eng., 48(2):199–219, 2004.

2. R. Bhagdev, S. Chapman, F. Ciravegna, V. Lanfranchi, and D. Petrelli. Hybrid
search: Effectively combining keywords and semantic searches. In ESWC, 2008.

3. I. Celino, E. Della Valle, D. Cerizza, and A. Turati. Squiggle: a semantic search
engine for indexing and retrieval of multimedia content. In SEMPS, 2006.

4. H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. GATE: A framework
and graphical development environment for robust NLP tools and applications. In
40th Anniversary Meeting of the Association for Computational Linguistics, 2002.

5. J. Davies and R. Weeks. QuizRDF: Search technology for the semantic web. In
HICSS, 2004.

6. Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas,
and Richard A. Harshman. Indexing by latent semantic analysis. Journal of the
American Society of Information Science, 41(6):391–407, 1990.

7. Fausto Giunchiglia, Uladzimir Kharkevich, and Ilya Zaihrayeu. Concept search:
Semantics enabled syntactic search. In SemSearch2008 workshop at ESWC, 2008.

8. Fausto Giunchiglia, Pavel Shvaiko, and Mikalai Yatskevich. Discovering missing
background knowledge in ontology matching. In Proc. of ECAI, 2006.

9. Fausto Giunchiglia, Mikalai Yatskevich, and Pavel Shvaiko. Semantic matching:
Algorithms and implementation. Journal on Data Semantics (JoDS), 9:1–38, 2007.

10. M. Hildebrand, J. van Ossenbruggen, and L. Hardman. An analysis of search-based
user interaction on the semantic web. Technical Report INS-E0706, CWI, 2007.

11. B. Magnini, M. Speranza, and C. Girardi. A semantic-based approach to interoper-
ability of classification hierarchies: evaluation of linguistic techniques. COLING’04.

12. Christoph Mangold. A survey and classification of semantic search approaches.
Int. J. Metadata Semantics and Ontology, 2(1):23–34, 2007.

13. Christopher Manning, Prabhakar Raghavan, and Hinrich Schtze. Introduction to
Information Retrieval. Cambridge University Press, 2008.

14. Dan I. Moldovan and Rada Mihalcea. Using wordnet and lexical operators to
improve internet searches. IEEE Internet Computing, 4(1):34–43, 2000.

15. Gabor Nagypl. Improving information retrieval effectiveness by using domain
knowledge stored in ontologies. OTM Workshops 2005, LNCS 3762, 2005.

16. C. Rocha, D. Schwabe, and M. de Aragao. A hybrid approach for searching in the
semantic web. In 13th International World Wide Web Conference, 2004.

17. Mark Sanderson. Retrieving with good sense. Inf. Retr., 2(1):49–69, 2000.
18. Hinrich Schutze and Jan O. Pedersen. Information retrieval based on word senses.

In 4th Annual Symposium on Document Analysis and Information Retrieval, 1995.
19. J. F. Sowa. Conceptual Structures: Information Processing in Mind and Machine.

Addison-Wesley, 1984.
20. Christopher Stokoe, Michael P. Oakes, and John Tait. Word sense disambiguation

in information retrieval revisited. pages 159–166, 2003.
21. William A. Woods. Conceptual indexing: A better way to organize knowledge.

Technical Report TR-97-61, Sun Microsystems Laboratories, USA, 1997.
22. I. Zaihrayeu, L. Sun, F. Giunchiglia, W. Pan, Q. Ju, M. Chi, and X. Huang.

From web directories to ontologies: Natural language processing challenges. In 6th
International Semantic Web Conference (ISWC 2007). Springer, 2007.

23. C. Zhai. Fast statistical parsing of noun phrases for document indexing. Fifth
Conference on Applied Natural Language Processing, pages 312–319, 1997.

