
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

DIT - University of Trento

Okkam

Enabling Entity-centric Information

Integration in the Semantic Web

Heiko Stoermer

Advisor:

Prof. Paolo Bouquet

Università degli Studi di Trento

January 2008

Abstract

Like to the way the WWW provided a global space for the seamless inte-

gration of small hypertexts into a global, open, decentralized and scalable

publication space, the Semantic Web has the vision to provide a global space

for the seamless integration of knowledge bases into a global, open, decen-

tralized and scalable knowledge space, whose domain is extended beyond

the realm of digital objects, and relations are extended beyond hyperlinks.

But unlike the WWW, where reference to documents through hyperlinks is

provided in an unambiguous and architectural way, the Semantic Web in

its current state suffers from an identity and reference problem for the en-

tities it describes, a problem which hinders significantly the integration of

Semantic Web knowledge on the data level.

The cause for this problem is that to date there exists no suitable in-

frastructure which would enable the systematic re-use of global identifiers

for entities, which could solve the mentioned issues by making some of the

assumptions that the Semantic Web bases on a reality.

The objective of this work is thus to provide such an infrastructure.

We will describe the notion of an Entity Name System (ENS) as a global

approach for providing re-usable identifiers for entities. A prototype im-

plementation of such an ENS – called Okkam – has been developed, is

operational, and is part of the novel contributions of this work. Addition-

ally, a set of new applications that make use of the ENS will be illustrated,

as well as analyses and experimentation results which base on the ENS.

The main contribution of this work is the provision of an ENS, an

infrastructural component for the Semantic Web which enables a-priori

information integration in a novel way, and enables the development of

novel applications and information management paradigms.

Keywords

Semantic Web, Information Integration, Web of Entities, Knowledge Man-

agement, Identity and Reference

4

“It is a mistake to try to look too far ahead. The chain of destiny

can only be grasped one link at a time.”

Sir Winston Churchill (1874 - 1965)

To my father.

Acknowledgments

The author would like to express his gratitude to the following people:

My supervisor, Prof. Paolo Bouquet, for being a true mentor.

Angela, for our future, wherever it may be.

My family. My mother, for never giving up, in her own way. Alberto

and Ankatrin Giussani, for their unlimited support. Silia Giussani, for ev-

erything.

Robert Brickman, Anna Kunde, Joachim Fischer, Martina Zidek, Michael

Härle, Sarah Kate Selling, Filippo Tosoratti, Amy Fountain, Paolo Mar-

chiori, Tazneem Twells, Michele Porrino, for being my counter balance,

and my partners in crime on many adventures.

Carsten Burghardt, for dragging me through my undergrad studies. Anja

Paulmichl, for always helping out.

Peter Fiener, for showing me how many balls can be kept in the air.

Marco Braun, for many dark coffees in dark hours.

Claudia Niederée and Rodolfo Stecher for fruitful discussions and their

indispensible input in the concept phase of this work.

The UNITN Okkam group: Barbara Bazzanella for her support with R.

Stefano Bortoli for his work on foaf-O-matic. Daniel Giacomuzzi for his

work on the Okkam prototypes. Xin Liu and Daniele Zanoni for their

work on Okkam4P . Finally, Elisabetta Fauri for her management.

Ekaterini Ioannou, Antonio Maña, Luciano Serafini, Andrei Tamilin and

Andreas Wombacher for discussions and pointers to literature in their re-

spective areas of expertise.

Profs. Norbert Gerth, Wolfang Kowarschick, Michael Lutz and Christian

Märtin, for recommending me for the PhD.

My Final Exam Committee, Prof. Sonia Bergamaschi, Prof. Frank van

Harmelen and Dr. John O’Flaherty, for their numerous suggestions and

critical evaluation of my work.

This research was partially funded by the European Commission under the 6th Framework

Programme IST Integrated Project VIKEF - Virtual Information and Knowledge Environment

Framework (Contract no. 507173, Priority 2.3.1.7 Semantic-based Knowledge Systems; more

information at http://www.vikef.net).

Contents

1 Introduction 1

1.1 A Normal Day on the Semantic Web 1

1.2 The Web of Documents . 3

1.3 The Web of Entities . 4

1.4 Mission Statement . 7

1.5 Overview . 7

I Background and State of the Art 9

2 Theoretical Background 11

2.1 Philosophical Background 11

2.2 Revenge of the ABox . 14

3 State of the Art and Related Work 17

3.1 Identity management and Identification. 17

3.2 Entity-level Information Integration. 20

3.3 Identity and Reference on the Semantic Web. 23

3.3.1 Consistent Reference Service 23

3.3.2 Linking Open Data 24

i

II Novel Contributions 27

4 Concepts, Use-Cases and Requirements 29

4.1 Concepts . 29

4.1.1 Entity . 29

4.1.2 Entity Description 33

4.1.3 Entity Profile . 34

4.1.4 Entity Name Service (ENS) 34

4.2 Use Cases . 36

4.2.1 Entity Search . 36

4.2.2 Entity Publication 37

4.2.3 Okkamization . 37

4.3 Requirements . 40

5 Okkam – an Entity Name Service 47

5.1 The Okkam Architecture 47

5.2 Prototype Implementation 51

5.2.1 A Black-box View on Okkam 52

5.2.2 The Internals of Okkam 63

5.3 Entity Matching and Ranking in Okkam 67

5.3.1 The Matching Problem 67

5.3.2 An Experimental Matching Architecture 69

5.3.3 An Exemplary Matching Algorithm 72

5.4 Requirements Review . 74

6 Okkam Applications 77

6.1 Okkam4P . 78

6.1.1 User Perspective 78

6.1.2 Technical Perspective 82

6.1.3 Benefits . 83

ii

6.1.4 Future Work . 84

6.2 foaf-O-matic . 84

6.2.1 FOAF and the Problem of Identity 84

6.2.2 User Perspective 87

6.2.3 Technical Perspective 90

6.2.4 Benefits and Future Work 91

6.3 Okkam Web Search . 92

7 Application Scenarios 95

7.1 Digital Library Integration 95

7.1.1 The Problem of Unidentified Entities 97

7.1.2 Metadata Integration 99

7.1.3 Additional library services 100

7.2 News and Media Integration 101

7.3 Entity-centric Search . 104

8 Analyses, Experiments and Results 107

8.1 Performance Improvement 107

8.2 Evaluation of Similarity Metrics 110

8.3 Instance-level Ontology Integration 113

8.3.1 Establishing tfp . 114

8.3.2 Evaluating the Ontology Merge 117

8.3.3 Establishing tid . 119

8.4 Entity-level Metadata Integration: A Cost Analysis 120

8.5 Rigid Designation and its Consequences 124

9 The Future 129

9.1 Research Challenges . 129

9.1.1 Large-scale Repository Management and Evolution 129

9.1.2 Models of Security, Privacy and Trust 134

iii

9.2 Expected Impact . 137

9.3 Future Work . 139

Bibliography 141

A XML Schemas of API Data Structures 157

A.1 AnnotatedQuery . 157

A.2 OkkamURIResult . 164

A.3 EntityProfile . 166

iv

List of Tables

5.1 Code size of Okkam’s main components 52

5.2 Requirements review of the Okkam prototype 75

8.1 Normalized Runtime Behaviour of Monge-Elkan Algorithm 113

8.2 Contingency table for evaluation of golden standard 115

8.3 Performance of entity matching for tfp = 0.75 117

8.4 Results of the merging process 118

v

List of Figures

4.1 Okkam as an ENS for multiple data formats and applications 35

4.2 The Entity Search Use Case 37

4.3 The Entity Publication Use Case 38

4.4 Sequence diagram of an Okkam standard use case 39

5.1 Architecture of an OkkamNODE and its application layers 50

5.2 Top-level components of the Okkam implementation . . . 51

5.3 The AnnotatedQuery Schema (Part 1) 53

5.4 The AnnotatedQuery Schema (Part 2) 54

5.5 Schema of return value for search queries. 58

5.6 Schema of EntityProfile . 59

5.7 The Web Services exposed by Okkam 61

5.8 Main classes of the Okkam Java client library 62

5.9 Deployment diagram of OkkamCoreNG’s main components 63

5.10 Entity-relationship Model of the OKKAM database 66

5.11 Dimensions of entity matching – a brainstorming 68

5.12 OkkamMATCH : Sequence and components 70

6.1 Assigning a global identifier to an individual 79

6.2 Selecting query parameters in Okkam4P 80

6.3 Query result of with matching entities that already have an

identifier in Okkam. 81

6.4 Main classes of Okkam4P 82

vii

6.5 foaf-O-matic The main interface of foaf-O-matic. . . 88

6.6 Okkam Web Search displaying entity details 93

6.7 Okkam Web Search as Firefox search plugin 94

8.1 Query plan of search query before optimization 108

8.2 Query plan of search query after optimization 109

8.3 Performance of Similarity Measures for Entity Matching in

Okkam. 112

8.4 Evaluation results of the ontology merge. 116

viii

Chapter 1

Introduction

1.1 A Normal Day on the Semantic Web

Jane, an advanced internet user with an affinity to online social networks,

heard something somewhere about the Friend-Of-A-Friend network. She

discovers that there is an application which she can use to create a file

that lists all her friends and that she can publish on her website. She finds

this to be a fantastic idea, because like this one day she might not have to

register with many different social network websites anymore, but instead

“the Semantic Web” would simply know.

One of Jane’s friends is Peter Paul, who is a researcher in Computer

Science. Together with some fellows he was successful and got a paper

accepted at the prestigious XYZ conference. When he submitted the paper,

he entered a set of contact data and the affiliation for himself and all his

co-authors into the conference management system of XYZ. (Apart from

that, Peter is rather well-known in his area, and one of his students decided

to write a Wikipedia page about him some time ago. This page has been

imported into Dbpedia, a Semantic Web version of Wikipedia.)

Allen is student volunteer working at the XYZ conference. One of her

tasks is to export some of the data about accepted papers and their authors

into the RDF format, and to publish the resulting file on the internet. As

1

2 CHAPTER 1. INTRODUCTION

she is not very versed in this new technology, she scripts a small custom

tool that outputs RDF statements as strings into a text file and uses the

database ID of authors and papers for building their identifiers.

Several people import Allen’s RDF data into their own repositories,

directly or indirectly. The L3S Research Center in Germany runs a version

of the DBLP bibliographic database that uses Semantic Web technology,

and they are mostly interested in all articles and their authors. Ontoworld

imports the data for similar reasons, with a focus on events related to the

area of ontologies. Both modify the data to fit their local conventions, also

because Allen’s RDF output contained some syntactic errors.

Several software agents, so-called “crawlers”, make use the hyperlink

structure of the (Semantic) Web to find and analyze RDF documents. The

crawler of the Semantic Web search engine Sindice indexes RDF documents

so that the search engine part can answer queries as to where a certain

string has been mentioned in RDF statements.

At the end of the day, many things have been annotated in RDF, and

to this end – as a necessity in RDF – these things have been given URIs,

either by users, or by systems that manage the RDF data.

Take for example Peter. A whole set of URIs have been created for

him1:

• a blank node in Jane’s FOAF file

• http://xyz2007.org/data/p_793767547

• http://en.wikipedia.org/wiki/Peter_Paul

• http://dbpedia.org/resource/Peter_Paul

• http://dblp.l3s.de/d2r/resource/authors/Peter_Paul

1all of these examples are fictional.

2

1.2. THE WEB OF DOCUMENTS 3

• http://ontoworld.org/wiki/Peter_Paul

If now Jane were curious to know who of her friends is an important

personality (say, somebody who has written a book, or part of a book, or

an article), what would she do? Wasn’t this “Semantic Web” supposed to

be able to somehow gather distributed RDF data and produce acceptably

intelligent answers to such a trivial question?

1.2 The Web of Documents

The WWW as we know it is what we like to call a web of documents2.

Documents, usually encoded in the HTML markup language are stored

on Internet hosts and are accessible for viewing in special applications:

browsers. It is document-centric by design, and bases on a hypertext struc-

ture that establishes links between documents. The hyperlink allows users

to follow pointers to documents that are located somewhere else on the

Internet .

Hypertext systems had been existing for quite a while before the WWW

was invented, in fact the Wikipedia Encyclopedia dates “modern” (computer-

based) hypertext back to works by Douglas Engelbart and Ted Nelson [19]

in the mid-late 1960s. Also these hypertext systems were used to produce

webs of documents, and their commercial successors such as Compuserve

or AOL managed to attract paying users to their document collections.

Apart from economic aspects3, the main difference between the then

existing hypertext systems and the WWW was its property of globality : so

2Of course, during its evolution, the WWW extended quickly with the integration of multimedia

objects, which one might object to being called “documents”. We accept the criticism that the WWW

today is rather hypermedia than hypertext, but for the point we are trying to make we propose to neglect

this distinction.
3Access to documents – maybe with the exception of data in university research networks – had so

far to be paid for by-document, while the WWW even today is still mostly free-of-cost.

3

4 CHAPTER 1. INTRODUCTION

far these systems had been local webs of documents, based on proprietary

technologies that were often hard to use and made it impossible to establish

pointers between documents of different systems4. The evolution into the

WWW was mainly possible through the creation of a uniform hyperlinking

and addressing scheme: the Uniform Resource Locator (URL) as a globally

unique and dereferencable identifier for documents, and the HREF attribute

in the HTML language that allows for establishing links inside and between

documents by pointing to URLs anywhere on the WWW.

This mechanism in reality relies on the existence of a service – the

Domain Name System – which plays a crucial role in mapping symbolic

hostnames in any resource identifier (URLs) into a physical location on

the Internet. This is how one can be sure that, for example, a document

published on a Web server will be always and unmistakably located and

retrieved through the appropriate URL, and that a HREF link to that re-

source through its URL will be always resolved to the appropriate location

on the Internet.

1.3 The Web of Entities

In a note from 1998, Tim Berners-Lee describes the vision of the Semantic

Web (cf. [8]):

Knowledge representation is a field which is currently seems to

have the reputation of being initially interesting, but which did

not seem to shake the world to the extent that some of its pro-

ponents hoped. It made sense but was of limited use on a small

scale, but never made it to the large scale. This is exactly the

state which the hypertext field was in before the Web [. . .]. The

4In fact, the commercial providers of webs of documents were not interested at all to link to information

that is stored in the system of a competitor, for obvious reasons.

4

1.3. THE WEB OF ENTITIES 5

Semantic Web is what we will get if we perform the same glob-

alization process to Knowledge Representation that the Web ini-

tially did to Hypertext.

We understand this parallel as follows: like the WWW provided a global

space for the seamless integration of small hypertexts (or local “webs of

documents”) into a global, open, decentralized and scalable publication

space, so the Semantic Web should provide a global space for the seamless

integration of knowledge bases (or local “semantic webs”) into a global,

open, decentralized and scalable knowledge space. But is this happening?

Today, as a result of many independent research projects and commer-

cial initiatives, relatively large and important knowledge repositories have

been made available, and actually are (or can be easily tranformed into)

local “semantic webs”, namely graphs of resources connected through prop-

erties which are defined in some schema or vocabulary. DBpedia5, GeoN-

ames6, DBLP7, MusicBrainz8 and the network of FOAF profiles are only a

few examples of available knowledge bases in semantic web formats (RD-

F/OWL), and furthermore already interlinked through the LinkedData

initiative9; but any social network, any digital library metadata collection,

any commercial catalog and in principle any relational database could be

easily (and mostly syntactically) transformed into a local semantic web

by exporting it into the appropriate format. And the suitable languages

and tools for building the Semantic Web are mostly available. So why the

integration of these local “semantic webs” is not really working well?

The argument we put forward is the following. On the one hand, the in-

tegration of local “webs of documents” into the WWW was – as previously

5http://www.dbpedia.org
6http://www.geonames.org
7http://dblp.l3s.de
8http://www.musicbrainz.org
9See also Sect. 3.3.2 for a discussion.

5

6 CHAPTER 1. INTRODUCTION

described – largely made possible by the key enabling factor of a global

and unique addressing mechanism for locating and retrieving resources.

On the other hand, the integration of local “semantic webs” is supposedly

based on a very powerful generalization of the notion of resource identifier

from information objects (e.g. HTML pages, documents, servers, etc.) to

any type of resource, including concrete entities (people, geographical lo-

cations, events, artifacts, etc.) and abstract objects (concepts, relations,

ontologies, etc.).

The idea can be summarized as follows: whenever a statement is made

about an entity e1, then such a statement is in principle connected with any

other statement made about the same entity elsewhere and independently,

provided that the same identifier (URI) is consistently used for it10.

And here we get to the core of the problem: to re-use an identifier, we

have to know it, just as in the WWW, when we want to link to a document,

we have to know its URL. However, to date no scalable and open service is

available to make possible and support such a consistent re-use of identi-

fiers for entities, and this undermines the practical posibility of a seamless

integation of local knowledge into a global knowledge space. And the ef-

fect is that – today – Semantic Web technology is mostly used to create

local metadata or knowledge repositories, with an identity and reference

problem as we have illustrated it in Sect. 1.1. There is a proliferation of

identifiers for entities, which makes information integration hard, or almost

impossible, and the current approach has been ex-post alignment, which

is costly, and hard to achieve.

10In fact, this is the underlying assumption of the RDF graph merge [43].

6

1.4. MISSION STATEMENT 7

1.4 Mission Statement

The goal of this work is to provide an a-priori solution to the identity

and reference problem in the Semantic Web, and thus to enable seamless,

entity-centric information integration as it has originally been envisioned.

To this end, we will address the following objectives:

1. To define, design and develop a prototype infrastructure for en-

abling and supporting the systematic reuse of global entity identifiers

in Semantic Web knowledge bases.

2. To design and develop prototypical applications, to illustrate typ-

ical use-cases and to prove the feasibility of the approach.

3. To perform experiments and analyses, and report their results, to

prove the relevance and viability of the approach.

4. To provide application scenarios and analyize research challenges

which can serve as guidelines for further work.

1.5 Overview

The rest of this document is structured as follows. Part I describes the

status quo of things that were given and not part of the contributions of

this work, with Chapter 2 giving background information which underlines

the problem illustrated here in the introduction, and Chapter 3 describing

related work.

Part II describes the novel contributions of this work. First, in Chapter 4

we present new concepts, use-cases and requirements that arise from our

solution approach.

Chapter 5 describes in detail the approach: an architecture (Sect. 5.1),

its implementation (Sections 5.2 and 5.3), and closes with a requirements

7

8 CHAPTER 1. INTRODUCTION

review in Sect. 5.4.

Three applications that illustrate the usefulness and viability of our ap-

proach are described in Chapter 6: Okkam4P , a plugin for the ontology

editor Protégé in Sect. 6.1; foaf-O-matic, a new application for the gen-

eration of FOAF profiles in Sect. 6.2; and finally, Okkam Web Search, an

application to support the generic re-use of identifiers, in Sect. 6.3.

Chapter 7 analyzes in detail three application scenarios that in our

opinion can benefit considerably from the adoption of our approach. First,

the area of digital library integration, as described in Sect. 7.1. Secondly,

the integration of news and media (Sect. 7.2), and finally entity-centric

search (Sect. 7.3).

Analysis, experiments and results that were performed based on the

implementation of our prototype are reported in Chapter 8. We describe

issues of performance improvement in Sect. 8.1, and an evaluation of sim-

ilarity metrics that are used by our prototype in Sect. 8.2. An experiment

in instance-level ontology integration is detailed in Sect. 8.3. Additionally,

two analyses were performed: a cost analysis of entity-level metadata in-

tegration is given in Sect. 8.4, and the consequences of rigid designation in

Semantic Web formal systems is given in Sect. 8.5.

Chapter 9 concludes with an in-depth description of research challenges

that a continuation of this work will face (Sect. 9.1), an illustration of the

expected impact and benefits of this work (Sect. 9.2). Finally, we describe

further work that is going to be performed (Sect. 9.3) in the context of the

European Integrated Projekt Okkam which we mention in Sect. ??.

8

Part I

Background and State of the Art

Chapter 2

Theoretical Background

2.1 Philosophical Background

This work deals with entities, as well their identification and representa-

tion. Many discussions of the issues that are described in this document

have shown that one will almost inevitably slip into a rather philosopi-

cal argument about what “entity” and “identity” actually means, and the

outcome is usually not a shared view. It is clearly beyond the scope of

this work to give an account of the opinions, attitudes and schools in phi-

losophy that deal with related topics. However, it seems appropriate to

at least mention some of the important works in the area, because they

motivate the decisions that were taken in the implementation phase of our

approach.

Luigi Pirandello (1867-1936), Italian dramatist, novelist, and short story

writer awarded with the Nobel Prize in Literature in 1934, authored “One,

No one and One Hundred Thousand”, a novel in which the protagonist

discovers how all the persons around him have constructed in their own

minds a specific view of him, and none of these views correspond to the

image he has of himself [73].

We can use Pirandello’s novel to illustrate an important point: the

fact that several agents are describing the same object does not guarantee

11

12 CHAPTER 2. THEORETICAL BACKGROUND

that these descriptions are identical. The issue is rather straightforward:

imagine an everyday case about a person; the person is known to her

coworkers in a certain context, they know certain things about her, most

(or all) of which are related to the work. She also pursues a hobby, and is

known to her friends there for certain other things. As the person tends

to keep work and private life separate, the descriptions of the people that

know her from these two mentioned contexts would differ considerably, to

the point where they are disjoint.

Philosophers have been discussing whether there is something like a

set of descriptions which are definite or authoritative for an entity, being

its essence so to speak. Kripke [54] comes to the conclusion that this

is not necessarily the case. The trouble is that descriptions are context-

dependent, and they can change over time.

Now Strawson [85] describes the slogan “no entity without identity” as

the fact that it is not possible to talk about something without knowing

how it can be identified. But how are we to identify something if we accept

the fact that descriptions are not authoritative? Strawson suggests that

there might be things which can be associated to a sort or kind which have

such criteria of identification, and others which do not, and that finally

there is no generic answer to the problem itself. While philosophically it is

certainly acceptable to come to such a conclusion, it helps us little when

searching to solve a concrete problem in a pragmatic way. The consequence

that is generally accepted is that there are potentially unlimited different

ways of classifying things.

In this line, Lakoff [56] tells us that “knowledge is relative to under-

standing”, which we can interpret as the problem that even if – by chance

– two classifications are identical, it is not given per se that the meaning of

the classifications is in fact the same. The work of Lévy [58], though only

marginally related to our problem, is trying to address this issue basing on

12

2.1. PHILOSOPHICAL BACKGROUND 13

the assumption that there is a basic (and in fact very large) set of concepts

shared by all humans, however their arrangement in classifications is not

shared. Consequently, the goal of his work is to describe these concepts in

his IEML language and to issue an identifier for them so that they may

be used in arbitrary classifications, ensuring however that when such an

identified concept is used, its meaning is shared with all other occurences

of it.

A natural way of identifying things, especially when an attempt of

co-ordination between agents through the comparison of descriptions has

failed to provide a solution, would be to seek to point to the objects that

are under discussion, and see whether they are identical, i.e. the same

object. Pointing to something, and saying “this” or “here” is commonly

known as a demonstrative way of identifying it. While being an optimal

solution in the case of things that physically exist and are accessible at

the time of the attempted identification, it has the obvious shortcoming of

failing otherwise.

This shortcoming is a most substantial problem for computer-based in-

formation systems. Due to the lack of physical access to objects of the real

world in such a system, the commonly practiced solution is to provide a

placeholder for it, which Gangemi calls a proxy [38]. Usually, such a proxy

takes the form of an identifier issued by the system which describes it.

This practice leads us back to the original problem described by Piran-

dello, but in a more serious form: while the acquaintances of Pirandello’s

protagonist might be able to solve an identification problem – should it

arise – in a demonstrative way, software agents lack this option. As a

demonstrative approach is impossible, their possibilities of co-ordination

end with the comparison of identifiers.

13

14 CHAPTER 2. THEORETICAL BACKGROUND

2.2 Revenge of the ABox

From the facts presented in the introduction, it should be straightforward

that the problem of unique identifiers for resources is crucial for achieving

semantic interoperability and efficient knowledge integration. However,

it is also evident that the largest part of research effort is made on the

problem of (i) designing shared ontologies, or (ii) designing methods for

aligning and integrating heterogeneous ontologies (with special focus on

the T-Box part of the ontology, which defines concepts and its relations).

Perhaps because of its “practical” flavor, we must recognize that only

a very limited effort has been devoted to address the issue of identity

management for entities. For example, ontology editors, such as Protégé,

support the “bad practice” of creating new URIs in a local namespace for

any new instance created in an ontology.

In our opinion, this problem is not only of general interest for the Seman-

tic Web enterprise, but is one of the most critical gaps in an ideal pipeline

from data to semantic representation: if we do not have a reliable (and

incremental) method for supporting the reuse of URIs for the new entities

that are annotated in new documents (or any other data source), we risk to

produce an archipelago of “semantic islands” where conceptual knowledge

may (or may not) be integrated (it depends on how we choose the names of

classes and properties, and on the availability of cross-ontology mappings),

but ground knowledge is completely disconnected.

This is what we call the “Revenge of the ABox”: the most valuable

knowledge is typically the one about individuals, but research on ontology

integration has traditionally concentrated on concepts and relations. The

current state is that in this direction there is enough recent related work to

fill a whole book [33], while (i) a viable, global approach for fostering the

systematic re-use of identifiers for individuals does not exist, (ii) related

14

2.2. REVENGE OF THE ABOX 15

work on the matching of individuals has to be gathered from many different

other research fields, and (iii) the very few existing approaches for entity-

centric information integration on the Semantic Web suffer from several

issues which are described at a later point in this work.

The effect is that a large-scale analysis of Semantic Web data [46] has

shown that, e.g. in the case of Fried-of-a-Friend profiles which still con-

situte a serious share of the Semantic Web data, the alignment URIs for

individuals is neglectably small.

15

16 CHAPTER 2. THEORETICAL BACKGROUND

16

Chapter 3

State of the Art and Related Work

In this chapter we will discuss related work that Part II of this work relies

upon or addresses. The topics are:

Identity management and identification. The problem of creating, man-

aging and reusing identifiers (Sect. 3.1).

Entity-level information integration. The general problem of match-

ing, mapping or merging data about the same entity from different

sources

Identity and Reference on the Semantic Web. How information in-

tegration on the Semantic Web is currently performed (Sect. 3.3).

3.1 Identity management and Identification.

The work described in Part II is not the first approach which addresses the

general problem of issuing and managing identifiers for various types of en-

tities. To date, there are a number projects, approaches and technologies

for issuing object identifiers; in fact, at a very concrete level, every oper-

ating system, every computer programming language and every database

management system provides a local solution to this problem. Also, the

17

18 CHAPTER 3. STATE OF THE ART AND RELATED WORK

issue of giving electronic identifiers to non-electronic objects is being cov-

ered on many levels in computer science: programming languages have

memory addresses for variables that may represent something of the “real

world”, databases issue identifiers for records which can represent real ob-

jects. More recently, there has been a lot of interesting work on identifiers

on the Web (and the Semantic Web) towards specifying the usage of URIs

for referring to any type of resources (including instances on OWL ontolo-

gies). We stress that the development of the WWW - and generally the

advent of more global information systems - has made evident a strong

need for something like global identifiers, which can be used across differ-

ent formats, in different applications, across languages and cultures. We

can split into three broad categories the efforts made in this direction:

Generic identifiers and identification of electronic objects. The most

prominent approach in this respect is the URI/URL mechanism for lo-

cating documents, which became popular with the WWW1. The URL

mechanism is not without shortcomings: a URL does not guarantee

that a specific resource is retrieved through it, because URLs in re-

ality denote locations, not resources: (i) the content of a document

can be changed; (ii) the whole document can be exchanged; (iii) a

document can be “dynamic”, i.e. it is machine-generated and changes

content based on some underlying program; (iv) the document can

be deleted, in which case the URL cannot be dereferenced anymore,

etc. However, approaches such as PURL [78] have been conceived to

deal with these issues. Other approaches for identifying electronic ob-

jects include identifier generation such as ITU UUIDs2 and Microsoft

GUIDs3.

1http://www.w3.org/Addressing
2http://www.itu.int/ITU-T/asn1/uuid.html#what
3http://msdn2.microsoft.com/en-us/library/aa373931.aspx

18

3.1. IDENTITY MANAGEMENT AND IDENTIFICATION. 19

Identification of “real-world” objects in electronic applications. The

arising philosophical issue of what counts as an object will not be

discussed here. Instead we list a range of approaches such as MAC

addresses for network components, generic X.500 and LDAP direc-

tory services for hierarchically managed structures, EPC4 and RFID

(the “Internet of Things”) as well as the Global Data Synchronisa-

tion Network5 for generic product identification, DOI6 and ISBN for

intellectual property resources (e.g., books and publications), LSID7

for identifying Life Science objects, and many more.

Identification of individuals (persons) in electronic applications.

Especially the requirements that emerged in recent years from the E-

Commerce domain have had a huge impact in terms of methods and

approaches to identification of individuals for electronic transactions.

The ITU recommendation X.5098 for digital certificate and authenti-

cation frameworks has a history dating back to the early 1990s. More

recent projects promoted by major players in the software industry

such as Microsoft CardSpace9, OpenID10 and the Eclipse Foundations

project Higgins11 underline the importance of the topic.

With such a wide range of approaches, frameworks and identifier-issuing

institutions, the question arises in which respects the state of the art can

be advanced. It has to be noticed that all of the above-mentioned examples

suffer from two types of limitations:

4http://www.epcglobalinc.org/
5http://www.gs1.org/productssolutions/gdsn/
6http://www.doi.org/
7http://lsid.sourceforge.net/
8http://www.itu.int/rec/T-REC-X.509/en
9http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnlong/html/

introinfocard.asp
10http://openid.net/
11http://www.eclipse.org/higgins/

19

20 CHAPTER 3. STATE OF THE ART AND RELATED WORK

• they are context-, domain- or application-specific, or they address

only a certain community (even if these communities are large and

important). In short, their orientation is vertical, and they are not

integrated;

• they do not provide a widespread and pervasive support for the reuse

of these identifiers outside the boundaries of their initial scope and

application.

The work we are describing however is a global, horizontal approach,

and provides a real integrating infrastructure, thus offering the possibility

to overcome existing informational borders and enable real information

integration right on the level of identity and identification.

In our opinion, the permanent emerging of new approaches that address

the identification problem in vertical domains only strengthens our claim.

3.2 Entity-level Information Integration.

In contrast to schema-level integration, entity-level information integration

deals with the actual individuals, not with integration of class structures

or entity types. Entity level integration has to deal with deciding whether

two entity descriptions refer to the same individual (or entity) and with

merging the two entity descriptions (deciding what to include in the joint

entity description).

There are several approaches trying to decide if two descriptions de-

scribe the same entity. One of the oldest variations of this problem is de-

fined by the database community. An overview can be found in [96, 45, 31].

Here, the problem is to decide whether two relational records with differ-

ent identifiers/keys provide either exactly the same information, or subsets

of information describing a specific entity. The most common names for

20

3.2. ENTITY-LEVEL INFORMATION INTEGRATION. 21

this problem in the literature are record linkage, de-duplication, data in-

tegration, and merge/purge. Suggested algorithms decide if the records

describe the same entity by performing a comparison of their correspond-

ing attributes. Others include record linkage or duplicate detection [31],

reference reconciliation [29], and entity resolution [7, 39] which all refer to

the problem of finding if two descriptions correspond to the same entity, for

example, by exploiting associations between references [29], or by applying

specific heuristics such as name matching [18].

Another related group of algorithms are the ones that aim at match-

ing entity names by computing the distance between the string values

of corresponding entity names. The algorithms included in this group

suggest general-purpose methods for computing the similarity between

strings [64, 25]. These algorithms are considered important since they are

currently used as the basic metric on which more sophisticated approaches

are based on. [26] describes and provides an experimental comparison of

various string distance metrics.

Very few algorithms have been proposed in the area of metadata man-

agement. One is the TAP system [41] which uses the Semantic Negotiation

process to identify the common description (if any) between the different

resources. These common descriptions are used to create a unified view of

the data. [7] identifies the different properties on which the efficiency of

such algorithm depends on, and introduces different algorithms address-

ing the possible combinations of the found properties. Another well-know

algorithm, is the Reference Reconciliation [29]. Here, the authors begin

their computation by identifying possible associations between entities by

comparing the corresponding entity descriptions. The information encoded

in the found associations is propagated to the rest of the entities in order

to enrich their information and improve the quality of final results. [1] is a

modified version of the reference reconciliation algorithm which is focused

21

22 CHAPTER 3. STATE OF THE ART AND RELATED WORK

on detecting conflict of interests in paper reviewing processes.

The most advanced approaches are the ones that do not take into ac-

count only the local similarities between corresponding entity descriptions,

but also the existing inner-relationships or associations between these en-

tities. The general idea is to model the given record information into a

graph structure and then apply a data mining technique, such as classifi-

cation, link analysis or clustering. For example, [9] uses a graph structure

where nodes are the entity descriptions and links the relations between the

entities. The algorithm uses these links to cluster the nodes and the found

clusters to identify the common entities. Other used structures include

dimensional hierarchies (chains of relations) [2], and relations between the

existing records [9, 52, 51].

Other approaches deal with schema matching [76] in cases where the

entities to be matched are described with a different schemata, e.g. using

domain knowledge from ontologies if available [68]. The usage of ontolo-

gies also enables using query relaxation techniques as known from database

research along ontologies to go beyond the “full match” paradigm. It

is possible to mix data-level and schema-level matching using malleable

schemas [102] to identify differently named attributes with the same se-

mantics (e.g. “first name” / “given name”).

All these approaches apply some kind of value comparison schemes that

determine the similarity of the values describing the entity to be matched.

Here, we can consider well-known information retrieval methods computing

the similarity between text [31], or images and videos [63], even including

a populated ontology to improve the matching process [42].

If the expected amount of matched entities exceeds a manageable limit,

a paging mechanism is needed, which requires a metric to order the results.

The problem is known in relational database systems as top-k queries. A

well known approach to address this issue in a general way is using a thresh-

22

3.3. IDENTITY AND REFERENCE ON THE SEMANTIC WEB. 23

old algorithm [34]. Further approaches have been developed addressing

special scenarios, focusing on distributed storage of data, or using heuris-

tics to provide probabilistic guarantees on the determined results [90]. Fur-

thermore, ranking those entities that most closely match the target entity

can be based on advanced methods for clustering such as sky-lining [4], as

known from databases.

A widely used approach for matching is the combination of several dif-

ferent matching methods by using a weighted function [63]. This approach

poses challenges in finding the right matching algorithms and in finding

the best function and weights for combining them, which is handled using

techniques from data mining such as Bayesian networks.

3.3 Identity and Reference on the Semantic Web.

There are currently two major approaches in the context of the Semantic

Web which can be considered relevant for this work.

3.3.1 Consistent Reference Service

Jaffri et al. [49], in their work resulting from the ReSIST project, recently

came to a similiar conclusion to what we had already described previ-

ously [15, 16], namely that the problem of proliferation of identifiers and

the resulting coreference issues should be addressed on an infrastructural

level; consequently they propose what they call a Consistent Reference Ser-

vice. While we share this general view, their point about URIs potentially

changing “meaning” depending on the context in which they are used, is

philosophically disputable: the fact that several entities might be named

in the same way (“Spain” the football team, “Spain” the geographic lo-

cation) must not lead to the conclusion that they can be considered the

23

24 CHAPTER 3. STATE OF THE ART AND RELATED WORK

same unter certain circumstances12. Furthermore, their implementation

of “coreference bundles” which establish identity between entitites, are in

fact very similar to a collection of owl:sameAs statements and share their

shortcomings, as we discuss below.

3.3.2 Linking Open Data

Another notable approach is the effort of the Linking Open Data Initia-

tive13, which has the goal to “connect related data that wasn’t previ-

ously linked”. The main approach pursued by the initiative is to establish

owl:sameAs statements between resources in RDF. While the community

has made a huge effort to link a respectable amount of data, their approach

depends on specialized, data source-dependent heuristics14 to establish the

owl:sameAs statements between resources, and it requires the statements

to be stored somewhere, along with the data. These owl:sameAs state-

ments, being introduced ex-post, have strong epistemic issues (how can one

know that a certain entity is the same as another one, stored somewhere

on the Semantic Web), and do in fact not address the problem of multiple

identifiers for the same entity, in turn they support their proliferation.

Additionally, reasoning over owl:sameAs relations in distributed ontolo-

gies is a complex task: the creation of owl:sameAs statements among the

URIs recognized to identify the same entity implies the computation of the

transitive closure, potentially across the whole of the Semantic Web. The

transitive closure computation is known to belong to the NL computational

complexity class [71, 79]. This operation may become overwhelming from

a computational point of view at the moment when the number of created

URIs and related owl:sameAs statements reach the limits of current DL
12see e.g. Kripke [54]
13http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
14http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/

EquivalenceMining

24

3.3. IDENTITY AND REFERENCE ON THE SEMANTIC WEB. 25

reasoners.

A possible counter-argument might be that this is a merely technical

problem and that with time the computational power will be sufficiently

improved. However, in the moment the Semantic Web will continue grow-

ing as desired, a proliferation of URIs in combination with the computa-

tional effort of a entity transitive closure over owl:sameAs statements will

in our opinion remain extremely costly and problematic. Indeed, if the

Semantic Web is going to approximate the present version of the web, it

becomes hard to imagine a reliable system answering queries over massive,

distributed transitive closures. This may lead to the conclusion that the

Linked Data are more suitable for browsing than for reasoning or querying,

and do thus not fully attempt to realize the vision of the Semantic Web as

a large, distributed knowledge base.

25

26 CHAPTER 3. STATE OF THE ART AND RELATED WORK

26

Part II

Novel Contributions

Chapter 4

Concepts, Use-Cases and

Requirements

In this chapter we discuss new concepts that our work introduces, as well

as use cases and a requirements analysis on which the following chapters

will base.

4.1 Concepts

4.1.1 Entity

At this point, we will attempt to provide a definition of the term “entity”.

Throughout this document, we have used the term as a synonym for and

in exchange with “instance of a class”, “individual”, “non-digital object”,

“real-world object”, and some more. The reason for this slight fuzziness is

the fact that on the one hand we have a vision of what kind of things we

would like to have stored as entities in the ENS, but on the other hand it

is not predictable to which degree the users of the service will in the end

adhere to this vision, and finally, that there are difficulties in providing a

definition to begin with.

As we have hinted already in the introduction of this work, one of the

(implicit) goals of the Semantic Web is to extend the realm of discourse

29

30 CHAPTER 4. CONCEPTS, USE-CASES AND REQUIREMENTS

from documents to generic objects, called resources. In a certain sense,

it follows the notion of “individual” of Quine ([74], pages 28ff.) in that

an entity is anything that can be taken as a First Order Variable. Now

even though this is a straightforward position from a perspective of logical

systems because it is very generic, we will have to make some considerations

with regard to what needs to be identified by an ENS and what does not.

This analysis can however be performed from different points of view:

electronic vs. non-electronic objects; concrete vs. abstract objects; objects

which have electronic identifiers and objects which do not, and whether

these electronic identifiers are suitable for re-use or not, all of which makes a

definition of “entity” which is not vulnerable to a philosophical attack very

hard. In the following we will try to go through the most important aspects

and finally provide a definition of what criteria make up an “entity”.

First of all, we can state that the WWW is already providing URLs

and hyperlinks as an identification and reference mechanism for web doc-

uments1. This means that identifiers for such documents can already by

found and re-used without further need for a supporting infrastructure.

The existance of the WWW with its unnumerable amount of hyperlinks

trivially proves this point. In the same line, we should mention other types

of electronic objects for which vertical solutions to identity and reference

exist. These have been described in Sect. 3.1, and our point is that while

in the long term a unification of approaches between these systems and

the ENS might be desirable (and beneficial), at this point the necessity for

locating and re-use their identifiers is not strictly given in all cases.

Next, as we are dealing with the Semantic Web and its technologies, we

should consider classes defined in ontologies. The case for these objects is

similar to the one for WWW documents, as they are identified by URIs

1Shortcomings of the URL mechanism as mentioned in Sect. 3.1 shall be neglected at this point because

solutions already exist.

30

4.1. CONCEPTS 31

which base on the URI of the ontology that defines them, and should thus

in theory also be locateable and re-usable in the same way as described

above. It is however in reality slightly more complicated due to technical

reasons: (i) the use of a class name (i.e. its URI) to specify the type of an

entity that is described in an RDF graph does not imply or require that

the definition of this class be accessible, which may make it impossible

to evaluate the meaning of the class. In this case the URI of the class is

simply a name without furter meaning; (ii) on the one hand finding URIs

for classes is not as well-supported as finding URLs for documents on the

WWW, as similar search engine technology is only in prototype status; on

the other hand, class re-use itself is not as trivial as linking to a document,

as it implies consequences on the inference level, a point which is proven by

the vast amount of work in the area of ontology matching [33]. Therefore,

in our point of view, classes in ontologies do not necessarily represent first-

class citizens in an ENS, as the re-use of their identifiers is expected to be

low.

As so far we have considered electronic objects, we should now analyze

non-electronic objects (NEOs). Here, again, we restrict our analysis to the

necessity of supporting the re-use of identifiers. Similar to electronic ob-

jects, vertical approaches for identification of some types of non-electronic

objects exist (see Sect. 3.1). However, the re-use of these identifiers of-

ten is hindered by difficulties of finding them – a shortcoming from which

many of the vertical approaches suffer, whether they identify electronic or

non-electronic objects. Another distinction within the group of NEOs is

whether they are concrete or abstract. Abstract NEOs, may often be onto-

logical classes, and are as such hard to be precisely pinned to an identifier

that is suitable for re-use (see Chapter 2 for a discussion).

However, let us for example take events : they are usually not considered

classes/concepts, but are abstract in the sense that they are not (and were

31

32 CHAPTER 4. CONCEPTS, USE-CASES AND REQUIREMENTS

never) physically present. In the special case of events we run into more

problems, because the specification and identification of temporal phenom-

ena is generally complicated: should it be possible to have an identifier for

every millisecond of the past because it might have been the point in time

when something happened? As a pragmatic solution for points in time, we

propose to take it as identifiable and referenceable by definition, simply

through the use of a suitable data-type property.

Concrete NEOs on the other hand include things that are or have been

physically present, with all the difficulties of this definition. Should a grain

of sand that is part of a brick which has been used to build a house be an

entity in our sense? Probably not. Is a bolt that is part of a beam that has

been used to build the wing of an airplane an entity in our sense? Maybe: if

it needs to be described and referenced in one or more information systems

(e.g. the Quality Assurance systems of the involved parties), then yes.

It is evident that a more detailed analysis of such questions quickly

runs into philosophical issues in many kinds of ways, which makes a clean

definition of our notion of entity very hard. Focussing on our main issues

– the possibility of finding an identifier and its suitability for re-use – one

may come to a definition similar to the following:

Definition 4.1 (Entity) An Entity is any thing, abstract or concrete,

electronic or non-electronic, that (1) needs to be referenced in an infor-

mation system by means of an identifier, (2) does not have an electronic

identifier, or (2a) no electronic identifier that can easily be located, or (2b)

no electronic identifier that is suitable for re-use in other information sys-

tems, and (3) for which an Entity Description can be provided which is

enough specific to distinguish it from all other Entities.

32

4.1. CONCEPTS 33

4.1.2 Entity Description

To identify something, it is necessary to distinguish it from other things,

which leads to the question how an entity is supposed to be described in a

way that sufficiently distinguishes it from all other entities. A straightfor-

ward approach would be to classify the entity, and for each class of entities

provide a “standard” descriptive schema that has to be instantiated.

However, as a conclusion we draw from the fact that things can be

classified in many, maybe unlimited, different ways (see Ch. 2), we decided

to drop the idea of classifying entities deliberately. Instead of attempting

to provide something which might end up as either the unmanageable set

of all conceiveable classifications of things, or an “average” that could be

altogether unsatisfying, we describe entities in a semi-structured way:

Definition 4.2 (Entity Description) An Entity Description is a non-

empty set ∆ = < n, v > of name/value pairs, with the additional property

that n = ∅ is permitted.

This allows a description to contain pairs such as the URI of a datatype

property defined in an ontology elsewhere on the Semantic Web as a name,

and a corresponding value; an empty name and the prose description of

the entity in a natural language; or even a set of co-ordinates that iden-

tify an entity in space. It is obvious that the shift away from a strongly

schematized information system towards such a rather free-form structure

is posing different (and maybe greater) challenges in terms of query answer-

ing, but our standpoint is that any attempt to provide a “one-size-fits-all”

classification of things must lead to the failure of our vision because of a

lack of adoption.

33

34 CHAPTER 4. CONCEPTS, USE-CASES AND REQUIREMENTS

4.1.3 Entity Profile

On top of the Entity Description, we have created an extended data struc-

ture that represents all that is known to the ENS about an entity. This

is at a minimum its Entity Description and its identifier, but may contain

further elements as defined below:

Definition 4.3 (Entity Profile) An Entity Profile is a tuple

E = 〈i, ∆, R, ID, A, ipref , s〉

where i is the identifier issued by Okkam for the entity, ∆ its Entity

Description , R = {〈type, value〉} a set of typed references to external

information sources that are known to refer to the entity, ID = {〈i, i′〉} a

set of assertions of identity between the entity and other entities that are

known to be identical, A = {s} a set of alternative identifiers of the same

entity in different other information systems, ipref the preferred identifier

for the entity which is either i or one x ∈ A, and finally s the Wordnet

Synset identifier that helps to describe the high level type that entity is

known (or supposed) to have. R = ID = A = ∅, ipref = ∅ and s = ∅ is

permitted.

4.1.4 Entity Name Service (ENS)

As motivated in the previous chapters, the main objective of this work is

to establish a running infrastructure which enables global, pervasive and

re-usable identification of entities in the Semantic Web. This infrastruc-

ture provides a service that has a certain parallel wich what we know in

the Internet as the Domain Name Service (DNS): it provides a lookup

mechanism, only that it treats generic entities instead of internet hosts.

The overall vision – as depicted in Fig. 4.1 – is to go beyond the bound-

aries of RDF graph integration, towards an infrastructure that integrates

information across systems and formats.

34

4.1. CONCEPTS 35

Figure 4.1: Okkam as an ENS for multiple data formats and applications

To this end, we introduce the notion of an Entity Name Service (ENS)

from a functional perspective:

Definition 4.4 (ENS) An Entity Name Service is a service that (1) con-

tains a set of Entity Profiles EP , that (2) given an Entity Description ∆,

returns its globally unique and rigid2 identifier i in a suitable form, or a set

of candidate identifiers I if no one-to-one mapping could be found, and (3)

given an identifier i that was issued by the ENS, returns the description ∆

of the Entity which the identifier denotes, and (3) does so in a determin-

istic, stable and monotonic way, i.e. the relation between an identifier and

an entity may not change once it is established and an identifier may not

disappear. Consequently, the ENS is characterized by EP and the following

functions:

2The property of rigidity of an identifier in logics is commonly understood as denoting the same object,

whenever or wherever the identifier occurs.

35

36 CHAPTER 4. CONCEPTS, USE-CASES AND REQUIREMENTS

i = f1(∆) (4.1)

I = f2(∆) (4.2)

∆ = f(i) (4.3)

Note that we are not giving a formal specification of the components

of an ENS for the reason that the internal structure of an ENS is an

implementational issue and thus irrelevant for its intended use.

To introduce a name that is often used throughout this work, we also

define Okkam:

Definition 4.5 (Okkam) Okkam is an existing implementation of an

Entity Name Service, as described in Ch. 5.

4.2 Use Cases

Three main use cases have been identified as integral to the process of

interacting with an ENS: (i) searching for an entity in the ENS, (ii) pub-

lishing a new entity in the ENS, (iii) using identifiers from the ENS in local

data sources. These use cases are further described in the following.

4.2.1 Entity Search

At the base of most interaction with the ENS, there is the process of

searching for an entity, as illustrated in Fig. 4.2.

A human agent interfaces with the ENS through a client application,

and provides either a structured description of the desired entity, or a set

of search terms (names, words in natural language), which are transferred

to the entity search interface of the ENS. The ENS performs a search in

its data store, selects candidates, ranks them and returns the results. The

client application can then display – or otherwise use – these results.

36

4.2. USE CASES 37

Figure 4.2: The Entity Search Use Case

4.2.2 Entity Publication

A second goal of the ENS is not only to provide identifier for entities that

are already stored in the ENS, but also to issue identifiers for new entities.

To this end, a use-case of entity publication as in Fig. 4.3 is required.

4.2.3 Okkamization

Typically, when creating structured content or annotating unstructured

content, the entities described are issued with a local identifier (e.g. a pri-

mary key in a relational database, or a URI relative to the used ontology

in the case of OWL). In order to lift this content to a globally integratable

level, we have to replace this process of local identification with another one

that builds on globally shared identifiers. We call this process okkamiza-

tion.

Definition 4.6 (Okkamization of an Entity) We call okkamization with

37

38 CHAPTER 4. CONCEPTS, USE-CASES AND REQUIREMENTS

Figure 4.3: The Entity Publication Use Case

respect to a single entity the process of assigning an Okkam identifier

to an entity which is being annotated in any kind of content, such as an

OWL/RDF ontology, an XML file, or a database, in order to make the

entity globally identifiable.

Definition 4.7 (Okkamization of a Data Source) We call okkamiza-

tion with respect to a data source the process of assigning an Okkam

identifier to all relevant entities in the data source. Relevance is defined

by the agent who requests okkamization of the data source, through a set of

conditions suitable to select the desired set of entites from the data source.

This okkamization would usually be achieved through functionality pro-

vided by a client application which accesses an ENS through its API, and

presents (if available) a list of top candidates which match the description

for the entity provided within the client application. If the entity is among

these candidates, the client agent (human or software) uses the associated

Okkam identifier in the respective information object(s). If the entity can-

not be found, the client application can create a new entry for this entity

38

4.2. USE CASES 39

in Okkam and thus cause an identifier for the entity to be issued and used

as described before. Due to its procedural nature, we illustrate it in the

form of a sequence diagram in Fig. 4.4.

Alternatively, for simple tasks with only a small number of entities, we

provide the application OkkamWebSearch3, which features a simple web-

based user interface that allows users to search for entities in order to insert

the found identifiers manually in their data sources.

Figure 4.4: Sequence diagram of an Okkam standard use case

3http://www.okkam.org/experimentalokkamsearch

39

40 CHAPTER 4. CONCEPTS, USE-CASES AND REQUIREMENTS

4.3 Requirements

In the following we illustrate the most important requirements that arise

when attempting to provide a solution to the problem described before.

We groug these requirements into the following seven categories:

Functional Requirements. The list of functions (with I/O and/or side-

effects) that need to be provided by a system to become usable or

useful.

Interface Requirements. The accessibility of a system from other sys-

tems or agents is defined through its interface. The types of systems or

agents that are expected to use a system define the type of interface(s)

that they require.

Operational Requirements. The set of conditions that the system is

expected to fulfill regarding its behavior during operation and lifetime.

Performance Requirements. The demands that are made on a system

with regards to the resources that the system uses to perform a certain

task.

Accuracy Requirements. These requirements relate to the degree of ac-

curacy at which a system fulfills specific measurable parameters, usu-

ally bound to certain thresholds.

Socio-economical Requirements. Conditions that a system has to ful-

fill in order to be acceptable/successful in a society or economy.

For each of the listed categories, we describe the corresponding require-

ments. These requirements will later be referenced in Section 5.4 to analyze

the appropriateness of the proposed approach.

40

4.3. REQUIREMENTS 41

Functional Requirements

R-1 Search. One of the basic requirements of a service that issues global

identifiers is the search functionality, to retrieve lists of candidates

which enable the agent (human or artificial) to decide whether the en-

tity under consideration is already defined or has to be newly created.

R-2 Creation. The creation of a new entity, including a description that

allows it to be discriminated against all other entities, is the next

requirement in the processing chain.

R-3 Modification. Finally, the modification (or extension) of the entity

and its description has to be considered, and appropriate functionality

has to be provided. Note that under certain circumstances it might

not be desirable to modify all existing data about an entity, and it

should never be allowed to change and entity’s identifier.

R-4 Resolution. The service must provide functionality to establish iden-

tity between two entities ex-post, as a consequence of detecting by

analysis that two entries actually describe the same entity.

Interface Requirements

R-5 Web-based interface. The functions of the system described in

Section 4.3 must be exposed through a web-based interface, to allow

for a generic and application-independent access to the system.

R-6 Programmatic interface. The functions of the system described

in Section 4.3 must be accessible through a programmatic interface

(API), to allow application developers the use of the service within

software components.

41

42 CHAPTER 4. CONCEPTS, USE-CASES AND REQUIREMENTS

R-7 Batch data interface. It is desirable to have an interface that ac-

cepts bulk data in a defined format, for fully automatic processing

(i.e. enrichment of the data with entity identifiers).

Operational Requirements

R-8 Distribution. The system must be distributed to be fully in line

with the technical philosophy of the WWW, and to avoid presenting

a single point of failure for other systems that make use of or depend

on it.

R-9 Availability. The system must be highly available to allow an agent

(human or artificial) access to its functionality at any time. When the

system will be accessed is not predictable due to its global character,

so a 24x7 availability should be approximated.

R-10 Persistence. Data in the system cannot be volatile for obvious rea-

sons, so an appropriate persistence mechanism must be provided. This

mechanism is in close relation with Req. R-1, as the chosen approach

must allow for suitable query mechanisms.

R-11 Data security. The security of the data in the system must be

ensured, especially the deletion of data and the modification of entity

identifiers underly special restrictions.

Performance Requirements

R-12 Execution time. The desired execution time must be considered

for each functional requirement in Section 4.3 and related to the re-

spective interface that is used (Section 4.3), where appropriate. We

identify at least the following desired execution times based on user ex-

perience considerations and requirements from automatic processing:

42

4.3. REQUIREMENTS 43

a) manual creation: 2sec; b) manual modification: 2sec; c) manual

search: performance similar to current search engines, longer execu-

tion times for more detailed searches are acceptable; d) programmatic

or batch search: as in c); e) programmatic or batch creation/modifi-

cation: below 1sec.

R-13 Response time. The responsiveness of a system is not necessarily

identified by its execution time for individual tasks. Multi-tasking

environments my have longer execution time for certain tasks, but

still stay responsive (i.e. able to accept a request). The envisioned

system should be able to respond to several thousand requests per

minute.

R-14 Resource usage. The well-known trade-off between memory usage

and processing speed has to be balanced with respect to the above

requirements. No specific requirements apart from realistic values

will be made.

Accuracy Requirements

R-15 Precision. When searching the system, the precision metric4 from

the area of Information Retrieval (IR) must be kept as high as possible,

specifically the called precision in the 10 top-most results presented to

a human agent and the 100 top-most results presented to an artificial

agent, should approach 100%.

R-16 Recall. The Recall metric5 is to be considered secondary to Preci-

sion. It is not desirable to “lose” entities that are relevant for a query,

but due to their inverse relation, an increase in Precision causes a

decrease in Recall, which will be accepted. It must also be noted

4http://en.wikipedia.org/wiki/Information_retrieval#Precision
5http://en.wikipedia.org/wiki/Information_retrieval#Recall

43

44 CHAPTER 4. CONCEPTS, USE-CASES AND REQUIREMENTS

that insufficiently specific queries will produce a very large number of

results, in which case recall will become completely irrelevant as the

number of search results stops being manageable.

Socio-economical Requirements

R-17 Privacy protection. This may refer to the privacy of the user of

the system, and the privacy of entities that are described in the repos-

itory. In the first case, appropriate standard procedures have to be

taken that are commonly used in WWW information systems. In the

second case, the minimal requirement is that no information that was

not public in the first place will be published through an automated

process integral to the system (i.e. information harvesting).

R-18 Legality. The operation of the system obviously has to be fully

within legal bounds. This requires in-depth assessment of the relevant

legal guidelines, with special focus on information clustering.

R-19 Trustworthiness. To achieve a widespread use of the system, trust

in the system, its operation and ownership has to be established. This

is a very broad requirement and affects operations outside the system

level.

R-20 Cost of use. To achieve a widespread use of the system, the cost of

use of the system must be kept free-of-cost. This applies especially to

the search functionalities, as they are vital to the reuse of the global

identifiers.

R-21 Ease of use and Accessibility. The use of interfaces and functions

of the system must be kept as simple as possible, with respect to the

target audience. Especially web-based access to the system must be

kept absolutely self-explanatory to the standard WWW user. Addi-

44

4.3. REQUIREMENTS 45

tionally, relevant accessibility guidelines such as U.S. Section 508 [91],

the W3C’s WCAG [93] or the European Euracert [32] have to be im-

plemented.

45

46 CHAPTER 4. CONCEPTS, USE-CASES AND REQUIREMENTS

46

Chapter 5

Okkam – an Entity Name Service

In this chapter we describe a general ENS architecture that has been con-

ceived. Furthermore we introduce Okkam, a reference implementation

of this architecture, and its core component, a matching and ranking ar-

chitecture for entities. This infrastructure is the base on which the tools

and applications described in Chapter 6 and the experiments in Chapter 8

are building. The chapter will close with a review of the requirements

presented in 4.3, analyzing to which extent these requirements have been

fulfilled by the current implementation.

5.1 The Okkam Architecture

At the heart of an ENS infrastructure there is the central repository for

entity identifiers, named Okkam. This repository can be imagined like

a very large phonebook, where semi-structured descriptions of entities are

stored and associated to globally unique identifiers for these entities. It

furthermore provides the functionality to add entities and their descriptions

to the repository that have not existed there so far, and to retrieve their

Okkam identifiers for use in information systems.

The global service Okkam, which provides for the Entity Repository

and a service infrastructure so that tools and applications can make use

47

48 CHAPTER 5. OKKAM – AN ENTITY NAME SERVICE

of this new technology, is architecturally speaking, an instance of what we

call OkkamNODE , as illustrated in Fig. 5.1. The goal is to provide a

distributed infrastructure, to comply with Requirement R-8 described in

Sect. 4.3. Distribution can occur on different levels:

1. As every OkkamNODE potentially has to deal with a very large

amount of data, it may rely on a distributed storage system, as de-

picted in Fig. 5.1.

2. To fully comply with Requirement R-8, a federation of synchronized

OkkamNODE s can provide the ENS service in a deterministic or

transparent fashion. Furthermore, to comply with Requirement R-17

(Privacy Protection) in corporate environments, a private or corporate

OkkamNODE is possible that manages entity identifiers which are

only relevant and visible inside the respective environment.

A single OkkamNODE consists of the following components:

OkkamSTORE . On this layer, many crucial problems of the architec-

ture have to be addressed, as it deals with the mapping from logical

to physical representation of entities. On the logical level, this layer

provides two repositories: (i) the Entity Repository, which represents

the core data necessary to identify and disambiguate each entity, and

(ii) the Reference Repository, which stores pointers from the OKKAM

entity into other (external) public information systems, such as the

WWW, knowledge bases or databases. This reference repository can

be used for matching with background knowledge (see Sect. 5.3), or

as a starting point for crawlers of (semantic) search engines. On the

physical level, this layer takes care of the management of the poten-

tially massive amount of data that has to be stored (if necessary in

a distributed or peer-to-peer fashion), and the respective lower-level

query mechanisms.

48

5.1. THE OKKAM ARCHITECTURE 49

OkkamMATCH . On top of the storage layer, we position the matching

layer, which provides for higher-level query and matching functionality

in the system. One of the main tasks of an OkkamNODE is to match

input data from an application against all the entities in the repository

and to produce a ranked list of candidate which fulfill the criteria for

further processing by the application. The respective methods are

situated on this level.

OkkamACCESS . To enable a secure and controlled access, all requests

to an OkkamNODE have to pass an access level before queries can be

issued. We envision a second level of access control besides the query

and matching level which takes care of the issue which data from the

storage level may be analyzed to answer a matching or query request.

This aspect will not be addressed in this work, but represents a main

research challenge for the future, as described in detail in Sect. 9.1.2.

Okkam Empowered Tools. As part of the Okkam application services,

an outcome of the project will be a set of user-friendly horizontal ap-

plications that enable the community of users to create okkamized

content. Examples include plug-ins for the widely used ontology edi-

tors, as well as word-processors or HTML editors that have the ability

to annotate entities in their documents with identifiers from OKKAM.

Okkam Services. Every OkkamNODE shall provide a set of largely ap-

plication and domain-independent services that ease the okkamization

of larger datasets, the manual entry of entities into OKKAM by a user,

or the bulk import of entities through special input files.

OkkamDEV . Covering the OkkamCORE layers as well as the services

layer we place the Okkam developers support - such as APIs and

adequate documentation - to enable programmatic access to the re-

49

50 CHAPTER 5. OKKAM – AN ENTITY NAME SERVICE

spective functionalities. Even though in Fig. 5.1 this appears as a

monolithic part in the architecture, there are of course separations

with respect to access rights: parts of the development support, e.g.

the parts that address OkkamCORE , will remain private to the re-

spective managers of the system.

The current version of Okkam is an implementation of parts of this ar-

chitecture, namely a non-distributed version of OkkamSTORE , an experi-

mental version of OkkamMATCH , the Okkam-empowered tools Okkam4P

and foaf-O-matic, the application OkkamWebSearch, as well as a sub-

set set of the developer API and toolkit OkkamDEV . These components

will be described in more detail in the following.

Figure 5.1: Architecture of an OkkamNODE and its application layers

50

5.2. PROTOTYPE IMPLEMENTATION 51

5.2 Prototype Implementation

The Okkam ENS service is comprised of several main components which

are depicted in Fig. 5.2.

Figure 5.2: Top-level components of the Okkam implementation

OkkamNGWebServices1 is the component that exposes the Okkam ser-

vices to the outside world, on a programmatic level; OkkamCoreNG imple-

ments the core functionality; the data themselves are stored in an instance

of a relational database2.

The decision to use a relational persistence back-end is partly motivated

in Sect. 5.2.2, but the most important reason is that an expected “popu-

lation” of the repository (also for the prototype) is going to be in the mil-

lions, and that alternative representations that would maybe favour more

the process of entity matching, such as Bayesian Networks (see Sect. 3.2)

or logical models (e.g. OWL/RDF) were not reported to be functional –

in terms of storage and especially query capabilities – for such an amount

of data when the architecture was designed3.

1The acronym “NG” that appears in several of the component names reflects the fact that the imple-

mentation described here is the “Next Generation” of our first prototype.
2The freely available database IBM DB2 Express-C, V9.1.
3At the time of this writing, the situation has slightly changed with regards to RDF stores, which

report to be able to store billions of triples (see e.g. http://esw.w3.org/topic/LargeTripleStores).

However, these reports do not describe the behaviour of the systems with regard to non-trivial queries

51

52 CHAPTER 5. OKKAM – AN ENTITY NAME SERVICE

To give an idea of the size of the prototype implemenation in its current

state, Table 5.1 reports about several measures of the source code of its

main components: it consists of roughly 90 classes, 400 functions and 3500

non-comment source statements (NCSS)4.

Component Classes Functions NCSS Javadocs

OkkamWebServices 3 6 58 9

Java Client Library 23 122 875 35

OkkamCoreNG 65 265 2627 230

Total 91 393 3560 274

Table 5.1: Code size of Okkam’s main components

In the following we will describe the implementation in more detail, first

from an external view in terms of interfaces and data structures, and then

from an internal view, describing processes and algorithms.

5.2.1 A Black-box View on Okkam

The functionality of Okkam is most easily explained by describing the

possibilities of interaction with its services. To this end, there are three

aspects that are of interest: (i) data structures that serve as input or out-

put, (ii) API interfaces, and (iii) the client library that has been developed

to provide a low-boundary access to the features of Okkam.

Data Structures

The AnnotatedQuery Data Structure For posing a query to the Okkam

ENS on a programmatic level, we have developed a suitable data struc-

ture, as depicted in Figures 5.3 and 5.4. The structure holds the query

(e.g. substring search in datatype properties) or even inferencing, which makes it very hard to judge

their usefulness.
4Not counted are several hundred lines of XML Schema and SQL data definition.

52

5.2. PROTOTYPE IMPLEMENTATION 53

itself, as well as additional information that may be used by the matching

component of Okkam to retrieve candidate entities.

Figure 5.3: The AnnotatedQuery Schema (Part 1)

The query itself is represented in two ways:

1. in the form of a query string (element okkam:QueryString in Fig. 5.4)

as provided by applications such as Okkam Web Search (see Sect. 6.3).

This representation is important because it may allow a matching com-

ponent to perform further analysis of the complete query that cannot

53

54 CHAPTER 5. OKKAM – AN ENTITY NAME SERVICE

Figure 5.4: The AnnotatedQuery Schema (Part 2)

54

5.2. PROTOTYPE IMPLEMENTATION 55

be foreseen at this point.

2. in the form of individual, annotated tokens (element okkam:QueryAnnotation

in Fig. 5.4), which facilitates the input by client applications that can

provide more structured input, such as the ones described in Sec-

tions 6.1 and 6.2.

The tokenized representation, apart from holding the name/value pair

that represents the query token, may contain a hint about the ontolog-

ical type of the token in the form of a URI that points to a class defi-

nition (okkam:typeHint), a hint about the relevance of this token with

respect to the complete query (okkam:relevanceHint), and a hint about

the namespace that the name in the name/value pair originates from

(okkam:namespaceHint).

The query may also hold several query expansions that a client can

propose to be used in the query evaluation (okkam:typeHint in Fig. 5.4).

They may consist of a name/value pair, as well as a type hint as described

above. These expansions can originate from background knowledge that a

client has, which are however not part of the original query (posed by a

user, for example).

Furthermore, the AnnotatedQuery data structure may contain query

metadata (okkam:QueryMetadata in Fig. 5.3): first, a desired limit for the

number returned candidates that is important especially for clients that

have limited display capabilities; second, a type hint as to which kind of

entity the agent is looking for (as described above).

Finally, it is possible to provide Okkam with a representation of the

user context under which the query was created (okkam:QueryContext in

Fig. 5.3). From our experiences in contextual knowledge representation [14,

82, 83, 84] we can report that a definition of “context” is a moving target

that in many cases leads to a philosophical discussion, which makes it next

55

56 CHAPTER 5. OKKAM – AN ENTITY NAME SERVICE

to impossible to find a generic representation that suits every notion of

context. For the current problem we have tried to pursue a pragmatic

approach, and provide a manageable representation of the parameters that

we think might influence the production of a query result that is suitable

under a certain situation. Our representation of context may thus include:

(i) a specification of the human language of the user environment; (ii) the

location at which the query was posed, represented as a string5; (iii) the

device that is being used in the user context, represented as a string6; (iv)

an identifier for the software client that is being used, e.g. to recognize

which client application or library has created the query.

It is clear that many of these additional query components are not avail-

able or known under every circumstance. But to guarantee a sufficient in-

terface stability, we decided to try to foresee most of the relevant metadata

that might lead to higher-quality query processing on the server side. A

minimal example of an AnnotatedQuery may for this reason simply consist

of a query string and its tokens, and name/value pairs with empty names,

and in Listing 5.1:

Listing 5.1: Example AnnotatedQuery XML Representation

1 <?xml version="1.0" encoding ="UTF -8"?>

2 <okkam:AnnotatedQuery

3 xmlns:okkam="http://www.okkam.org/schemas/AnnotatedQuery"

4 xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance "

5 xsi:schemaLocation="http://www.okkam.org/schemas/AnnotatedQuery

http://www.okkam.org/schemas/AnnotatedQuery.xsd

AnnotatedQuery.xsd">

6 <okkam:QueryString>John Doe</okkam:QueryString>

7 <okkam:QueryAnnotation>

8 <okkam:Token>

9 <okkam:value>John</okkam:value>

5This representation has obvious shortcomings and is not sufficient for direct use in a geographical

information system. However, it can hold the Okkam identifier for a location, which we hope can alleviate

this problem.
6With similar shortcomings and proposed solution as before.

56

5.2. PROTOTYPE IMPLEMENTATION 57

10 </okkam:Token>

11 <okkam:Token>

12 <okkam:value>Doe</okkam:value>

13 </okkam:Token>

14 </okkam:QueryAnnotation>

15 </okkam:AnnotatedQuery>

The OkkamURIResult Data Structure After submitting an Annotated-

Query to the Okkam ENS, the service returns an instance of the Okka-

mURIResult data structure, the schema of which is illustrated in Fig. 5.5.

The data consist of four components (the element names given below

correspond to Fig. 5.5):

Result: A list of top-k URIs, ranked in descending order, that were found

in Okkam as candidate matches for the query.

Confidences: A list of confidences, that describe how good the match is in

comparison with the input query (see Sect. 5.3 for details). This list

is sorted in one-to-one correspondence to the list of candidate URIs.

Code: An integer code that describes the contents of the result structure

(whether an actual result is contained or an error occured.

Message: A text string for display to the user that describes the content

of the structure, relative to the above code.

The EntityProfile Data Structure The schema for the description of a single

entity (see Sect. 4.1.3) is depicted in Fig. 5.6.

It is both used for retrieving the description of an existing entity from

Okkam, as well as providing the description of a new entity to Okkam.

The EntityProfile consists of seven main elements (see Fig. 5.6):

Labels: A list of name/value pairs of type String.

57

58 CHAPTER 5. OKKAM – AN ENTITY NAME SERVICE

Figure 5.5: Schema of return value for search queries.

58

5.2. PROTOTYPE IMPLEMENTATION 59

Figure 5.6: Schema of EntityProfile

59

60 CHAPTER 5. OKKAM – AN ENTITY NAME SERVICE

References: A list of references to external sources. The reference itself

is of type String, the field type describes the type of reference, e.g.

an HTML document, an ontology, an XML document, etc.

AssertionsOfIdentity: A list of Okkam URIs that this entity is known

to be identical with.

AlternativeIdentifiers: A list of strings that identify the same entity

in other systems.

OkkamURI: The Okkam URI of the entity.

PreferredIdentifier: The preferred identifier of the entity (either its

Okkam URI or one of the alternative identifiers.

WordnetIdentifier: The Wordnet Synset ID that describes best the high-

level type of the entity.

For the reason that not all of this information is available under any cir-

cumstance, some of the elements of the EntityProfile are optional. The

minimum information required to publish a new entity is a populated

Labels element (i.e. a list of name/value pairs that are sufficient to dis-

tinguish this entity from all other entities in Okkam).

Okkam’s Public Interfaces

As depicted in Fig.5.7, Okkam exposes three Web Services:

EntityProfilePublicationService. This service is the implementation of

the use-case of Entity Publication, as described in Sect. 4.2.2. It

accepts as input an EntityProfile, and returns as result the newly-

created Okkam URI if publication succeeded, null otherwise.

60

5.2. PROTOTYPE IMPLEMENTATION 61

SearchNG. This service implements most of the use case of Entity Search

(Sect. 4.2.1). It accepts an AnnotatedQuery as input, and returns an

OkkamURIResult as output. As described above, the OkkamURIResult

does not contain the entity profiles of the resulting entities, but only

their URIs. This decision was made for performance reasons, as imple-

mentational experiments have shown that transmitting a full dataset

can – due to its size – be unneccessarily slow. Instead, we added the

following service to complete the use case:

ProfileRetriever. This service accepts as input an Okkam URI and re-

turns the respective EntityProfile, or null if the URI is not known

to the system.

Figure 5.7: The Web Services exposed by Okkam

The combination of a call to SearchNG and subsequent calls to ProfileRetriever

enables client applications to provide a smoother user interaction, because

first results can be shown quite soon after the query was executed, instead

of having the user wait for all data to be transferred.

The Java Client Library

As integral part of the OkkamDEV developers’ toolkit that we described

in Sect. 5.1, a client library for the Java programming language has been

developed and deployed. In order to provide low-boundary access to the

Web services. Figure 5.8 presents the main classes and methods necessary

to make use of the services described in Sect. 5.2.1.

61

62 CHAPTER 5. OKKAM – AN ENTITY NAME SERVICE

Figure 5.8: Main classes of the Okkam Java client library

The library hides the implementational details of web-service access and

comunication, and consists of the following classes:

SearchNGClient: wrapper for the entity search web service.

ProfileRetrieverClient: easy access to an EntityProfile for a given Okkam

URI.

EntityProfilePublicationClient: creates a new entity in Okkam with

the given EntityProfile.

By use of these Java methods the remote procedure calls and data

transfers are executed transparently to the developer. Additionally, the

three input and output data structures AnnotatedQuery, EntityProfile and

OkkamURIResult do not have to be supplied as XML documents, but are

themselves conveniently mapped into normal Java classes by means of the

Java Architecture for XML Binding (JAXB)7. This mapping allows the

developer to create standard instances of Java classes (so-called POJOs –

“Plain Old Java Objects”), and eliminates the necessity of interacting with

XML APIs such as DOM, or even creating XML documents in string form,

both of which are tedious and error-prone procedures.
7https://jaxb.dev.java.net/

62

5.2. PROTOTYPE IMPLEMENTATION 63

5.2.2 The Internals of Okkam

OkkamCoreNG

OkkamCoreNG is the component that provides the business logic of the

ENS prototype. The whole component consists of 65 classes the description

of which is beyond the scope of this document8. We will thus concentrate

on the most important aspects of the architecture, and describe its main

functionality – entity matching – in Sect. 5.3.

Figure 5.9: Deployment diagram of OkkamCoreNG’s main components

Figure 5.9 illustrates the main components of the architecture. The

Okkam core functionality is implemented as a Java Enterprise Application

which is deployed in the JBoss9 application server.

8The API documentation of all classes is available online: http://okkam.dit.unitn.it/

okkam-apidocs/
9http://www.jboss.org

63

64 CHAPTER 5. OKKAM – AN ENTITY NAME SERVICE

Central to the implementation there is a plugin architecture, named

IOkkamDAO, which combines the Data Access Object and Factory patterns

[87, 37] for access to storage backends which in theory allows for the ex-

change of relational databases or the use of other types of backends such as

XML databases or RDF triple stores without a recompilation of the source

code.

For the current prototype we have implemented the plugin OkkamJDBCImpl

which realizes access to the underlying relational database that is de-

scribed in Sect. 5.2.2. For performance reasons, the implementation uses

a database connection pool which is managed by JBoss, because open-

ing database connections is a time-consuming process which can often be

avoided in this way; the database pool is provided by JBoss and accessed

via lookup in a JNDI10 directory.

As the internal counterparts of the exposed web services, we have the

following three Business Delegate Objects [86]:

EntityProfilePublication: As the publication process for entities is rela-

tively simple, the business logic is directly delegated to OkkamJDBCImpl.

ProfileRetriever: ditto.

EntitySearchNG: This class is delegating to the MatchingPipelineController

which implements the process of entity matching and ranking. This

functionality is described in depth in Sect. 5.3.

For data exchange between a client and the core, the Java mappings of

the data structures described in Sect. 5.2.1 are implemented as so-called

Transfer Objects [88]. As we will see later, especially the AnnotatedQuery

10“The Java Naming and Directory Interface (JNDI) is part of the Java platform, providing applications

based on Java technology with a unified interface to multiple naming and directory services.” (cf. http:

//java.sun.com/products/jndi/).

64

5.2. PROTOTYPE IMPLEMENTATION 65

transfer object plays an important role, as it is potentially enriched/ex-

tended by the matching component and then passed through OkkamJDBCImpl

to the SQLQueryTranslator (see Fig. 5.9) which creates an SQL query from

its contents, suitable to the relational back-end.

Database

For the first prototype of Okkam (the pre-decessor of the one described

in this work), we implemented two different data persistence modules: one

based on a native XML database, and another one built on top of a rela-

tional database.

The first rapid prototyping was performed with an XML Database

based backend because it allowed us to have a version running in a very

short time. The backend is based on the Open Source database eXist11.

Although the flexibility of the XML native database together with the

XQuery [94] expressiveness enabled us to complete the backend relatively

quickly, we experienced scalability issues. It turned out that the num-

ber of entities that can be managed by this backend ranges in the tens of

thousands, which is far below our desired goal, for the reason of which we

decided to abandon this approach in favor of a proven, industry-strength

relational database based backend.

As evident from Fig. 5.10, the mapping from the logical representation of

an EntityProfile to a physical table space is performed by providing a mas-

ter table Entity and several dependent tables for the profile components as

described in Sect. 5.2.1. The split is straight-forward and self-explanatory.

Two additional tables are present which are not directly explained in

the EntityProfile data structure: (i) ReferenceType contains records that

describe what kind of reference to an external data source a Reference

has, e.g. an ontology reference, and HTML document, etc. and (ii) the

11http://exist.sourceforge.net/

65

66 CHAPTER 5. OKKAM – AN ENTITY NAME SERVICE

Figure 5.10: Entity-relationship Model of the OKKAM database

66

5.3. ENTITY MATCHING AND RANKING IN OKKAM 67

table UserQuery, which provides a way to keep track of which queries were

submitted to Okkam, which status they returned and how long the pro-

cessing took, in order to facilitate potential machine learning mechanisms

in the core.

5.3 Entity Matching and Ranking in Okkam

5.3.1 The Matching Problem

As we have described in Sect. 3.2, there is a substantial amount of related

work that deals with the problem of detecting whether two records are the

same or describe the same object.

The problem that we are dealing with in Okkam is in our opinion

very similar to these, because in relation with what we have defined in

Sect. 4.1.4, we see the process of searching for an entity as a matching

problem of an entity description ∆ against the set EP of all entity pro-

files12.

The matching problem in Okkam is however substantially different

from the following points of view:

1. The description ∆ of the entity that is searched for can be gener-

ated by client applications that are of very different nature, i.e. they

can have limited capabilities and e.g. only provide a simple query

string, while others have additional background knowledge available

or can provide (semi-) structured descriptions. It is thus not foresee-

able which name/value pairs a ∆ contains.

2. Similiar to the first point, the set of entity profiles EP is untyped,

semi-structured and may as well hold arbitrary values. The combina-

12Note that ∆ and EP are “compatible” for matching in the sense that every element E ∈ EP contains

a ∆ by definition.

67

68 CHAPTER 5. OKKAM – AN ENTITY NAME SERVICE

tion of (1) and (2) make a required solution very different from most

record-linkage approaches in that these rely on fixed (and/or identical)

schemas, because Okkam cannot provide any meaningful schema.

3. The objective is not deduplication (or Merge/Purge etc.) but rather

the production of a ranked list of candidate matches within a time

frame of a few seconds. For this reason, unoptimized approaches that

perform deduplication by iterating over EP in a serial fashion have

to be avoided.

The setting of our problem is thus very similiar to what Pantel et al.

describe about their Guspin system [70]: due to the high level of hetero-

geneity on the schema level (or in our case, the absence of such a level),

we will pursue a purely data-driven approach for entity matching.

When analyzed in more depth, the possibilities of implementing such a

matching component are manyfold. Figure 5.11 provides a mind map of

dimensions that can be serve as starting points for an implementation.

Figure 5.11: Dimensions of entity matching – a brainstorming

Unfortunately, these dimensions are neither always completely disjoint

(e.g. matching with background knowledge can in theory be both used to

68

5.3. ENTITY MATCHING AND RANKING IN OKKAM 69

produce fuzzy or exact results), nor is it always possible to define their

properties formally in a satisfying way (e.g. is it required for an “exact”

match that ∆ matches an E perfectly, or that ∆ ∈ E, or is an exact match

one that produces the desired entity as the hit with the highest ranking of

the result set?).

Furthermore, it is imaginable that different approaches – or even a com-

bination of approaches – produces best results for a certain type of query,

and that such approaches be combined in an adaptive way, during runtime.

We come to the conclusion that due to the multi-dimensional charac-

ter of possible matching approaches, it is most promising not to produce

something that relies solely on a single approach, but instead implement

an experimental matching architecture that allows for pluggable algorithms,

which facilitates experimentation and potentially also the creation of an

adaptive matching approach in the future.

5.3.2 An Experimental Matching Architecture

According to the “no free lunch” theory of Wolpert and McReady13, to

achieve high performance which is better than the one of a generic algo-

rithm, a suitable set of specialized algorithms is required, which is one of

the motivating factors for our implementation of the matching architecture

in Okkam. As however the implementation of (i) a whole set of matching

algorithms and (ii) an adaptive layer that selects/combines these algo-

rithms to reach an optimal outcome is beyond the scope of this work, we

decided instead to provide an infrastructure that is flexible and extensible,

and can be equipped with number of algorithms.

Figure 5.12 we give an overview of the main components of the complex

internal structure of the matching architecture. The depicted diagram is

a hybrid of an UML Activity Diagram (on the left) and an UML Class

13See http://www.no-free-lunch.org/ for a rich source of information.

69

70 CHAPTER 5. OKKAM – AN ENTITY NAME SERVICE

Figure 5.12: OkkamMATCH : Sequence and components

70

5.3. ENTITY MATCHING AND RANKING IN OKKAM 71

Diagram (on the right), and tries to illustrate the matching process as well

as the relevant classes that contain the business logic.

The matching process consists of eight steps:

1. Query Analysis: The AnnotatedQuery object that is received from

the external interface of OkkamCORE is analyzed and validated.

2. Facet Selection: In Okkam, an implementation of a matching di-

mension as discussed above is called “facet”. The plugin-architecture,

consisting of FacetRegistry, FacetFactory and one or more im-

plementations of IMatchingFacet (see Sect. 5.3.3 below) constitute

the heart of the experimental matching component, as they provide

the FacetSelector with information about which kinds of facets are

available to the system. The FacetSelector will then provide a list

of suitable facets that can be used in the next step.

3. Query Expansion: The approach for achieving better/more detailed

query results in Okkam is seen as a matter of query expansion (and

performed on the Query object). The input query is provided to the

matching facets, which can add additional conditions to the query –

depending on their implementation – which may help to compose a

more specific or relaxed query to pass to the storage backend. The

expansions are traced in the ExpansionLog, with a link to the facets

that produced them. In this way, it is later possible to either further

expand the query if the result set was too large, or to implode the

query if the result set was too small.

4. Redundancy Elimination: It is possible that different matching facets

produce the same query expansion. The class RedundancyEliminator

iterates over the query expansions and removes duplicates.

5. Query Translation: The plugin responsible for interfacing with the

71

72 CHAPTER 5. OKKAM – AN ENTITY NAME SERVICE

storage backend (a plugin of type IOkkamDAO as described in Sect. 5.2.2)

translates the (expanded) query into a language suitable to the storage

backend.

6. Result Count Estimation: An estimation is generated by ResultCountEstimator

about how many query results are to be expected. Depending on the

number of desired results that have either been supplied in the Anno-

tatedQuery or taken from configuration defaults, the estimate is either

too low, and a query implosion is initiated, or it is proceeded to the

next step.

7. Query Execution: The translated query is executed by the storage

backend and the result set is retrieved.

8. Ranking: The result set is analyized and ranked against the input

query. The ranking mechanism is again implemented as a plugin struc-

ture, so the ranking is performed by an implementation of IEntityRank

that can be selected during runtime. This step is further detailed in

Sect. 5.3.3.

The benefit of this approach is that it not only enables the develop-

ment of a prototype, but – more importantly – it provides an extensible

infrastructure for experimentation, and thus lays the base for future

research. The implementation is made in a way that allows other develop-

ers to provide (binary) plugins for (i) exchanging the storage backend, (ii)

performing query expansion and (iii) ranking search results, which are the

three main aspects of entity matching in Okkam.

5.3.3 An Exemplary Matching Algorithm

To illustrate the viability of the above-mentioned approach, we have im-

plemented an exemplary matching and ranking algorithm that integrates

72

5.3. ENTITY MATCHING AND RANKING IN OKKAM 73

with the matching architecture of Okkam. The objective was to provide

an approach that solves the matching problem described in Sect. 5.3.1 and

can serve as a baseline and benchmark for future developments of Okkam.

Matching and ranking in Okkam is a two-step process: first, a set of

candidate matches is retrieved from the storage backend, which, in the sec-

ond step, is ranked with respect to the input query. With this approach we

try to alleviate the problem that while storage backends such as relational

databases perform extremely well in its main purpose, the production of

ranked query results is not a “native” feature and thus hard to achieve.

Furthermore, it allows us to apply methods for ranking that such storage

backends simply do not provide.

Due to the differences between the matching problem in Okkam and

much of the related work, as discussed in Sect. 5.3.1, we decided to pur-

sue an approach that is both schema-independent (entities in Okkam are

not described with a fixed schema) and type-independent (entities are un-

typed). The solution we came up with is to see the EntityDescription ∆e

of an entity as a type of document which we can compare against the En-

tityDescription ∆i that was provided in the input query. By computing a

similarity between the two, and doing so for all candidate matches, we are

able to provide a ranked query result.

The resulting algorithm, called StringSimilarityRank, is the following

(with ∆e being denoted by de and ∆i by di):

d = concatenate(valuesOf(di))

forall candidates

c = concatenate(valuesOf(de))

s = computeSimilarity(d,c)

rankedResult.store(s)

rankedResult.sort()

73

74 CHAPTER 5. OKKAM – AN ENTITY NAME SERVICE

The function valuesOf() returns the value parts of the name/value

pairs that form part of ∆, while concatenate() creates a single string

from a set of strings; the combination of the two creates a “document”

that can be matched against another, which is performed by the function

computeSimilarity().

To compute the similarity between two descriptions, we have selected

the Monge-Elkan algorithm [64] as the result of extensive testing and eval-

uation of different algorithms, as described in detail in Sect. 8.2. The

matching results that can be achieved with this approach are satisfactory

as a baseline, and are reported in Sect 8.3. The runtime performance of

the implementation meets the requirements and is reported in Sect. 8.1.

It is important to note that this matching approach is completely generic

and “un-semantic”, in that it neither uses background knowledge nor any

kind of type-specific heuristics to perform the described matching.

5.4 Requirements Review

In this section we will provide a short review of the requirements established

in Sect.4.3, to analyize to which extent the current prototype is a suitable

implementation of an ENS.

74

5.4. REQUIREMENTS REVIEW 75

R-1 This requirement has been complied with (see Sect. 5.2.1).

R-2 This requirement has been complied with on the server side (see

Sect. 5.2.1) and through the two client applications described in

Sect. 6.

R-3 Modification of existing data and addition of data about an entity

has not been implemented yet.

R-4 Identity detection is not yet implemented, but the data model pro-

vides for the representation of identity (see Sect. 5.2.1 and 5.2.2).

R-5 An experimental web interface for search is available (see Sect. 6.3).

R-6 Web services for query and publication of data are available (see

Sect. 5.2.1).

R-7 A generic batch interface for the okkamization of data has not been

implemented yet. A prototype for the okkamization of RDF graphs

has been developed for the experiment described in Sect. 8.3.

R-8 The current prototype is not distributed.

R-9 No special means for high availability have yet been implemented.

R-10 Persistence has been implemented on top of an RDBMS.

R-11 No deletion of records about entities is currently permitted. Apart

from that, no special security measures have been implemented.

R-12 The average execution time currently lies in the range of 2 seconds

(see Sect. 8.1).

R-13 The system allows for multi-tasking and accepts parallel requests.

R-14 The system runs on a standard dual-processor server and uses a

maximum of 512 MB or RAM. The RDBMS runs on the same

machine and uses additional RAM, usually 512MB. No further

analysis have been performed regarding resource usage.

R-15 Experimental results are described in Section 8.2.

R-16 Experimental results are described in Section 8.2.

R-17 This issue has not been addressed yet.

R-18 This issue has not been addressed yet.

R-19 This issue has not been addressed yet.

R-20 The service is free-of-cost.

R-21 Usability has not been evaluated yet.

Table 5.2: Requirements review of the Okkam prototype

75

76 CHAPTER 5. OKKAM – AN ENTITY NAME SERVICE

76

Chapter 6

Okkam Applications

To illustrate the viability and the usefulness of the approach, we have

developed two exemplary applications that both have been strategically

selected from the area of content creation. The reason for this selection

was that the success of an approach such as Okkam depends entirely on

a certain saturation of suitable content (“critical mass”), and in effect on

the availability of tools for the creation of such content.

The first tool is called Okkam4P [17], which is in fact a plugin for the

widely-used ontology editor Protégé. This plugin enables the creator of

an ontology to issue individuals with identifiers from Okkam, instead of

assigning local identifiers that bear the risk of non-uniqueness on a global

scale. The choice for this tool was made based on two criteria, namely

the target audience being rather ‘expert’ users of the Semantic Web, and,

secondly, the very wide usage of the Protégé editor, which makes it a

promising candidate for a rapid distribution of the tool.

The second application is called foaf-O-matic [12], a WWW-based

service for the creation of okkamized FOAF profiles. Indeed, FOAF is in

our opinion one of the few success stories of the Semantic Web so far, as

it is one of the few applications that really contributed to the creation

of a non-toy amount of RDF data, with the special restriction that the

77

78 CHAPTER 6. OKKAM APPLICATIONS

agreement on URIs for persons is extremely low [46]. As content creation

tools for FOAF are mostly rather prototypical, we decided to create a

completely new application that both serves the user due to state-of-the

art technology and creates okkamized FOAF profiles.

As an additional, generic tool for the re-use of identifiers, we have devel-

oped Okkam Web Search, which helps finding entity identifiers under cir-

cumstances where no specialized applications as the ones mentioned above

are available.

The applications are described in more detail in the following.

6.1 Okkam4P

The application we are going to present makes use of the public Okkam

infrastructure, in the area of ontology editing. It aims at demonstrating

the advantages of such an approach as a way to converge on common URIs

for newly created semantic content. Indeed today, a common practice in

ontology editing is the creation of new local URIs for any newly created

instance. Here we present a Protégé plugin, named Okkam4P , which

supports the good practice of looking up for pre-existing global URIs when

editing a new RDF/OWL knowledge base. The plugin is an extension of

the “individual” tab of Protégé’s OWL module. The main difference is

that, when an instance is created, the user has a chance of looking for a

pre-existing URI for the corresponding individual in Okkam, and to assign

this URI to the instance. The plugin is available and tested for the latest

official release of Protégé, version 3.3.1, and the beta version 3.4.

6.1.1 User Perspective

In our vision of a functioning Okkam infrastructure there is the notion

of the so-called “Okkam-empowered tools”, which are standard end-user

78

6.1. OKKAM4P 79

applications (e.g. word processors, HTML/XML/OWL editors, web-based

authoring environments – like blogs, forums, multimedia publishing and

tagging applications, etc.) extended with functionalities which facilitate

the creation of okkamized content through the use of the OkkamPUBLIC

infrastructure. Protégé falls into this category. It is probably the most

widely used editor for the creation of RDF/OWL knowledge bases (KBs),

and provides vast extensibility through a plugin architecture, which makes

it highly suitable for empowering it with Okkam functionality.

The plugin presented in this paper essentially assigns a global unique

identifier called (the “Okkam ID”) to a newly created individual, rather

than relying on manual input of the user or the standard automatic mech-

anism of Protégé. To this end, it implements the use-case illustrated in

Fig. 4.4: based on the data about an individual that are already provided in

the KB developed by the user, it queries OkkamPUBLIC to see whether

an identifier already exists which can be assigned to the new created indi-

vidual, otherwise a new identifier would be created.

To use this plugin, the user selects an individual and right-clicks on it.

A context menu will pop up, in which the item “Get Okkam ID” is the

entry-point to the functions of the plugin, as illustrated in Fig. 6.1.

Figure 6.1: Assigning a global identifier to an individual

79

80 CHAPTER 6. OKKAM APPLICATIONS

Once clicking on this menu, the plugin starts to collect the proper-

ties of this individual as specified in the KB, and presents a new dialog

(see Fig. 6.2) displaying the information that is available for querying

OkkamPUBLIC in order to see whether an identifier for this entity al-

ready exists.

Figure 6.2: Selecting query parameters in Okkam4P

The properties that are gathered by the plugin to construct a query are

the following:

• Ontology Reference: it is the reference of the ontology which the cho-

sen individual belongs to. It is loaded automatically by this plugin,

and it is read-only for users. If the ontology is publicly available, it

can potentially be of use for the server-side matching mechanisms to

improve search results for the individual.

• Wordnet Synset and Wordnet Version: provides a hint about a top-

level class which the chosen individual belongs to. This has to be set

by the user.

• Preferred ID and Alternative ID1: if the user wishes to use another

80

6.1. OKKAM4P 81

identifier in other systems to identify the chosen individual, a user can

input this identifier here. These two items are optional.

• Individual Properties: the plugin loads each property of the chosen

individual automatically. The user can also deselect some properties

which are thought to be unnecessary to find the Okkam ID of the

individual at hand.

After submitting this form, the plugin launches a thread to query Okkam

for matching entities by calling its web service. After searching, a list of

entities that match the description for the new created individual will be

visualized to the user, as illustrated in Fig. 6.3

Figure 6.3: Query result of with matching entities that already have an identifier in

Okkam.

The user now has the option to select one list entry as “the same” as

the newly created individual and re-use the global identifier in the local

KB (therefore the ID of the newly created individual will be replaced by

the Okkam ID in the KB); otherwise the user can choose to create the

individual as a new entity in OkkamPUBLIC , in which case the informa-

tion selected in Fig. 6.2 will be inserted into Okkam repository, the new

Okkam ID will be retrieved and assigned to the local individual.

81

82 CHAPTER 6. OKKAM APPLICATIONS

6.1.2 Technical Perspective

The hierarchy of primary classes provided by and used in this plugin is

illustrated in Fig. 6.4 in the appendix. In the following we describe the

function of each class displayed in Fig. 6.4.

Figure 6.4: Main classes of Okkam4P

The class OkkamPlugIn is the most principal class. To extend the

“Individuals” tab in protege, it needs to inherit the class

edu.stanford.smi.protegex.owl.ui.actions.ResourceAction. This effects

that the menu item “Get Okkam ID...” will appear in context-menu when

the user right-clicks on a individual.

The class okkamPanel and TopPanel are used to compose the informa-

82

6.1. OKKAM4P 83

tion window (see Fig. 6.2); the class ResultPanel is used to show the query

result window(see Fig. 6.3). All of them inherit the class javax.swing.JPanel

to present a window to users.

In this plugin, we make use of web services to interact with Okkam.

The tasks of searching for matching entities and publishing a newly created

entity are fulfilled by calling the webservice “EntitySearch” and “Entity-

Publication” respectively. As complex queries may have a considerable

runtime, in the initial version of Okkam4P , users would see nothing but

a gray window until the result returned from the webservice. In the cur-

rent version, we moved the plugin to a multi-threaded architecture. Three

classes which inherit class ”java.lang.Thread” are new to this version.

The class InquireThread is used to call the webservice “EntitySearch”,

it is launched when the user submits the information to search for matching

entities. The class PublishThread is used to call the webservice “Entity-

Publication”, it is launched when the user decides to publish a new entity

to Okkam. The class DialogThread is used to show a dialog during the

process of searching or publishing, this dialog is meant as a user-friendly

interface to inform the users that the process is running.

6.1.3 Benefits

To achieve a substantial diffusion of okkamized content, a set of user-

friendly Okkam-empowered tools is necessary, because – as the rather slow

adoption of Semantic Web technologies has shown – the mass of content

creators (i.e. the users of the WWW) seem not to be extremely motivated

to follow developments beyond the coding of HTML documents.

With Okkam4P we are making the first and very important step to-

wards the creation of such a suite of tools. We address the community that

is “closest” to the issues addressed by the approach, and provide them with

the means of creating okkamized RDF/OWL KBs. The aim is to prove

83

84 CHAPTER 6. OKKAM APPLICATIONS

that – with the systematic a-priori use of global identifiers for entities –

the vision of RDF documents as a single, global, decentralized and mean-

ingful knowledge base can in fact become reality, without having to deal

with many of the difficulties of information integration, such as the ex-post

alignment of entities.

6.1.4 Future Work

Several improvements are scheduled in the near future. One is the general

“elevation” of the tool to a more production-quality standard, including

the usual aspects such as extended documentation, code improvements,

etc. Secondly, as the plugin is currently implemented as an extension to

the OWL part of Protégé, which has the negative effect that Knowledge

Bases developed in plain RDF(S) cannot benefit from its functionality –

a circumstance which we are currently investigating. Finally, additional

features such as offline and batch operation, as well as automatic retrieval

and assignment of Okkam identifiers to existing KBs, are already in the

design phase.

6.2 foaf-O-matic

6.2.1 FOAF and the Problem of Identity

The FOAF initiative1 provides the definition of a set of specifications and

tools based on the W3C’s RDF language [43] that allow agents (people,

organization, groups etc.) to describe themselves, their place of work, their

main interests, education institutes etc. Furthermore, the set of properties

associated to a FOAF agent are conceived to state some relationship involv-

ing other agents. The most important and used is the “foaf:knows” object

1The web page of the project is: http://www.foaf-project.org

84

6.2. FOAF-O-MATIC 85

property relating FOAF Person resources. In simple words, by means of

this object property it is possible to state who is friend of whom and share

this knowledge on the web in a machine readable way.

The vocabulary of FOAF is reasonably expressive, although still in evo-

lution, and allows to express different types of information describing a

person 2.

Analyzing the set of properties describing a FOAF person entity, it be-

comes clear that the best identifier currently available is the unique code

obtained by encoding a person’s email address in the property foaf:mbox sha1sum.

Indeed, an email address is uniquely identifying a mailbox of a person. Fur-

thermore, often people use the same email address for long periods of time

and this fact make the email address useful to identify persons along this

period.

Any FOAF file describing a person represents an RDF graph. Every

single graph is supposed to be merged with other graphs collapsing the

nodes identifying the same person. Namely, if in two graphs somewhere

the same unique code derived by the mail address is used, then both graphs

contain some kind of information about the same person, therefore the

graphs can be merged enlarging the network of “friendship”. By means

of this procedure it is possible to build a bigger graph containing all the

information stated by the respective social network.

Analyzing superficially this process, everything seems to be at the right

place, but going a little bit deeper some problems arise. The problems

are related mainly to the weakness of the use of the email address based

code as identifier. Indeed, an email address is not a good identifier for the

following reasons:

• people change email address (change work/study institution, choose

2For more detail about the FOAF vocabulary see http://xmlns.com/foaf/0.1/

85

86 CHAPTER 6. OKKAM APPLICATIONS

better provider, drop over-spammed3 email address, etc...)

• people use more than one email address depending on the context of

use (work, on-line gaming and shopping, ‘night activities’, family and

friends relationship, etc...);

• email addresses can act as proxies for more than one person.

The facts listed above raise the following problem: different actors could

use different email address to identify the same person (agents). Thus, a

complete merging of all the information regarding a person is no more even

possible.

The “state of the art” in applications that generate such FOAF profiles

to date has been a web-application called foaf-a-matic 4. Strikingly, the

RDF descriptions created by this tool issue no identifier at all for the

entity that represents the author of the description (i.e. “me”), nor for the

friends. Instead, an RDF blank node is used, which by no means produces

the expected result: instead of a simple set of triples of type

A foaf:knows B

it generates a structure that in Description Logics syntax can be de-

scribed as

∃ A (A ◦ X ∧ A foaf : knows (∃B(B ◦ Y)))

with the ◦X and ◦Y operator representing the properties that describe

A or B, respectively. This means that in the case of an RDF graph merge of

several of these descriptions, a trivial query such as “all the people who say

that they know me” first of all has to be posed as “all the people who say

that they know something which has my foaf:mbox sha1sum property”,

3over-spamed means that this address is a constant target of spam email
4http://www.okkam.org/projects/foaf-o-matic/

86

6.2. FOAF-O-MATIC 87

and the result would be a set of blank node identifiers, which by definition

have the properties of (i) being volatile, e.g. they potentially change every

time the same experiment is run, and (ii) being only valid identifiers within

the resulting merged graph.

These shortcomings have motivated us to develop the foaf-O-matic

application, to showcase how this identification and reference problem can

be tackled and resolved by means of adding globally unique identifiers that

are not dependent from the context of use.

6.2.2 User Perspective

As illustrated, what is missing in a FOAF Person description is a unique

and sole identifier.

The approach applied for tackling the analyzed problem is to provide

a tool allowing users to create/integrate FOAF person descriptions with

identifiers contained in, or generated by, Okkam. Thus, what is needed is a

new application extending the functionalities provided by the foaf-a-matic

application. In order to underline the historical relation with the former

application, this new web-based tool has been named foaf-O-matic (with

the ’O’ underlining the integration with Okkam.)

It is important to notice that the aim of creating the foaf-O-matic

application is not only to replace the slightly ‘obsolete’ foaf-a-matic appli-

cation and providing a pretty layout and new description fields. The focal

point of the new application is to allow users to integrate Okkam identifier

within their FOAF document in a user-friendly way. In this way, it will be

possible to merge more precisely a wider number of FOAF graphs describ-

ing a person’s social networks, enhancing the integration of information

and reach more easily the goal of the FOAF initiative.

A view of the new layout of the application is given in figure 6.5. As it

is possible to see from the figure, the main layout is split in two columns:

87

88 CHAPTER 6. OKKAM APPLICATIONS

Figure 6.5: foaf-O-matic The main interface of foaf-O-matic.

88

6.2. FOAF-O-MATIC 89

the left one for the foaf:PrimaryPerson description, and right one for the

friend management. On the top of this two columns facilities to upload

already defined FOAF files are presented. At the bottom, a “generate

FOAF” button is present that trigger the generation and visualization of

the FOAF file in a text area.

Without going too much into details, the foaf-O-matic is meant pro-

vide the following set of functionalities:

• Upload a FOAF file. This functionality is meant to allow the up-

grade of already defined FOAF descriptions and enhancing it with

Okkam identifiers. The file can be loaded providing either its Web

URL, loading the file from the file system as is possible to see in the

area marked with 1 in figure 6.5.

• Describe the foaf:PrimaryPerson aka ’yourself’. This function-

ality supersedes foaf-a-matic by providing of a wider choice of de-

scription fields some under testing FOAF properties. For a matter of

dimension, the input for has been split in three collapsible panels pre-

senting in the top part the standard description fields, in the middle

part some extra information fields (i.e. birthday), and in the bottom

part some chat-id related information fields (i.e. yahooChatId). A

view of this part of the application is presented in figure 6.5 in the

area marked with 2.

• Add and describe friends. This functionality is meant to allow

users to provide a description of the friends they want to add to

their social network. The information provided will be used to in-

quire Okkam and retrieve a list of candidate entities corresponding

to the described friends. If no entities will be found in Okkam a

newly created entity identifier will be provided. If none of the can-

didate entities match the user requirement in terms “recognition” a

89

90 CHAPTER 6. OKKAM APPLICATIONS

new identifier will be provided as well. “Okkamized” entities5 will be

marked in a special way. A view of this part of the application is

presented in figure 6.5 in the area marked with 3 and 4. Notice that

an Okkam identifier is now part of the description of the described

friend.

• Select one Okkam entity for each described person. This func-

tionality is meant to allow the user to choose which is the entity repre-

senting the described person among the one matching such description

within Okkam, if any. The chosen entity identifier is used in the def-

inition of the RDF FOAF file as value of rdf:about attribute of the

described person. The list of candidate Okkam entities is presented

in a pop-up panel. The user can select the correct entity by pressing

the “Select” button associated to the entity, or to state that none of

the retrieved entities correspond to the describe person by pressing

the button “None”.

• Retrieve the new FOAF description. The FOAF RDF descrip-

tion containing the informations provided by the used is presented in

a text area below the description areas. The FOAF RDF descrip-

tion containing the information provided and integrating an Okkam

identifier where chosen, is generated every time the “generate FOAF”

button is pressed. The content of the file reflect the present state of

the description provided by the user.

6.2.3 Technical Perspective

The framework used for the development of foaf-O-matic is ICEFaces6

open source project. ICEfaces is the most widely distributed enterprise

5entities which has been assigned an Okkam identifier
6http://www.icefaces.org/

90

6.2. FOAF-O-MATIC 91

Ajax7 framework on the market today, providing a rich library of Ajax

components. The main benefit of Ajax is that it gets rid of the usual

submit/reload mechanism of Web forms and enables the creation of very

user-friendly interfaces comparable to modern desktop windowing systems.

The primary goal behind the ICEfaces architecture is to provide a famil-

iar Java Enterprise development model, and completely isolate them from

the complexities of low-level Ajax development in JavaScript. The key to

the ICEfaces architecture is a server-centric application model, where all

application logic is developed in pure Java, and executes in a standard Java

Application Server runtime environment.

The ICEfaces Framework is an extention to the standard JSF8 frame-

work, with the key difference in ICEfaces relating to the rendering phase.

In standard JSF, the render phase produces new markup for the current

application state, and delivers that to the browser, where a full page re-

fresh occurs. With the ICEfaces framework, rendering occurs into a server-

side DOM and only incremental changes to the DOM are delivered to the

browser and reassembled with a lightweight Ajax Bridge.

6.2.4 Benefits and Future Work

foaf-O-matic is an extended service for the creation of FOAF profiles,

which relies on the Okkam infrastructure for issueing the “friends” with

globally unique identifiers, and thus solving a-priory some of the issues of

social network applications, illustrated for example in [69].

For the next steps we plan to extend foaf-O-matic in order to get

some experience with Okkam and its matching algorithms. The benefit

of the FOAF application is that there are many FOAF files distributed

over the Internet which provide a good training base for the matching

7Asynchronous JavaScript and XML - http://www.ajaxprojects.com/
8JavaServer Faces - http://java.sun.com/javaee/javaserverfaces/

91

92 CHAPTER 6. OKKAM APPLICATIONS

algorithm. With the FOAF application we want to tune Okkam’s and

foaf-O-matic’s algorithms. With that experience we explore further ap-

plication and improve Okkam over time and application domains. Also a

scalable architecture with a fuzzy entity identification are subject of inves-

tigation.

6.3 Okkam Web Search

Okkam Web Search is showcase for the generic search and re-use of en-

tity identifiers. It allows users of systems for which no dedicated Okkam

functionality exists, to search for entities and use the respective identifiers

in their information systems. This is especially applicable for cases where

only a small amount of entities is to be annotated that does not require

automated software support.

The search interface on the web consists of only one field into which

users can enter a set of strings to characterize the entity they are searching

for. Subsequently, the application presents a list of results retrieved from

Okkam through its standard web service API. It furthermore provides a

details page for every entity, which displays the EntityProfile, as depicted

in Fig. 6.6. The Okkam URI for an entity appears at the top of the page,

and can be copied and used in any application for annotating entities.

The search functionality is OpenSearch9 compatible. OpenSearch is an

initiative to describe search engines in a structured, uniform way so that

they become generically usable in search clients. This means that with the

help of the OpenSearch Description Document [24] that has been developed

for Okkam Web Search, it is possible for example to integrate it directly

into the search toolbars of web browsers, as illustrated in Fig. 6.7 in the

case of the popular Firefox browser.

9http://www.opensearch.org

92

6.3. OKKAM WEB SEARCH 93

Figure 6.6: Okkam Web Search displaying entity details

93

94 CHAPTER 6. OKKAM APPLICATIONS

Figure 6.7: Okkam Web Search as Firefox search plugin

Future plans for the application include providing entry points for edit-

ing entity data or publishing new entities through the web. Another impor-

tant goal is to make the search results available in RDF format, in order to

make Okkam’s EntityProfiles directly usable in Semantic Web browsers,

such as the Tabulator application10 promoted by Tim Berners-Lee and the

W3C.

10http://www.w3.org/2005/ajar/tab

94

Chapter 7

Application Scenarios

Entity-aware metadata open up opportunities for new entity-centric ap-

plications and eases the implementation of other applications and tasks

especially in the area of information integration. The core benefit of the

proposed entity-centric approach is that we introduce a way to know when

in two places one speaks about the same entity (because the same identifier

is used) easing the interlinking and integration of information accessible in

or through metadata.

In this section we consider applications in the area of digital libraries,

in the area of News and Media and in the area of the Semantic Web, which

can directly profit from our approach.

7.1 Digital Library Integration

The main purpose of digital libraries (DL) is to mediate between available

content and a targeted library user community. This is achieved by content

preselection, content structuring, content enrichment with metadata, and

by the provision of library services mainly for enabling content selection.

In addition, digital libraries also play a role in the preservation of digital

content.

Metadata and its management are a central issue in digital libraries as

95

96 CHAPTER 7. APPLICATION SCENARIOS

it has already been in traditional paper libraries. Metadata is a medium

for structuring and enriching the content managed in the library collection

and for easing content management, access and use.

Digital libraries have seen a substantial progress in the last years. Var-

ious digital libraries have been set up and are now operational see e.g. the

ACM digital library1 or the Alexandria Digital Library [50]. Furthermore,

there was a considerable development in the creation of Digital Library

Management Systems. These are generic systems that ease the setup of

new digital libraries, e.g. Fedora2, BRICKS3, and Greenstone [97].

Currently, in the digital library domain there is a clear trend towards:

1. the federation and reuse of existing resources (content, metadata, ser-

vices)4

2. the provision of additional value-added services beyond simple search

3. a growing involvement of the community in content creation and en-

richment processes triggered by the success of systems such as Wikipedia,

Flickr, etc.

Entity-aware metadata management can play an important role for in-

formation and metadata integration, as it is in the core of federation and

the reuse of existing resources (trend 1). Also, for the development of

value-added (entity-centric) services on top of the managed and integrated

metadata (trend 2).

1http://portal.acm.org/
2http://www.fedora-commons.org/
3http://www.brickscommunity.org/
4as an example for federation, the ACM digital library now also offers metadata for publications of

other publishers. See http://portal.acm.org/guide.cfm.

96

7.1. DIGITAL LIBRARY INTEGRATION 97

7.1.1 The Problem of Unidentified Entities

Using metadata for information reuse and integration requires some form

of coordination with respect to the formats and values used in creating

metadata records. In a controlled environment, this can be enforced by

design, but in more decentralized environments this is a major challenge.

For this reason, large investments have been made in creating shared meta-

data schemata - in order to control the situation on the schema level-, and

controlled vocabularies - in order to reduce the problem on the level of the

metadata attribute values-, together with rules and conventions for the

creation of metadata records.

For example, in the (digital) libraries area we can mention the con-

trolled vocabularies of the ACM classification schema5, and the Library

of Congress Subject Headings [21], and the shared metadata schemas of

MARC6, METS7, and Dublin Core [95]. For the situations, in which no

common schema and/or vocabulary is adopted, methods and techniques

have been developed for matching and aligning metadata and vocabularies

in an automatic or semi-automatic way [76].

The standardization efforts listed above, including the techniques for

aligning different vocabularies, have strongly reduced metadata hetero-

geneity on the schema level. However, integration on the instance level

remains a major challenge, to a substantial part due to the heterogeneity

of describing the same entity between different metadata collections.

To stay in the area of (digital) library management systems, the usual

process for describing artifacts is to fill data into a certain schema. Even in

more advanced systems this make heavy use techniques from Information

Retrieval and search for access to their content, e.g. the one described

5http://www.acm.org/class/1998/
6http://www.loc.gov/marc/
7http://www.loc.gov/standards/mets/mets-home.html

97

98 CHAPTER 7. APPLICATION SCENARIOS

in [36], a certain basic schema is used as the minimal description of an ar-

tifact. During this annotation process, names for entities such as persons,

institutions, or events, are commonly inserted into the chosen schema as

textual strings, either by hand, or by some underlying information extrac-

tion process.

Let us for example refer to the definition of dc:creator in DublinCore.

The comment to the element set goes as follows: “Examples of a Creator

include a person, an organization, or a service. Typically, the name of a

Creator should be used to indicate the entity” (cf. [30]). As we already

pointed out, in general using names for referring to an entity is not very

satisfactory, because of the danger of ambiguities, the lack of precision, the

use of variants and the failure to support integration.

One aspect that illustrates the difficulty of identifying entities by match-

ing their actual string values are the possible causes of variations. Different

naming may arise from issues such as mis-spelling, the use of abbreviations

or the actual change of the name over time. More complex causes are vari-

ations between the different contexts (e.g. the identifier of a person in an

email is given by the email address whereas in a publication is given by

the author’s name) or variations between different workspaces.

Our point can be underlined by considering DBLP author search8: on

a quest for an article of which we know that it was written by an author

named “Lee” we encounter more than 5800 author entries; if we happened

to know more details, searching for “Yong Lee” still delivers 65 results,

and the decision whether the paper we are looking for was written by “Jae

Yong Lee”, “Jae-Yong Lee” or “Jaeyong Lee”, and the decision whether

these strings all describe the same person or not is left to the user (which

still might be unlucky if the paper in question is registered as written by

“J. Y. Lee”).

8http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/index.html

98

7.1. DIGITAL LIBRARY INTEGRATION 99

Some systems try to solve this problem by providing (local) lists of

already-registered names for certain fields, with relatively small effect: first

of all, the above problem is not solved, and secondly, the effect of such a

“standardization” is of local character: if information from different sys-

tems would have to be integrated, one would again run into disambiguation,

deduplication and entity reconciliation problems, which are generally hard

and very costly to solve (see Section 8.4).

7.1.2 Metadata Integration

The wide adoption of XML as exchange and representation format has

solved some of the syntactic and low-level processing problems in meta-

data integration e.g. in parsing, and the work in the definition of meta-

data standards, the creation of metadata crosswalks [27] and metadata

mappings contribute to easing problems of schema level integration. This

still leaves open the issue of entity level (or record level [101]) integration

as introduced in section 1.2.

The transition to entity-aware metadata management using global IDs

for entities does not only ease the entity-level integration of metadata.

It also leads to a deeper integration, potentially improving the quality of

the integration result considerably. The fact that references to the same

entity can be recognized without any processing effort (use of the same ID)

contributes to making this process cheaper. An analytical evaluation on

the potential speed up of entity-level metadata integration can be found

in Section 8.4.

Furthermore, consistency checking would be improved, since it would

be easier to recognize whether conflicting attributes actually belong to the

same entity. However, conflict resolution and, if required, data conversion

on attribute values are still required on top of the ID-based metadata record

alignment.

99

100 CHAPTER 7. APPLICATION SCENARIOS

The referencing of entities in metadata records via strings representing

entity attribute values leads to multiple representations of the same at-

tribute(s) of an entity, if this entity is referenced more than once. This

does not only results in redundancy. Also, it may lead to inconsistencies,

if different variants are used for the attribute value as it has been illus-

trated in Section 7.1.1 for the example of author names. This is already

true within a single metadata collection, but the problem gets worse when

different metadata collections, which have been developed independently

of each other, are integrated. The redundancy and the resulting inconsis-

tencies can be avoided by using entity-aware metadata management, where

every entity (and its attributes) is only represented once in each metadata

collection.

Furthermore, a deeper integration is achieved, because individual meta-

data records are explicitly interlinked with each other via jointly referenced

entities, e.g. the same author. This also holds true within an individual

metadata collection. With traditional string-based metadata management

this interlinking stays implicit, although it is an important information

about the underlying information resources. This deeper integration pro-

vides an important basis for the creation of value added services on top of

the metadata as discussed below.

7.1.3 Additional library services

The use of global entity IDs does not only stronger interlink the metadata

records with each other. It also enables the integration of the metadata

records with other (richer) sources about the considered entity, e.g. RDF

knowledge bases, which can again be interlinked via the global IDs. The

usefulness of such richer knowledge layers on top of or in place of the

metadata management has already been recognized by DL management

systems. The systems BRICKS and FEDORA, for example, provide an

100

7.2. NEWS AND MEDIA INTEGRATION 101

RDF-based knowledge layer for the management of their metadata.

Such a knowledge layer can be used to provide additional services to li-

brary users that enable them to gain a better understanding of the domain

covered by the respective library. This includes services for analyzing the

mutual influence of publications and other information artifacts, services

for making the development of trends and ideas visible, for analyzing the

influence of individuals and groups in the respective community etc. Some

DL systems such Daffodil [53] already started providing such services, e.g.

computing and displaying bibliographic citation networks. As one of its

R&D highlights, the VIKEF9 European project has implemented a tech-

nique called “semantic infusion” [92], which is used to enhance content

objects by adding further semantic information, tailored to the user task,

and strictly bases on RDF metadata.

Without global IDs, the integration of data from different systems to

provide such additional services is however an expensive and error-prone

process and the services highly depend on the quality of this integration

process. Through the introduction of global IDs, very accurate services -

even doing on-demand integration at run time - could be provided across

system boundaries, enabling also the seamless high precision integration of

different types of resources.

7.2 News and Media Integration

The news and media industry is an ideal scenario for entity-based applica-

tions, and indeed it has always been a primary source of content for data

mining and named entity recognition tests. Every day, a large amount of

content (e.g., newswires, reports, articles, videos, podcasts) is produced

which contains a huge number of references to entities such as people, lo-

9http://www.vikef.net

101

102 CHAPTER 7. APPLICATION SCENARIOS

cations, organizations, and events. Being able to extract this information,

making it explicit, classifying and integrating it with information stored

in different sources is therefore a very promising domain, and is relevant

for critical applications in the area of business intelligence, trend analysis,

competitive analysis, homeland security, among others.

To enable and support these applications, the typical metadata about

newswires (e.g. date, author, topic, format, etc.) may not be enough.

Information about entities, their type, and the relations between them are

at least as necessary. However, most content is not structured, and thus the

integration requires a fair amount of preprocessing for recognizing named

entities, computing co-references, establishing their types, discovering what

the relation is between them in complex contexts (something like “High-

level talks are currently under way between Alitalia and Air France-KLM in

regards to a possible acquisition of the Italian airline by the French-Dutch

carrier, inside sources said”10).

To improve this situation, substantial effort has been devoted to the cre-

ation of standard metadata schemas for news, like for example NewsML [65]

and NITF [67]. Interestingly, these schemas typically allow making refer-

ence to a controlled vocabulary, which lists the names which are accepted

as values for some elements or attributes (see e.g. the notion of FormalName

in NewsML). This is an example of how this mechanism is used in NewsML:

<Property FormalName="Location">

<Property FormalName="Country" Value="IRQ"/>

<Property FormalName="City" Value="BAGDA"/>

</Property>

where Location, Country and City are formal names, and IRQ and BAGDA

are allowed values for Country and City.

10See http://www.ansa.it, 12th September 2007

102

7.2. NEWS AND MEDIA INTEGRATION 103

This is of course an evidence of the strong need of creating IDs which are

not affected by the potential ambiguities of simple free strings. However,

solutions like the one we described above are not fully satisfactory for

several reasons. First of all, they only cover a limited number of categories

and entities, typically well-known people, locations, organizations; very

little can be done to extend the vocabulary with names and categories

which do not have a global relevance or suddenly gain relevance due to

unexpected events. Secondly, this method tends to mix the information

that an entity is named in a text with some knowledge about the entity

itself, as it pre-categorizes things (for example, the fact that Bagdad is a

city, and that a city is a location), but this can be a strong limitation for

objects which are not so easily categorizable (for example, how should we

categorize an event like “September 11th”?). Third, the schema is used to

provide some kind of “header” in the newswire, but the respective content

itself is not directly annotated. As a final observation, we notice that the

metadata record and the controlled vocabulary are language dependent.

Efforts have been made to design more sophisticated schemas using RDF

and OWL ontologies, such as in the NEWS project [81]. However, even

this type of approach suffers from the usual problems as far as entities are

concerned. Indeed, the conceptual schema is well referenced through the

use of URIs, but entities are assigned local URIs which cannot be used to

perform an automatic integration with corpora based on the same ontology

but developed at a different location or within a different application.

Entity-aware metadata management would support the development

of interesting applications in this domain. Some examples are: creation

of authoring environments which can use a news archive as background

knowledge for the creation of new content (e.g. by providing inline links to

past articles in which an entity was already referred to, or a profile of the

entity based on pre-existing content); new metaphors for navigating across

103

104 CHAPTER 7. APPLICATION SCENARIOS

a news archive (including multimedia content), where links would follow re-

lation between entities and not between documents; more efficient systems

for information extraction, which do not focus on named entity recognition

but on the extraction of relations across global entities identified through

global IDs.

7.3 Entity-centric Search

An Entity-centric Search Engine would provide new and alternative ways to

explore information and knowledge spaces, allowing people (and machines)

to move from a keyword-based, document-oriented search paradigm to a

knowledge-oriented paradigm by taking advantage of the Web of Entities.

Information about an entity, e.g. the city of Rome (identified by a global

identifiers) can be combined together in a search result summary which

includes, for example, a list of statements about it (e.g. that Rome is an

Italian city, that it is the Italian capital, that has 3.5 million inhabitants,

...), and a list of pointers to available resources (including RDF and OWL

knowledge bases, web pages, documents, databases, films, photos, text, au-

dio, etc.) in which this entity is mentioned. In this way an Entity-centric

Search Engine would provide a fast and reliable integration of results in-

cluding unstructured data, by exploiting the Web of Entities.

Novel functionalities not possible with current web search engines, in-

creased precision and recall and the possibility to automate search tasks

would be available since entities would be unequivocally represented, the

disambiguation needs would almost disappear and different representations

of the same entity would be integrated without efforts in the results of a

query. Moreover, relations between entities could be taken into account in

order to provide higher value results to complex queries by integrating and

relating data coming from very different sources and making this relations

104

7.3. ENTITY-CENTRIC SEARCH 105

explicit.

105

106 CHAPTER 7. APPLICATION SCENARIOS

106

Chapter 8

Analyses, Experiments and Results

8.1 Performance Improvement

Our first prototype had a runtime behaviour that ranged in the area of 20

seconds per search request, and up to several minutes if the query string

exceeded three keywords. It is obvious that for any sensible use of such an

infrastructure for online processing, these values are unacceptable.

An analysis of the situation revealed two main issues. First, the imple-

mentation for connecting to the underlying database was (i) not optimized,

i.e. one search request would cause a whole number of connections to be

opened and closed during runtime, and (ii) it used unpooled JDBC1 con-

nections which are time-consuming to establish (e.g. because the database

backend needs to perform authentication). We resolved these issues by

optimizing the code that accesses the database and by using a pooled

connection infrastructure as described in Sect. 5.2.2, which provides per-

manently open connections and thus helps to overcome these performance

issues to a great extent.

The issue of long execution times for queries with more keywords could

be traced back to the SQL queries generated by our relational database

plugin OkkamJDBCImpl. It turned out that we had been using an overly

1Java Database Connectivity, a standard extension of Java.

107

108 CHAPTER 8. ANALYSES, EXPERIMENTS AND RESULTS

complicated way to realize queries over the contents of table Label (see

Fig. 5.10 on page 66), thus creating a large number of self-joins which

slowed down query execution beyond the acceptable limit. Figure 8.1 dis-

plays the query plan generated by the DB2 query explanation tool for an

example AnnotatedQuery.

Figure 8.1: Query plan of search query before optimization

After analyzing the queries that were created, we re-implemented the

algorithm to move from a model of self-joins to a nested SELECT approach.

The query plan for the same AnnotatedQuery with the new approach is

depicted in Fig. 8.2 and shows a significantly less complex structure (note

especially the drastically decreased amount of table scans).

With this simplification of the generated query, we were able to move –

in the example – from a cost of 473.403 timeron units2 to a cost of 6.010

2“A unit of measurement used to give a rough relative estimate of the resources required, or the cost,

108

8.1. PERFORMANCE IMPROVEMENT 109

Figure 8.2: Query plan of search query after optimization

timeron units, which means that the query was processed 78 times faster

than before.

The outcome of the combination of the two optimizations was measured

in the course of the ontology integration experiment described in Sect. 8.3.

The execution of 875 different search queries produced an average execution

time of 721msec per query. This value includes the complete execution

chain of the Okkam architecture described in Sect. 5 and satisfies our

performance requirements for the prototype to the fullest.3

for the database server to execute two plans for the same query. The resources calculated in the estimate

include weighted processor and I/O costs.” (cf. [48]).
3It should be mentioned however that the experiments were run on the same machine that also hosts

Okkam, which drastically speeds up the data transfer that is performed by the web services. In a setting

where these web services are actually used over the internet, we experience a typical execution time

including the data transfers of around 2 seconds.

109

110 CHAPTER 8. ANALYSES, EXPERIMENTS AND RESULTS

8.2 Evaluation of Similarity Metrics

The current implementation of the entity matching functionality, moti-

vated and described in Sect. 5.3, relies on a probabilistic approach that

computes the similarity between an entity profile and a query posed by

a client agent. To select a suitable algorithm that can provide such a

measure, we have evaluated the 21 similarity metrics described in [23] 4.

First, we created three AnnotatedQuery representations (see Sect. 5.2.1)

of the following queries5:

q1: “Paolo Bouquet Trento” . This query is supposed to simulate a

typical search for an entity of type person with a european name and

a location specification.

q2: “trento Italy” . This query is supposed to simulate a typical search

for an entity of type location.

q3: “xin liu jlu trento” . This query is supposed to simulate a typical

search for an an entity of type person with an asian name, which

is a more specific problem as it consists of tokens with only a few

characters, and some interference caused by the character sequence

“jlu” which is an acronym for a university name6.

Next, we established a “golden standard” for every query q1, q2, q3,

which consists of a ranked list of the top-5 entities sorted in descending

order of similarity, that a human evaluator would expect as the perfect

answer to the query, based on the dataset stored in Okkam at the time of
4These metrics have been implemented by Sam Chapman in the course of the AKT and Dot.Kom

projects, and are available at the following URL: http://www.dcs.shef.ac.uk/~sam/simmetrics.html.

They have the invaluable characteristic that they produce a normalized measure which makes them

directly comparable, as opposed to other implementations available. As the aim of this work is not the

creation of a new similarity measure, we decided to base our prototype on this publicly available library.
5All spelling variations have been introduced on purpose to perform a more realistic comparison.
6JiLin University, Changchun, China.

110

8.2. EVALUATION OF SIMILARITY METRICS 111

the experiment. Every entity is issued with a weight w which is supposed to

reflect the quality of the result with respect to the query and is calculated

as follows:

w = m ∗
1

n
(8.1)

with n being the number of tokens in the query, and m being the number

of tokens of the query which also occur in the EntityProfile of the entity.

Subsequently, we ran a test which evaluates all queries, using all simi-

larity measures:

foreach similarity_measure s:

use s in OKKAM

foreach query q:

resultset = execute(q)

compare(resultset, golden_standard)

The function execute() returns the top-10 matches in descending order

of similarity, based on a similarity measure s.

The function compare() evaluates how close the results are to the re-

spective golden standard. Let M be the set of matches, i.e. the entities

from the resultset which are contained in the golden standard, mk the k-th

element of M , and w as established in Eq. 8.1. Then we calculate closeness

c as follows:

c =
|M |
∑

k=1

w(mk) ∗ p(mk) (8.2)

with p being the weight of the position of the entity in the resultset

(defining p = 1
position in ranking

, e.g. the top item in the set has p = 1.0, the

last p = 0.1).

The result c in Eq. 8.2 reflects (i) the existance of a match returned

from Okkam and (ii) its distance from its optimal position, with respect

111

112 CHAPTER 8. ANALYSES, EXPERIMENTS AND RESULTS

to the golden standard. We computed c for each query and each similarity

measure, resulting in a matrix.

Figure 8.3: Performance of Similarity Measures for Entity Matching in Okkam.

We report the average closeness for every similarity measure, inferred

from this matrix, in Fig 8.3. It is evident that with respect to our example

queries q1-q3, the Monge-Elkan algorithm [64] delivers the best results.

As a by-product of this experiment, we also registered the runtimes of

the matching process for each similarity measure. Table 8.1 illustrates

the normalized7 runtime behaviour of the Monge-Elkan algorithm in com-

parison. It is evident that the algorithm has a runtime behaviour that

lies roughly ten percent above average, but is significantly lower than the

7The table does not report the absolute values for the reason that the experiment was performed in

a setting that required a time-consuming lookup procedure for a database connection to be performed

for every run, which is not the case in a “production” setting, and is thus not representative for the

performance of the overall system. The time for this procedure is however constant, which allows us to

report relative measures in this case, and to illustrate the general behaviour of the algorithm.

112

8.3. INSTANCE-LEVEL ONTOLOGY INTEGRATION 113

maximum runtime.

Maximum average runtime 1.000

Minimum average runtime 0.310

Average runtime (overall) 0.505

Monge-Elkan average runtime 0.617

Table 8.1: Normalized Runtime Behaviour of Monge-Elkan Algorithm

Consequently, for the combination of good results in the matching tests

and an unobtrusive runtime behaviour, we chose this algorithm for the

current implementation of the Okkam prototype and as the base for the

experiment described in Sect. 8.3.

8.3 Instance-level Ontology Integration

In this section we will describe with an experiment of instance-level ontol-

ogy integration that the proposed approach of aligning identifiers of dif-

ferent local data sources against a global repository of identifiers is viable

and achievable.

We integrate in an automated way the Semantic Web ontologies of the

conferences ISWC2006 and ISWC20078. While this is not a “typical” use-

case of Okkam, as it constitutes an ex-post alignment which we do not

propagate as best practice, we set up this experiment to test and improve

the performance of the current Okkam prototype. Furthermore, auto-

matic processes such as bulk entity import or on-the-fly entity annotation,

which are planned as future work, can base on the findings of this experi-

ment.

The aim is to perform unsupervised entity consolidation on entities of

8These ontologies were originally available via http://data.semanticweb.org. At the time of this

writing, the website has been continuously unavailable; for this reason we make the data available at the

following URL: http://okkam.dit.unitn.it/swonto/

113

114 CHAPTER 8. ANALYSES, EXPERIMENTS AND RESULTS

type foaf:Person, to evaluate several aspects of this process, and conse-

quently, to establish a threshold for entity identity on which processes

such as automatic alignment can rely. In the following, we evaluate three

steps:

1. Establishing a similarity threshold tfp, which can be considered a rea-

sonable value below which a best match found by Okkam should be

considered a false positive.

2. Establishing a golden standard to evaluate the results of the merging

process grounded on the threshold tfp.

3. Performing an unsupervised ontology merge and analyzing its results.

8.3.1 Establishing tfp

In Okkam, deciding whether an entity e matches a query q relies on a

similarity threshold tfp below which e should be considered a false positive,

i.e. a decision on the basis of a measure of similarity s (0 ≤ s ≥ 1) between

e and q, compared to tfp.

The goal of the first experiment is to fix tfp. To meet this goal, we run

the system on a sample of queries corresponding to a list of person entities

in the ISWC2006, ESWC2006 and ISWC2007 metadata sets. For each

query, the system returns an Okkam URI and a corresponding similarity s.

Subsequently we check by hand the performance of the system, comparing

the data attached to the source URI with the profile of the Okkam URI,

to verify the correspondence.

In this way we collect matching examples to test the performance of the

system on a suitable range of similarity values. First we group the data

in similarity classes (S = {s1, ..., sj}) and for each class we calculate the

114

8.3. INSTANCE-LEVEL ONTOLOGY INTEGRATION 115

Sj Expert assigns YES Expert assigns NO

System assigns YES TPj FPj

System assigns NO FNj TNj

Table 8.2: Contingency table for evaluation of golden standard

frequency 9 and the number of the correct responses10. Subsequently, we

evaluate how the the performance of the system changes, by varying the

threshold on the range of the similarity classes (t1 = s1, ...tj = sj) and for

each class we compute the contingency table (see table 8.2), including the

values for True Positive (TPj), True Negative (TNj), False Positive (FPj)

and False Negative (FNj).

Here, TPj (True Positives with respect to the threshold tj) is the number

of entities correctly identified by the system when the threshold is tj , TNj

is the number of entities that the system correctly did not identify for

threshold tj , FPj is the number of the entities that have been incorrectly

identified by the system when for threshold tj , and FNj is the number of

entities that the system incorrectly did not identify.

The first evaluation that we performed was comparing the trend of TP

with respect to FP . This analysis is motivated by the goal to find the

threshold that provides a minimum of FP but preserves a good level of

TP .

In general, if the number of FP is too high we risk on the one hand

that the results returned by the system would be polluted by irrelevant

information, on the other hand if the same threshold is used to perform the

entity-merging, two non-identical entities would be collapsed. The latter is

a very undesirable circumstance because it leads to “losing” entities in the

target ontology and asserting wrong information to the collapsed entity.

9number of entities returned by the system with the value of similarity corresponding to the class
10number of entities correctly retrieved by the system with the value of the similarity corresponding to

the class

115

116 CHAPTER 8. ANALYSES, EXPERIMENTS AND RESULTS

In order to determine an acceptable TP − FP trade-off we adopt a

distance measure between TP and FP (the absolute value of the difference

between TP and FP , |TP −FP |, or Manhattan distance) to establish the

value of similarity in respect to which this distance is maximized.

In figure 8.4(a) we plot TP and FP and the absolute value |TP −FP |.

The graph shows that FP decreases more rapidly compared to TP when

the similarity increases and the trend of difference |TP − FP | shows a

maximum correspondence level of similarity equal to 0.75. On this level,

the system presents TP = 0.47 and FP = 0.10.

Figure 8.4: Evaluation results of the ontology merge.

In order to confirm our result, we evaluated the performance of the

system, measuring its effectiveness by means of Precision (P), Recall (R)

and F-Measure (F)11.

11See http://en.wikipedia.org/wiki/F-measure for an overview of these performance measures

from the field of Information Retrieval.

Precision is the percentage of entities correctly matched by the system with respect to all entities

matched by the system:

P =
TP

(TP + FP)

Recall is the percentage of entities correctly matched by the system with respect to all entities matched

116

8.3. INSTANCE-LEVEL ONTOLOGY INTEGRATION 117

tfp = 0.75 TP TN FP FN P R FM

0.47 0.36 0.10 0.04 0.81 0.91 0.86

Table 8.3: Performance of entity matching for tfp = 0.75

For each similarity class, we calculate these evaluation measures to find

out which similarity value ensures the best performance of the system. We

present the results relative to the F-Measure, which gives a good overall

description of the performance.

In figure 8.4(b) we show how the F-Measure varies as a function of

similarity. We can see that the F-Measure increases up to a similarity of

0.75, and then dicreases rapidly. This evidence confirms the result of the

first analysis, indicating the best threshold tfp = 0.75. On this level we

register a value of F-Measure equal to 0.86, corresponding to P = 0.81 and

R = 0.91. Table 8.3 summarizes the performance of the system when the

threshold is tfp = 0.75.

8.3.2 Evaluating the Ontology Merge

In order to evaluate the performance of the system with respect to the

results of the merging process, we have to define a benchmark that we

consider as the gold standard in our analysis.

For this purpose we took into account two (ISWC2006 and ISWC2007)

out of three Semantic Web ontologies considered in the first phase of our

by the human:

R =
TP

(TP + FN)

F-measure combines in a single measure Precision (P) and Recall (R) giving a global estimation of the

performance of the system. In this case we assign the same weight (α = 0.5) to P and R, as a consequence:

F =
2 ∗ PR

(R + P)

117

118 CHAPTER 8. ANALYSES, EXPERIMENTS AND RESULTS

tfp = 0.75 tfp = 0.90 tfp = 0.91 Gold standard

Total Positives 70 68 43 48

True Positive 46 45 25 48

True Negative 380 385 405 403

False Positive 24 20 20 0

False Negative 1 1 1 0

Precision 0.66 0.69 0.56 1

Recall 0.98 0.98 0.96 1

F-Measure 0.78 0.81 0.7 1

Table 8.4: Results of the merging process

evaluation analysis. The choice to reducing the size of the sample was

motivated by the procedure of determing the gold standard that involved

a manual check of the entries of the data sets, which needed to stay at a

manageable size.

At first we compared manually the two data sets to detect which URLs

in the first refer to the same entities (persons) to which point the URLs in

the second, and vice versa. This comparison returns the exact set of pairs

G{< xi, yj >} with xi being a URI from the first ontology and yj a URI

from the second, which an optimal system would have to detect. This set

G with |G| = 49 represents the gold standard of our analysis.

In the second step of the analysis we perform an automatic merge of the

same data sets (ISWC2006 and ISWC2007), and compare it to the gold

standard. In the table 8.4 we report the results of our analysis with respect

to three exemplary thresholds tfp that we examined.

If we consider the first column of the table in wich we have the results

respect to a value of tfp = 0.75, we can notice that the correct mappings

amount to 46. If we compare this value to the gold standard g = 48 we

can see that the system returnsalmost all the correct mappings. However,

the number of False Positive is still quite high and it reduces precision to

118

8.3. INSTANCE-LEVEL ONTOLOGY INTEGRATION 119

P = 0.65. In other words, the system recognises some mappings between

entities that in fact are not identical. The effect of this circumstance is that

the merging of these entities leads to losing entities in the joint ontology,

and to assert wrong information about the collapsed entity. Obviously this

is what we want avoid, and it induces to search another (more conservative)

threshold that garantees a lower number of FP , preserving a satisfying

number of TP .

8.3.3 Establishing tid

In the second column of table 8.4 we report the evaluation measures with

respect to tfp = 0.90. On this threshold, Precision improves because FP

decreases (from 24 to 20) but without sacrificing significantly TP. Finally,

if we consider tfp = 0.91, we can notice that the performance of the system

degenerates. Indeed, TP decreases to 25 while FP does not reduce. We

take this as evidence that in the current setting it is recommendable to

increase tfp in the merging process to a value near to 0.90 to find a good

trade-off between sacrificing TP and reducing FP.

Our experiment showed that it is possible to move from two data sources

that should set-theoretically present a certain overlap but syntactically do

not12, to a situation where good recall of matches can be reached through

an alignment against Okkam. The approach presented here requires no ad-

hoc implementations or knowledge about the representation of the entities,

as opposed to other approaches, such as the ones described in Sect.3.3, or

e.g. [46] which relies on special characteristics of a property in the RDF

description of a FOAF profile13 for establishing identity between entities.

Summing up, we have shown that with the help of Okkam it is possible

12in fact, the two data sources present an overlap of zero identifiers for person entities
13it relies on the inverse-functional property of the the foaf:mbox sha1sum property in a FOAF profile

which is used to relate a hash-code generated from a person’s email address to its “entity identifier”. See

also Sect. 6.2.

119

120 CHAPTER 8. ANALYSES, EXPERIMENTS AND RESULTS

to perform entity consolidation over heterogeneous data sources with a

reasonable outcome. It has however to be stated clearly that establishing a

threshold that will serve as the key parameter for identity decisions should

focus on producing a minimal number of false positives. We conjecture

that a straighforward set of heuristics that respect the type of entity under

question can improve the results presented here considerably. Such source-

independent14 heuristics can include the variations in spelling of peoples’

names, the matching for location names in a different major languages, or

a filtering on more and less relevant parameters in the entity profile to be

used for the matching.

8.4 Entity-level Metadata Integration: A Cost Anal-

ysis

When talking about metadata integration, which includes RDF metadata,

we think about the integration of an additional data set into an existing

one (e.g. the import of the metadata about conference proceedings into

a digital library). The realization of such a scenario in which the meta-

data are aligned on the entity level (“okkamized”) may involve costs which

may not appear as completely justified on first sight. To discuss this ob-

jection, we present an analysis of integrating (non entity-aware) metadata

records from different sources, and show that the usage of global identifiers

significantly reduces this cost.

The integration process we envisage is as follows. Assume we have a

local “integrated” representation which contains the okkamized metadata

that our approach has already processed. We now want to add a new

metadata source, which contains records that all follow the same schema.

14i.e. they do not rely on the presence of a special datum in the entity profile derived from a special

data source.

120

8.4. ENTITY-LEVEL METADATA INTEGRATION: A COST ANALYSIS 121

Each record from the new data source has to be integrated and added

to the local “integrated” representation. We assume that the addition to

the local representation has a fixed cost (insertion cost as a constant),

but the integration cost varies. The integration of a new record into an

existing integrated record can be seen as a series of integrations between

the corresponding attribute-values pairs contained in the two records. How

this operation is performed depends on the actual system, the data, and

the strategy. We assume the use one of the various exiting approaches

for this procedure (presented in Section 3.2), and thus we consider it as a

black-box.

It is quite intuitive to see that in scenarios using global identifiers for

entities the cost of integrating several independent sources at query time

(e.g., in federative search environments) is less than in cases where global

identifiers are not used. Imagine a dataset constructed from independent

sources. An approach not using global identifiers would need to perform

a matching between content objects every time a query is posted, but if

all sources would share a global identifier for the same referenced entity,

then the integration task becomes less complex. Additionally, having all

sources using the global identifiers for each entity diminishes the cost of

adding new sources to the federation.

Cost of integration without global identifiers. We will now compute the cost

for integrating query results without using global identifiers for entities. Let

us use symbols r1 and r2 to denote metadata records. The i-th attribute

value pair of r is denoted with avpi(r) where the value represents the

symbolic name of an entity (as opposed to e.g. a date). The total number

of avp’s in the metadata record r is given by size(r). The cost for finding

a match of an avp in a target metadata record r is given by amc(avp, r),

and the cost of representing avp’s in locally integrated metadata records

121

122 CHAPTER 8. ANALYSES, EXPERIMENTS AND RESULTS

is given by lrc. Then, the cost of integrating metadata record r1 into a

locally represented record r2, ric(r1, r2), is given by:

ric(r1, r2) = size(r1) ∗ lrc +
size(r1)∑

k=1

amc(avpk(r1), r2) (8.3)

For adding the record r into a local integrated collection of records L,

we must integrate it with all (already locally integrated) metadata records

rL
i ∈ L. The cost of this operation is:

lsic(r, L) =
|L|
∑

j=1

ric(r, rL
j) (8.4)

Consider now having to integrate a set of metadata records M . The

cost of integrating all records of M into L is:

ic(M, L) =
|M |
∑

i=1

lsic(rM
i , L) (8.5)

Cost of integrating with global IDs. In contrast to the previous paragraph,

we will now compute the costs for integrating records that use global iden-

tifiers for the entities.

The cost of integrating a new metadata record r1 with an already inte-

grated metadata record r2 is as follows:

oric(r1, r2) = size(r1) ∗ lrc (8.6)

The difference with Equation 8.3 is that we here consider that the involved

metadata records already have global identifiers in their avp.

For computing the integration cost of a new result by using sources with

global identifiers, Equation 8.5 still holds as defined, if we replace ric(r1, r2)

with oric(r1, r2) (from Equation 8.6) in Equation 8.4.

If we take into account the network externality effect by considering the

probability p of encountering a metadata record using global IDs (and with

122

8.4. ENTITY-LEVEL METADATA INTEGRATION: A COST ANALYSIS 123

probability 1 − p of encountering a metadata record without global IDs)

we can compute the cost as presented in Equation 8.7:

ic(M, L) =
|M |
∑

i=1

|L|
∑

j=1











size(rM
i) ∗ lrc + (1 − p) ∗

size(rM

i
)

∑

k=1

amc(avpk(r
M
i), rL

j)

︸ ︷︷ ︸

matching cost











(8.7)

From the computed expression in Equation 8.7 we can see that the cost

of integration depends on: (1) the size of the records, and (2) the cost of

representing in the local format a new metadata record. Additionally, we

can see that the cost of integrating metadata records strongly depends on

the method used for performing the avp matching (illustrated as matching

cost in Equation 8.7).

The analysis of Equation 8.7 shows that if a high number of sources

(re-)use global identifiers, the higher costs computed in the matching cost

part of Equation 8.3 can be disregarded, and the overall integration cost

becomes a linear function of the number and size of the records to be

integrated.

What is not calculated in the above formulae is the cost of actually issu-

ing metadata records with global identifiers instead of names for entities.

It can be argued that this leads to faulty calculations about the benefits

of the approach, as part of the cost are “ignored”. However, the reasons

for not including this factor into the calculations are the following: first of

all, the cost of issuing a metadata record with global identifiers depends on

several factors in itself, e.g. the question whether this process is performed

manually, or automatically on the side of the metadata creator, or by a

centralized public service, and can thus not be generically quantified.

More importantly, the approach proposed in this work partly relies on

the economic principle of network externality, which can be defined as “a

123

124 CHAPTER 8. ANALYSES, EXPERIMENTS AND RESULTS

change in the benefit, or surplus, that an agent derives from a good when

the number of other agents consuming the same kind of good changes”

(cf. [59]). This means that the participation of other agents positively

influences the situation: as soon as an approach of this kind is taken up

by others, the benefits analyzed in Equation 8.7 hold.

Take for example the introduction and utilization of common data for-

mats such as EDI15, or XML. Both required (considerable) investments

during adoption; however, the expected network effects were high, with

the effect that EDI and XML became widely-used standards for data ex-

change. Everyone who today is using one of these formats is benefitting

from the investment of others, and at the same time also contributes to

the benefit of others, which is exactly the type of situation which we tried

to formalize analytically in this section.

8.5 Rigid Designation and its Consequences

The compelling vision of the Semantic Web is to provide languages and

tools that allow us to build something that can be described as a huge,

global, distributed knowledge base: sets of statements about individu-

als (A-Boxes in Description Logics), potentially stored in different loca-

tions, use vocabularies from formalizations (T-Boxes), which are again

distributed, and integratable via an import mechanism. The common de-

nominator and pivot are identifiers for resources in these T- and A-Boxes:

URIs. A client agent should consequently be enabled to profit from this

distributed knowledge, and an answer to a query about a resource should

– optimally – consider “all that is known” about that resource.

When analyzing this vision of a global, distributed knowledge base, it

15Electronic Data Interchange, see also http://en.wikipedia.org/wiki/Electronic_Data_

Interchange for an informal description.

124

8.5. RIGID DESIGNATION AND ITS CONSEQUENCES 125

is imaginable to defend two opposite standpoints:

1. It is necessary to introduce rigid designators for resources: an iden-

tifier that denotes the exact same object, wherever and whenever it

occurs. This, applied to classes and individuals alike, trivially results

in a set of globally pre-aligned A- and T-Boxes that only need to be

syntactically merged in order to answer queries.

2. Due to massive heterogeneity, the vision must fail. The past has shown

that a complete agreement on the concept level cannot be achieved16,

and that an agreement on URIs for individuals is unrealistic17.

We believe that the truth lies somewhere in the middle. On the one

hand, we accept the claim that a global alignment on the concept level, by

acceptance of top-level ontologies such as CYC [57] or SUMO [66], or any

other such agreement, has not been proven to be viable or even feasible

– a main reason for this being the differences in intended meaning that

we relate to concept names, as discussed in Sect. 2.1. A way to overcome

this problem is the introduction of ways to explicitly establish mappings

between concepts, as pursued in the last years e.g. by the efforts around

Distributed Description Logics (DDL) [11, 89].

On the other hand however, we defend the previously introduced point

that what is commonly regarded as an “individual” in a Semantic Web on-

tology underlies such differences to a vastly lesser extent: the heterogeneity

from the concept level does not necessarily apply do individuals. Typical

types of objects, such as people, events or locations, are rather unique by

character, and it should thus be possible to uniquely and rigidly identify

these objects, also in a distributed fashion.

16See e.g. [10] for motivations; another strong indicator for this claim are the vast efforts in schema and

ontology matching, which have lead to a large number of approaches, described in Euzenat and Shvaiko’s

book on Ontology Matching [33], which counts an estimated number of over 300 bibliographic references.
17as claimed by the authors of the OWL Recommendation, in Sect. 5.2.1 of [5]

125

126 CHAPTER 8. ANALYSES, EXPERIMENTS AND RESULTS

From a formal point of view, to capture the full implications of the

described vision, we propose a hybrid approach: a logics that allows for

heterogeneous conceptualizations with mappings between concepts, and

the global and rigid interpretation identifiers for individuals. The outcome

is a “system” with capabilities that lie between the extreme positions de-

scribed above. On the one hand, less integration is possible than in the

first standpoint, because the concept mapping cannot be assumed to be

complete. On the other hand, it is less fatal than the second standpoint,

because concept mappings are possible and an agreement on individuals is

potentially far-reaching.

To give a more formal account of our notion of rigid designation, let us

consider Distributed First-Order Logics as used by Serafini et al. in [77] 18.

They offer a definition for rigid designation in heterogeneous domains as

follows: if every constant c of two languages that forms part of a pairwise

domain relation between the respective domains is interpreted in two cor-

responding objects, then rigid designation between these domains is given.

Note that Serafini et al. are interested in rigid designation as a property

of an entire Distributed First Order Logics model, for which reason they

investigate the interpretation of every constant; note also that they only

consider constants that form part of a domain relation, because their un-

derlying theory of Local Models Semantics [40] defines individual domains

of interpretation, which means that they need a relation between objects

of the domains to be established before they can decide about rigid desig-

nation.

The existance of ENS-issued identifiers for entities is a slightly different

case as the one previously described. First, we define rigid designation:

18The relevance of these works for the Semantic Web lies in the deep relation of FOL and Description

Logics which has lead to the development of DDL [11] and C-OWL [13]. DFOL has been used in [77] as

a formalizm to analyze and describe ontology mapping languages.

126

8.5. RIGID DESIGNATION AND ITS CONSEQUENCES 127

Definition 8.1 For any two RDF graphs g and h, any URI c with c ∈

g ∧ c ∈ h is called a rigid designator if c is interpreted into the exact same

object.

What we propose is the following:

Definition 8.2 Every URI cENS issued by the Okkam ENS is a rigid

designator.

Note that we are offering a different standpoint with regards to domains

than DFOL does. In fact, what the ENS achieves is rather to provide the

possibility to have a single domain for all graphs/ontologies, being the set

of all URIs that the ENS issues. This means that for languages that use

our identifiers, no domain relation between objects needs to be present.

From the viewpoint of DFOL, we can express this property as follows:

let i 6= j be two OWL ontologies and x be an individual as defined by the

OWL semantics [72], then

i : (x = cENS) → j : (xi→ = cENS) (8.8)

i : (xj→ = cENS) → j : (x = cENS) (8.9)

A common criticism of ontology mapping approaches is the question

who is supposed to establish these mappings. It is straight-forward and

desirable in a heterogeneous world such as the Semantic Web to have means

to express relations between concepts of different formalizations, and to

provide the theoretical and practical mechanisms to reason over them.

However, it seems that getting to a point where a system (or user) is

actually able to make use of these foundations, i.e. to know how elements in

different ontologies are related, is usually considered “a different problem”.

We are not going to claim that the existance of rigid designators in

the Semantic Web is going to revolutionize ontology mapping approaches.

127

128 CHAPTER 8. ANALYSES, EXPERIMENTS AND RESULTS

On first sight, one might be tempted to reason that an analysis of the

extensions of two classes (e.g. the discovery that the two classes have an

identical extension), might allow us to perform inductive reasoning about

the relationship of the classes (in this case that the classes are identical). In

fact, there are ontology matching approaches such as [20] which precisely

perform such a process to support their matching. However, induction it-

self has been object of much controversy as to whether it actually produces

acceptable inferences. We hold the position that while a mere extensional

analysis is probably not strong enough to decide about relations between

classes, the existance of rigid designators can ease considerably the deci-

sion to which extent class extensions overlap, as it is directly evident from

comparing the sets of identifiers, instead of having to compute the similar-

ity between individuals as it is done e.g. in [20]. And for this reason, we

believe that rigid designation for entities can make a noticable contribution

to approaches that use instance matching as part of their decision process

about concept mappings.

128

Chapter 9

The Future

9.1 Research Challenges

9.1.1 Large-scale Repository Management and Evolution

In a larger, more production-quality setting, the architecture described in

the previous chapters requires an efficient storage and access mechanism

for a huge collection of entities. Furthermore, the storage has to support

the complete lifecycle of the content.

Data Storage and Access

The standard approach of handling large data collections are all kinds

of data management systems from relational to object-oriented database

systems. While stand-alone database servers can handle an amount in

the area of several 10 million entities, there exist distributed, parallel and

in-memory solutions which can handle bigger data collections or process

similar data amounts faster.

The challenge is to provide fast access to the content without requiring a

strict, explicit database schema. Relational database solutions dependent

on a fixed, well-known1 and understood schema, thus sufficient indices can

1well-known by software layers that access the database

129

130 CHAPTER 9. THE FUTURE

be created supporting the query execution. In case of attribute-value pairs

as a semi-structured description of entities as currently applied in Okkam,

the evaluation of queries containing a selection of several attributes results

in several joins which only scale in case of small table sizes or a high

discrimination of the attributes with regard to the corresponding entities.

An alternative is the integration of the technology of existing Internet

search engines. They are managing a vast amount of data and enable access

to the content ordered by a metric. As described in [22], the underlying

infrastructure is highly optimized for this kind of search and is less general

than a relational database system, as it does not make assumptions about

the types of “things” that are described.

However, the search provided by these engines is generally text-based

search as used in information retrieval. An approach could be to use infor-

mation retrieval methods as an index structure to store different combina-

tions of attributes per entity, for example using an n-gram based approach

consisting of combinations of attributes. Such an approach is costly with

regard to storage. However, the extension of such an approach from sets

of attributes to sets of attribute-value pairs is not straight forward.

Another alternative approach is a database system supporting semi-

structured content like for example XML databases. Here, the queries

can be translated into a combination of path queries. However, joins will

also only scale in case of good discrimination of XML elements. A related

approach is semi-structured data storage recently evolving from Semantic

Web projects. An example of a storage supporting quadruples consisting

of a subject, a relation, an object, and a context is the clustered semantic

web search engine [47], or the Swoogle Semantic Web Search Engine [28].

The different approaches mentioned so far provide different properties

with regard to transactions. We expect that the main workload of a pro-

duction Okkam storage will be on querying, followed by much less in-

130

9.1. RESEARCH CHALLENGES 131

sert operations of entities. The requirement of updates and deletions of

attribute-value pairs is however hard to predict and has to be further in-

vestigated.

Based on the current understanding of the requirements especially with

regard to updates, the Okkam storage has weaker constraints than re-

lational databases. As a consequence, to support the answering of top-k

queries (see Sect. 3.2), a pre-ordering of the content within an index struc-

ture seems imaginable and should be provided by the primary storage. The

challenge here is to provide the pre-ordering to enable fast query process-

ing and on the other hand a guarantee on the quality of the result. From

recent experience in information retrieval it seems that further optimiza-

tion is needed to make the above discussed approach scalable. Further

investigation in the advantages of using user query heuristics to organize

index structures [80] and the effect of the entity and attribute-value pair

life cycle on the index structures during the operation of the system should

be performend.

Scalability of Storage

Scalability of storage size and query performance can be addressed in differ-

ent ways: on the one hand side there are distributed systems maintained

at a single organization with optimized communication mechanisms be-

tween the distributed storages like for example cluster or parallel database

systems. On the other hand side there are more or less decentralized and

self-organizing peer-to-peer storage systems which provide scalable storage

dependent on the number of contributing peers.

The Okkam storage should combine both options, since the access to

a limited amount of data has to be fast, the communication between the

distributed storages has to be optimized and therefore a communication

over the Internet does not fulfill this requirement. However, Okkam users

131

132 CHAPTER 9. THE FUTURE

want to have access to all attribute-value pairs stored in the Okkam stor-

age and therefore a decentralized secondary storage with higher response

times will be capable to handle the data volume.

Another aspect of scalability is the load and the availability of the

Okkam storage. A potential approach is follow the well-known principle

of data replication - mainly on the primary storage. Access to the repli-

cated installations can be accomplished using a load balancing up-front.

Based on state-of-the-art replication and load balancing mechanisms, it is

possible that a more advanced Okkam storage might advance the state of

the art by combining primary and secondary storage as well as replication.

Lifecycle

A repository such as Okkam faces the challenge of effectively and effi-

ciently managing entities within the repository, in the mid- and long-term

perspective. It has to ensure sustainable and scalable entity and identi-

fier management that can adapt, react to evolution, and learn from usage

patterns and incrementally acquired knowledge about entities.

A well-managed entity lifecycle is in the core of sustainable entity man-

agement. The lifecycle starts at the time an entity first enters in the

Okkam repository. At this point, decisions have to be made as to whether

the entity is already stored (identity decision), and what information to

store in the entity repository about the entity. The entity lifecycle and

identity decisions have to be based upon a well-founded understanding

of entity and entity identity. Subsequently, entities are accessed and addi-

tional information about an entity becomes available, e.g. as a consequence

of Okkamization processes. This might require or result in the revisiting

of entities and revision of identity decisions, e.g. as a consequence of repos-

itory purging processes run over the repository. This includes:

Entity and Repository Evolution. As we have stated previously, it is

132

9.1. RESEARCH CHALLENGES 133

not the idea to store all the information that can be collected about

one entity in the Okkam repository. This would result in a global

knowledge base or information repository for entities, which is neither

feasible nor desirable. The Okkam entity evolution model will in-

clude the aging of rarely used information and forms of “forgetting”

information which is not or no longer of core relevance or distinctive

for deciding about the identity of entities.

Foundations of Entity Identity. In addition to what has been described

in this work, entity lifecycle and its adequate management should also

deal with the foundations of entity identity, treating questions such as

when are two entities the same, what is the influence of entity update

on the identity, are their inherently identifying attributes available

(database keys, artificial identifiers), and how are relationships like

aggregation related to the identity of the components and the com-

posed entities. Here more theoretical background work is required to

establish a well-defined foundation, on which the Okkam entity and

identity life cycle can base.

Repository Purging and Revisiting of Identity Decisions. Identity

decisions, i.e. the decision whether two entity profiles describe the

same entity, are performed based on the information in the entity pro-

files plus eventual background information. However, evolution might

necessitate that identity decisions have to revisited. For both cases,

strategies and methods have to be developed with the goal of improv-

ing the quality of the repository, while, at the same time, minimizing

the negative effects on applications that already use the assigned iden-

tifiers. In addition to revisiting identity decisions, purging will include

the cleaning and merging of attribute values and further methods for

quality improvements.

133

134 CHAPTER 9. THE FUTURE

9.1.2 Models of Security, Privacy and Trust

Decentralized systems frequently contain objects with heterogeneous se-

curity and privacy requirements that pose important challenges on the

underlying security mechanisms. In the simplest case, the distributed na-

ture of these systems introduce the need for secure communication between

the nodes, but most frequently distribution and decentralization is used as

a means to manage very large systems which means that the problems

of user identification and authorization (which in small systems are easy

to solve) become much more complicated. Additional complexity is intro-

duced by the fact that distributed approaches tend to be used for open

systems (where everyone is a potential user) as opposed to closed systems

(where the set of users is mostly static). Finally, the decentralized nature

of these systems, with the inherent lack of trust in the different nodes,

introduces the need to provide means to guarantee that the information is

stored, protected and processed consistently independently from its actual

location.

The Okkam architecture falls precisely in this category. In fact, we

could say that it is a paradigm of distributed, heterogeneous and large-

scale system with highly dynamic security requirements, a large number

of users and very crucial security and privacy requirements. In particular,

the need for the Okkam repositories to be very open; the vast variety of

applications that can be supported by Okkam services; and the nature of

the information stored in the Okkam repositories, together with the possi-

bilities for misuse that the existence of such repositories create, will require

the design and development of very flexible security mechanisms [100].

In the area of security and identity different research projects and initia-

tives have provided advances that will be useful for Okkam. Among the

vast number of such initiatives we can highlight FIDIS, PRIME, SWAMI

134

9.1. RESEARCH CHALLENGES 135

and PRIDIS on a European level. Also relevant are the Australian National

Identity Security Strategy, the US Personal Identity Verification, Shib-

boleth and Real ID, and some industry initiatives like Liberty Alliance,

CardSpace, OpenTC and OpenID. All these projects approach identity

from the point of view of authentication, which constitutes the main dif-

ference between them and Okkam.

Some of the new scenarios where distributed systems are emerging share

some common problems. The most remarkable ones are the following.

Firstly, it is usual that objects are accessed by previously unknown users.

Therefore, subscription-based schemes are not appropriate in this case.

Secondly, the execution of copyright agreements, payment or other activi-

ties must be bound to the access to the objects [55]. Finally, the originator

or owner of the object must retain control over it regardless of its physical

location and even after it is accessed by users [62]. Other requirements are:

(i) that a high degree of flexibility is required because of the heterogeneous

nature of the objects, (ii) that being able to change the access control pa-

rameters dynamically and transparently is also essential and, (iii) due to

the large amount of objects, it is important to be able to establish access

conditions in an automatic way based on information about objects.

One of the main pillars for these security mechanisms is access con-

trol (supported by identification and authorization). Paradoxically, access

control in distributed systems often relies on centralized security admin-

istration. Centralized control has obvious but important disadvantages:

(i) the control point represents a weak spot for security attacks and fault

tolerance, (ii) it reduces system performance because it introduces a bottle-

neck for request handling, and (iii) it usually enforces homogeneous access

control schemes that do not fit naturally in heterogeneous user groups and

organizations.

Role based access control (RBAC) is commonly accepted as the most

135

136 CHAPTER 9. THE FUTURE

appropriate paradigm for the implementation of access control in complex

scenarios. RBAC can be considered a mature and flexible. Numerous

authors have discussed the access properties and have presented different

languages and systems that apply this paradigm. Commercial implementa-

tions exist based on RBAC schemes. The main problem with role based ac-

cess control is that the mechanisms are built on three predefined concepts:

“user”, “role” and “group” [60]. The definition of roles and the grouping

of users can facilitate management, especially in corporation information

systems, because roles and groups fit naturally in the organizational struc-

tures of the companies. However, when applied to some new and more

general access control scenarios, these concepts are somewhat artificial.

In current access control models, the structure of groups is defined by

the security administrator and it is usually static. Although the grouping

of users can suffice in many different situations, it is not flexible enough

to cope with the requirements of more dynamic and open systems where

the structure of groups can not be anticipated by the administrators of the

access control system. In these scenarios new resources are incorporated to

the system continuously and each resource may possibly need a different

group structure and access control policy. Furthermore, the policy for a

given resource may change frequently.

We believe that a more general approach is needed in order to be used

in these new environments and in particular in Okkam. For example,

in the referred situations, groups are an artificial substitute for a more

general tool: the attribute. In fact, groups are usually defined based on

the values of some specific attributes (employer, position, access level, etc).

Some attributes are even built into most of the access control models [98].

Similarly is the case of the user element; the identity is just one of the most

useful attributes, but it is not necessary in all scenarios and, therefore, it

should not be a built-in component of a general model.

136

9.2. EXPECTED IMPACT 137

Finally, in distributed computing environments, there are many different

situations where it is desirable that the owner of each resource is able to

retain the control over it and to change the access policy dynamically and

transparently regardless of the location where the resource is stored. This

property is called originator-retained-control [61]. A full-fledged version of

the Okkam architecture should pay especial attention to this property, as

it is relevant for some future scenarios that can be imagined. Additionally,

because the creation and maintenance of access control policies is a difficult

and error prone activity, the ability to automatically validate policies will

become important [99].

9.2 Expected Impact

Okkam is providing a global infrastructure that enables the creation of the

Web of Entities. One of the main features of the approach is that it has a

big potential for triggering new ideas and developments for innovative and

productivity-enhancing entity-centric services for the knowledge society.

A wide variety of applications can benefit from the creation of the Web

of Entities as a global space of identifiers in a global knowledge space.

Some examples of such applications are:

• Publishing and Media (e.g. creating a global space of multimedia

resources, authors, organizations, topics; entity-level integration of

digital libraries; supporting intelligent multimedia authoring environ-

ments; helping the production of intelligent content);

• Research and innovation (from document-oriented to knowledge-oriented

search for information about relevant entities, like people, organiza-

tions, products, publications);

• National and European public administration and government (e.g.

137

138 CHAPTER 9. THE FUTURE

enabling unambiguous reference to laws, institutions, regulations, peo-

ple, events, etc.);

• Healthcare (e.g. tracking patients and health centers across the con-

tinent, making unambiguous references to drugs and pharmaceutical

companies, making treatments comparable);

• Financial control (e.g. making possible the aggregation a large amount

of heterogeneous data about the same individual across different coun-

tries and organizations);

• Homeland security (mining entity-level integrated information sources

about people, organizations, events, purchases, money transfers, etc.).

The Okkam technology thus has the potential to drive and stimulate

product, service, and process innovation in a large number of areas and in

wide domains.

The entity-centric approach, as it is fostered by Okkam, supports dif-

ferent forms of condensation and consolidation of organizational as well as

of the global information and knowledge spaces, by reducing redundancies,

linking together things that are related with each other, although they are

created and managed autonomously, and by entity-level information inte-

gration. This eases many tasks along the value chain for digital resources

like content creation by combining existing content, information structur-

ing and search across the borders of individual collections, targeted and

personalized distribution as well as content re-use, since these operations

can rely on a consolidated global Web of Entities instead of just on a par-

tially linked web of documents.

138

9.3. FUTURE WORK 139

9.3 Future Work

Apart from the open challenges for providing a really complete ENS in-

frastructure and the application scenarios in which Okkam may play an

important role, the are of course more immediate potentials for improve-

ment in the current prototype implementation.

We see two major issues which do not concern the “usual suspects” of

software engineering such as code cleanups, better documentation, more

extensive testing, usability improvements, etc.

First, as a promising next step in terms of research, we believe that sub-

stantial work can and should be done on the idea of an adaptive match-

ing approach that implements some or all matching facets we proposed

in Sect. 5.3.1, and provides intelligent algorithms for a runtime combina-

tion of these facets depending on the input query that is posed to the

system. Starting with rather simple facets such as creating spelling varia-

tions for people’s names with the help or algorithms from the area of name

matching, we think that the precision of matching results can already be

increased. Providing a mechanism that decides about which facets to apply

under a certain condition can provide interesting research results in terms

of algorithms and experiments.

Finally, after taking a look back at the big picture, we come to the con-

clusion that the bounds between physical/persistance layer (database) and

a logical layer (entity matching and ranking) are probably stronger than

we expected. The capabilities of a matching approach are hard to separate

from the low-level query capabilities of a persistance layer. We tried to

overcome this problem with a separation of steps, by first retrieving candi-

dates from the database and ranking them afterwards. But this approach

has its limitations because there are many things that can be envisioned

in terms of matching facets which are very hard to translate into an SQL

139

140 CHAPTER 9. THE FUTURE

query that can be executed with a sensible performance. In this respect,

we believe that either a respectable research effort should be paid to im-

prove the query translation mechanism as it is today, or – as hinted at in

Sect. 9.1.1 – the architecture might have to be changed in favour of a whole

new backend for entity storage and persistance that directly supports the

main requirements of intelligent matching.

140

Bibliography

[1] Boanerges Aleman-Meza, Meenakshi Nagarajan, Cartic Ramakrish-

nan, Li Ding, Pranam Kolari, Amit P. Sheth, I. Budak Arpinar,

Anupam Joshi, and Tim Finin. Semantic Analytics on Social Net-

works: Experiences in Addressing the Problem of Conflict of Interest

Detection. In WWW ’06: Proceedings of the 15th international con-

ference on World Wide Web, pages 407–416, New York, NY, USA,

2006. ACM Press.

[2] Rohit Ananthakrishna, Surajit Chaudhuri, and Venkatesh Ganti.

Eliminating Fuzzy Duplicates in Data Warehouses. In VLDB, pages

586–597, 2002.

[3] Periklis Andritsos, Ariel Fuxman, and Renée J. Miller. Clean answers

over dirty databases: A probabilistic approach. In Proceedings of the

22nd International Conference on Data Engineering, ICDE 2006, 3-8

April 2006, Atlanta, GA, USA, page 30, 2006.

[4] Wolf-Tilo Balke, Ulrich Güntzer, and Jason Xin Zheng. Ef-

ficient Distributed Skylining for Web Information Systems. In

Elisa Bertino, Stavros Christodoulakis, Dimitris Plexousakis, Vas-

silis Christophides, Manolis Koubarakis, Klemens Böhm, and Elena

Ferrari, editors, EDBT, volume 2992 of Lecture Notes in Computer

Science, pages 256–273. Springer, 2004.

141

142 BIBLIOGRAPHY

[5] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks,

Deborah L. McGuinness, Peter F. Patel-Schneider, and Lynn Andrea

Stein. OWL Web Ontology Language Reference - W3C Recommen-

dation, February 2004. http://www.w3.org/TR/owl-ref/.

[6] Omar Benjelloun, Hector Garcia-Molina, Heng Gong, Hideki Kawai,

Tait Eliott Larson, David Menestrina, and Sutthipong Thavisom-

boon. D-Swoosh: A Family of Algorithms for Generic, Distributed

Entity Resolution. In 27th IEEE International Conference on

Distributed Computing Systems (ICDCS 2007), June 25-29, 2007,

Toronto, Ontario, Canada, page 37. IEEE Computer Society, 2007.

[7] Omar Benjelloun, Hector Garcia-Molina, David Menestrina, Qi Su,

Steven E. Whang, Jennifer Widomr, and Jeff Jonas. Swoosh: A

Generic Approach to Entity Resolution. Technical report, Stanford

InfoLab, 2006.

[8] Tim Berners-Lee. What the semantic web isn’t but can repre-

sent. published online, 1998. http://www.w3.org/DesignIssues/

RDFnot.html.

[9] Indrajit Bhattacharya and Lise Getoor. Deduplication and Group

Detection Using Links. In Proceedings of the 2004 ACM SIGKDD

Workshop on Link Analysis and Group Detection, aug 2004.

[10] Matteo Bonifacio, Paolo Bouquet, and Paolo Traverso. Enabling dis-

tributed knowledge management: Managerial and technological im-

plications. Informatik - Zeitschrift der schweizerischen Informatiko-

rganisationen, 1:23–29, 2002.

[11] Alexander Borgida and Luciano Serafini. Distributed description log-

ics: Assimilating information from peer sources. In Stefano Spaccapi-

142

BIBLIOGRAPHY 143

etra, Salvatore T. March, and Karl Aberer, editors, J. Data Seman-

tics I, volume 1 of Lecture Notes in Computer Science, pages 153–184.

Springer, 2003.

[12] Stefano Bortoli, Heiko Stoermer, and Paolo Bouquet. Foaf-O-Matic

- Solving the Identity Problem in the FOAF Network. In Proceed-

ings of the Fourth Italian Semantic Web Workshop (SWAP2007),

Bari, Italy, Dec.18-20, 2007, December 2007. http://CEUR-WS.org/

Vol-314/43.pdf.

[13] Paolo Bouquet, Fausto Giunchiglia, Frank van Harmelen, Luciano

Serafini, and Heiner Stuckenschmidt. C-OWL: Contextualizing On-

tologies. In Dieter Fensel, Katia P. Sycara, and John Mylopoulos,

editors, International Semantic Web Conference, volume 2870 of Lec-

ture Notes in Computer Science, pages 164–179. Springer, 2003.

[14] Paolo Bouquet, Luciano Serafini, and Heiko Stoermer. Introducing

Context into RDF Knowledge Bases. In Proceedings of SWAP 2005,

the 2nd Italian Semantic Web Workshop, Trento, Italy, December

14-16, 2005. CEUR Workshop Proceedings, ISSN 1613-0073, online

http://ceur-ws.org/Vol-166/70.pdf, December 2005.

[15] Paolo Bouquet, Heiko Stoermer, and Daniel Giacomuzzi. OKKAM:

Enabling a Web of Entities. In i3: Identity, Identifiers, Identifi-

cation. Proceedings of the WWW2007 Workshop on Entity-Centric

Approaches to Information and Knowledge Management on the

Web, Banff, Canada, May 8, 2007., CEUR Workshop Proceed-

ings, ISSN 1613-0073, May 2007. online http://CEUR-WS.org/Vol-

249/submission 150.pdf.

[16] Paolo Bouquet, Heiko Stoermer, Michele Mancioppi, and Daniel Gi-

acomuzzi. OkkaM: Towards a Solution to the “Identity Crisis” on

143

144 BIBLIOGRAPHY

the Semantic Web. In Proceedings of SWAP 2006, the 3rd Ital-

ian Semantic Web Workshop, Pisa, Italy, December 18-20, 2006.

CEUR Workshop Proceedings, ISSN 1613-0073, online http://ceur-

ws.org/Vol-201/33.pdf, December 2006.

[17] Paolo Bouquet, Heiko Stoermer, and Liu Xin. Okkam4P - A Protégé

Plugin for Supporting the Re-use of Globally Unique Identifiers for

Individuals in OWL/RDF Knowledge Bases. In Proceedings of the

Fourth Italian Semantic Web Workshop (SWAP2007), Bari, Italy,

Dec.18-20, 2007, December 2007. http://CEUR-WS.org/Vol-314/

41.pdf.

[18] Karl Branting. A comparative evaluation of name-matching algo-

rithms. In ICAIL, pages 224–232, 2003.

[19] Steven Carmody, Walter Gross, Theodor H. Nelson, David Rice, and

Andries van Dam. A hypertext editing system for the /360. In

M. Faiman and J. Nievergelt, editors, Pertinent concepts in computer

graphics, pages 291–330. University of Illinois, Urbane, Ill., March

1969.

[20] Silvana Castano, Alfio Ferrara, Davide Lorusso, and Stefano Mon-

tanelli. The hmatch 2.0 suite for ontology matchmaking. In Giovanni

Semeraro, Eugenio Di Sciascio, Christian Morbidoni, and Heiko Sto-

ermer, editors, Proceedings of SWAP2007, Fourth Italian Workshop

on Semantic Web Applications and Perspectives, 2007.

[21] Lois Mai Chan. Library of Congress Subject Headings, 30th edition.

Libraries Unlimited, 2000.

[22] Fay Chang, Jeffrey Dean, Sanjuay Ghemawat, Wilson C. Hsieh, Deb-

orah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and

144

BIBLIOGRAPHY 145

Robert E. Gruber. BigTable – A Distributed Storage System for

Structured Data. In Proceedings of OSDI 2006, 2006.

[23] Sam Chapman. SimMetrics. University of Sheffield, 2006. http:

//www.dcs.shef.ac.uk/~sam/simmetrics.html.

[24] DeWitt Clinton. Opensearch description document specification, ver-

sion 1.1, draft 3. Published online. http://www.opensearch.org/

Specifications/OpenSearch/1.1.

[25] William W. Cohen. Data Integration Using Similarity Joins and a

Word-based Information Representation Language. ACM Trans. Inf.

Syst., 18(3):288–321, 2000.

[26] William W. Cohen, Pradeep Ravikumar, and Stephen E. Fienberg.

A Comparison of String Distance Metrics for Name-Matching Tasks.

In Proceedings of the XVIII International Joint Conferences on Ar-

tificial Intelligence (IJCAI) - Workshop on Information Integration

on the Web (IIWeb), pages 73–78, Acapulco, México, 9-10 August

2003.

[27] Willy Cromwell-Kessler. Crosswalks, Metadata Mapping, and In-

teroperability: What does it all mean? In Murtha Baca, editor,

Metadata: Pathways to Digital Information, pages 19–21. Getty In-

formation Institute, 1998.

[28] Li Ding, Timothy W. Finin, Anupam Joshi, Rong Pan, R. Scott Cost,

Yun Peng, Pavan Reddivari, Vishal Doshi, and Joel Sachs. Swoogle:

a search and metadata engine for the semantic web. In Proceedings

of the 2004 ACM CIKM International Conference on Information

and Knowledge Management, Washington, DC, USA, November 8-

13, 2004, pages 652–659, 2004.

145

146 BIBLIOGRAPHY

[29] Xin Dong, Alon Halevy, and Jayant Madhavan. Reference Reconcili-

ation in Complex Information Spaces. In SIGMOD ’05: Proceedings

of the 2005 ACM SIGMOD international conference on Management

of data, pages 85–96, New York, NY, USA, 2005. ACM Press.

[30] Dublin Core Metadata Element Set, Version 1.1, December 2006.

http://dublincore.org/documents/dces/.

[31] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S.

Verykios. Duplicate Record Detection: A Survey. IEEE Transac-

tions on Knowledge and Data Engineering, 19(1):1–16, 2007.

[32] Euracert. Euracert Accessibility Guidelines. online http://www.

euracert.org/.

[33] Jérôme Euzenat and Pavel Shvaiko. Ontology matching. Springer-

Verlag, Heidelberg (DE), 2007.

[34] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation

algorithms for middleware. J. Comput. Syst. Sci., 66(4):614–656,

2003.

[35] Ivan P. Fellegi and Alan B. Sunter. A Theory for Record Linkage.

Journal of the American Statistical Association, 64(328):1183–1210,

1969.

[36] Angela Fogarolli, Giuseppe Riccardi, and Marco Ronchetti. Searching

information in a collection of video-lectures. In Proceedings of World

Conference on Educational Multimedia, Hypermedia and Telecom-

munications 2007, pages 1450–1459, Vancouver, Canada, June 2007.

AACE.

146

BIBLIOGRAPHY 147

[37] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.

Design Patterns: Elements of Reusable Object-Oriented Software.

Addison-Wesley, 1995.

[38] Aldo Gangemi and Valentina Presutti. A grounded ontology for iden-

tity and reference of web resources. In i3: Identity, Identifiers, Identi-

fication. Proceedings of the WWW2007 Workshop on Entity-Centric

Approaches to Information and Knowledge Management on the Web,

Banff, Canada, May 8, 2007., 2007.

[39] Hector Garcia-Molina. Pair-wise entity resolution: overview and chal-

lenges. In Philip S. Yu, Vassilis J. Tsotras, Edward A. Fox, and

Bing Liu, editors, Proceedings of the 2006 ACM CIKM International

Conference on Information and Knowledge Management, Arlington,

Virginia, USA, November 6-11, 2006, page 1. ACM, 2006.

[40] Chiara Ghidini and Fausto Giunchiglia. Local models seman-

tics, or contextual reasoning=locality+compatibility. Artif. Intell.,

127(2):221–259, 2001.

[41] Ramanathan V. Guha and Rob McCool. TAP: a Semantic Web

Platform. Computer Networks, 42(5):557–577, 2003.

[42] Joseph Hassell, Boanerges Aleman-Meza, and Ismailcem Budak

Arpinar. Ontology-Driven Automatic Entity Disambiguation in Un-

structured Text. In Isabel F. Cruz, Stefan Decker, Dean Allemang,

Chris Preist, Daniel Schwabe, Peter Mika, Michael Uschold, and Lora

Aroyo, editors, International Semantic Web Conference, volume 4273

of Lecture Notes in Computer Science, pages 44–57. Springer, 2006.

[43] Patrick Hayes. RDF Semantics, February 2004.

http://www.w3.org/TR/rdf-mt/.

147

148 BIBLIOGRAPHY

[44] Mauricio A. Hernández and Salvatore J. Stolfo. Real-world Data is

Dirty: Data Cleansing and The Merge/Purge Problem. Data Min.

Knowl. Discov., 2(1):9–37, 1998.

[45] Mauricio A. Hernández and Salvatore J. Stolfo. Real-world Data is

Dirty: Data Cleansing and The Merge/Purge Problem. Data Min.

Knowl. Discov., 2(1):9–37, 1998.

[46] Aidan Hogan, Andreas Harth, and Stefan Decker. Performing ob-

ject consolidation on the semantic web data graph. In i3: Identity,

Identifiers, Identification. Proceedings of the WWW2007 Workshop

on Entity-Centric Approaches to Information and Knowledge Man-

agement on the Web, Banff, Canada, May 8, 2007., 2007.

[47] Aidan Hogan, Andreas Harth, Jürgen Umbrich, and Stefan Decker.

Towards a Scalable Search and Query Engine for the Web. In Pro-

ceedings of the 16th International Conference on World Wide Web,

WWW 2007, Banff, Alberta, Canada, May 8-12, 2007, pages 1301–

1302, 2007.

[48] IBM. IBM DB2 Glossary. http://publib.boulder.ibm.com/

infocenter/db2luw/v9/index.jsp.

[49] Afraz Jaffri, Hugh Glaser, and Ian Millard. Uri identity manage-

ment for semantic web data integration and linkage. In 3rd Inter-

national Workshop On Scalable Semantic Web Knowledge Base Sys-

tems. Springer, 2007.

[50] Greg Janée and James Frew. The adept digital library architecture.

In JCDL ’02: Proceedings of the 2nd ACM/IEEE-CS joint conference

on Digital libraries, pages 342–350, New York, NY, USA, 2002. ACM

Press.

148

BIBLIOGRAPHY 149

[51] Dmitri V. Kalashnikov and Sharad Mehrotra. Domain-independent

Data Cleaning via Analysis of Entity-relationship Graph. ACM

Transactions on Database Systems (ACM TODS), 31(2):716–767,

June 2006.

[52] Dmitri V. Kalashnikov, Sharad Mehrotra, and Zhaoqi Chen. Exploit-

ing Relationships for Domain-independent Data Cleaning. In SIAM

International Conference on Data Mining (SIAM SDM), Newport

Beach, CA, USA, April 21–23 2005.

[53] Sascha Kriewel, Claus-Peter Klas, Sven Frankmlle, and Norbert Fuhr.

A Framework for Supporting Common Search Strategies in DAF-

FODIL. In A. Rauber, C. Christodoulakis, and A M. Tjoa, editors,

Research and Advanced Technology for Digital Libraries. Proc. Euro-

pean Conference on Digital Libraries (ECDL 2005), pages 527–528.

Springer, 2005.

[54] Saul Kripke. Naming and Necessity. Basil Blackwell, Boston, 1980.

[55] M. Kudo and S. Hada. XML Document Security based on Provisional

Authorisation. In In Proc. of the 7th ACM Conference on Computer

and Communications Security, page 8796, 2000.

[56] George Lakoff. Women, Fire, and Dangerous Things. University of

Chicago Press, Chicago, IL., 1987.

[57] Douglas B. Lenat. Cyc: A large-scale investment in knowledge in-

frastructure. Commun. ACM, 38(11):32–38, 1995.

[58] Pierre Lévy. IEML, Finalités et structure fondamentale. In Jean-

Michel Penalva, editor, Intelligence Collective, Rencontres 2006,

Presses de lécole des mines de Paris, pages 117–136, May 2006.

149

150 BIBLIOGRAPHY

[59] S. J. Liebowitz and Stephen E. Margolis. Network Externalities. In

The New Palgrave’s Dictionary of Economics and the Law. MacMil-

lan, 1998.

[60] Javier Lopez, Antonio Mana, and Mariemma Inmaculada Yagüe del

Valle. Xml-based distributed access control system. In E-Commerce

and Web Technologies, Third International Conference, EC-Web

2002, Aix-en-Provence, France, September 2-6, 2002, Proceedings,

pages 203–213, 2002.

[61] Javier Lopez, Antonio Mana, Ernesto Pimentel, José M. Troya, and

Mariemma Inmaculada Yagüe del Valle. Access control infrastructure

for digital objects. In Information and Communications Security, 4th

International Conference, ICICS 2002, Singapore, December 9-12,

2002, Proceedings, pages 399–410, 2002.

[62] Antonio Mana, Javier Lopez, Juan J. Ortega, Ernesto Pimentel, and

José M. Troya. A framework for secure execution of software. Int. J.

Inf. Sec., 3(2):99–112, 2004.

[63] Kieran McDonald and Alan F. Smeaton. A Comparison of Score,

Rank and Probability-Based Fusion Methods for Video Shot Re-

trieval. In Wee Kheng Leow, Michael S. Lew, Tat-Seng Chua, Wei-

Ying Ma, Lekha Chaisorn, and Erwin M. Bakker, editors, CIVR,

volume 3568 of Lecture Notes in Computer Science, pages 61–70.

Springer, 2005.

[64] Alvaro E. Monge and Charles Elkan. An Efficient Domain-

Independent Algorithm for Detecting Approximately Duplicate

Database Records. In DMKD, pages 0–, 1997.

150

BIBLIOGRAPHY 151

[65] NewsML Version 1.2 Functional Specification, October

2003. http://www.newsml.org/dl.php?fn=NewsML/1.2/

specification/NewsML_1.2.dtd.

[66] Ian Niles and Adam Pease. Towards a standard upper ontology. In

FOIS, pages 2–9, 2001.

[67] NITF 3.4 XSD Schema, October 2006. http://www.nitf.org/IPTC/

NITF/3.4/specification/schema/nitf-3-4.xsd.

[68] Natalya F. Noy. Semantic Integration: a Survey of Ontology-based

Approaches. SIGMOD Rec., 33(4):65–70, 2004.

[69] Tim O’Reilly. The Social Network Operating System, Octo-

ber 2007. online http://radar.oreilly.com/archives/2007/10/

social_network_operating_system.html.

[70] Patrick Pantel, Andrew Philpot, and Eduard H. Hovy. Matching and

Integration across Heterogeneous Data Sources. In Proceedings of

the 7th Annual International Conference on Digital Government Re-

search, DG.O 2006, San Diego, California, USA, May 21-24, 2006,

pages 438–439, 2006.

[71] C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[72] P.F. Patel-Schneider, P. Hayes, and I. Horrocks. Web Ontology Lan-

guage (OWL) Abstract Syntax and Semantics. Technical report,

W3C, February 2003. http://www.w3.org/TR/owl-semantics/.

[73] Luigi Pirandello. One, None and a Hundred Thousand. E. P. Dutton

& Co., Inc., New York, 1st edition, 1933. Translated from the Italian

by Samual Putnam.

[74] Willard Van Orman Quine. Set Theory and Its Logic. Harvard Uni-

versity Press, revised edition, 1969.

151

152 BIBLIOGRAPHY

[75] R Development Core Team. R: A Language and Environment for

Statistical Computing. R Foundation for Statistical Computing, Vi-

enna, Austria, 2007. ISBN 3-900051-07-0.

[76] Erhard Rahm and Philip A. Bernstein. A Survey of Approaches

to Automatic Schema Matching. VLDB Journal: Very Large Data

Bases, 10(4):334–350, 2001.

[77] Luciano Serafini, Heiner Stuckenschmidt, and Holger Wache. A For-

mal Investigation of Mapping Languages for Terminological Knowl-

edge. In BNAIC 2005 - Proceedings of the Seventeenth Belgium-

Netherlands Conference on Artificial Intelligence, Brussels, Belgium,

October 17-18, 2005, pages 379–380, 2005.

[78] Keith Shafer, Stuart Weibel, Erik Jul, and Jon Fausey. Introduc-

tion to persistent uniform resource locators. published online., 1996.

http://purl.oclc.org/docs/inet96.html.

[79] M. Sipser. Introduction to the Theory of Computation. PWS Pub-

lishing, 1997.

[80] Gleb Skobeltsyn, Toan Luu, Ivana Podnar Zarko, Martin Rajman,

and Karl Aberer. Web text retrieval with a p2p query-driven index.

In SIGIR, pages 679–686, 2007.

[81] Luis Snchez-Fernndez, Norberto Fernndez-Garca, Ansgar Bernardi,

Lars Zapf, Anselmo Peas, and Manuel Fuentes. An experience with

semantic web technologies in the news domain. In Workshop Seman-

tic Web Case Studies and Best Practices for eBusiness, 2005.

[82] Heiko Stoermer, Paolo Bouquet, Ignazio Palmisano, and Domenico

Redavid. A Context-based Architecture for RDF Knowledge Bases:

Approach, Implementation and Preliminary Results. In Massimo

152

BIBLIOGRAPHY 153

Marchiori, Jeff Z. Pan, and Christian de Sainte Marie, editors, Web

Reasoning and Rule Systems, First International Conference, RR

2007, Innsbruck , Austria, June 7-8, 2007, Proceedings, volume

4524 of Lecture Notes in Computer Science, pages 209–218. Springer

Berlin/Heidelberg, June 2007.

[83] Heiko Stoermer, Ignazio Palmisano, and Domenico Redavid. Achiev-

ing Scalability and Expressivity in an RDF Knowledge Base by Im-

plementing Contexts. In Proceedings of SWAP 2006, the 3rd Ital-

ian Semantic Web Workshop, Pisa, Italy, December 18-20, 2006.

CEUR Workshop Proceedings, ISSN 1613-0073, online http://ceur-

ws.org/Vol-201/14.pdf, December 2006.

[84] Heiko Stoermer, Ignazio Palmisano, Domenico Redavid, Luigi Ian-

none, Paolo Bouquet, and Giovanni Semeraro. Contextualization of

an RDF Knowledge Base in the VIKEF Project. In Shigeo Sugimoto,

Jane Hunter, Andreas Rauber, and Atsuyuki Morishima, editors,

Digital Libraries: Achievements, Challenges and Opportunities, 9th

International Conference on Asian Digital Libraries, ICADL 2006,

Kyoto, Japan, November 27-30, 2006, Proceedings, volume 4312 of

Lecture Notes in Computer Science, pages 101–110. Springer, Novem-

ber 2006.

[85] P. F. Strawson. Entity and Identity And Other Essays. Cambridge

University Press, 1997.

[86] SUN Microsystems, Inc. Core J2EE Patterns – Business Delegate,

2002. http://java.sun.com/blueprints/corej2eepatterns/

Patterns/BusinessDelegate.html.

153

154 BIBLIOGRAPHY

[87] Sun Microsystems, Inc. Core J2EE Patterns – Data Access Ob-

ject, 2002. http://java.sun.com/blueprints/corej2eepatterns/

Patterns/DataAccessObject.html.

[88] SUN Microsystems, Inc. Core J2EE Patterns – Transfer Ob-

ject, 2002. http://java.sun.com/blueprints/corej2eepatterns/

Patterns/TransferObject.html.

[89] Andrei Tamilin. Distributed Ontological Reasoning: Theory, Algo-

rithms, and Applications. PhD thesis, University of Trento, Italy,

2007.

[90] Martin Theobald, Gerhard Weikum, and Ralf Schenkel. Top-k query

evaluation with probabilistic guarantees. In VLDB, pages 648–659,

2004.

[91] U.S. General Services Administration. Section 508 Accessibility

Guidelines. online http://www.section508.gov.

[92] VIKEF Consortium. VIKEF R&D Highlight - Semantic Infusion

for Content Digestion. published online, 2007. ftp://ftp.cordis.

europa.eu/pub/ist/docs/kct/vikef-poster2b-a3_en.pdf.

[93] W3C. Web Content Accessibility Guidelines. online http://www.w3.

org/TR/WCAG10-HTML-TECHS.

[94] W3C. XQuery 1.0: An XML Query Language. Published online.,

January 2007. http://www.w3.org/TR/xquery/.

[95] Stuart L. Weibl and Traugott Koch. The Dublin Core Metadata

Initiative - Mission, Current Activities, and Future Directions. D-

Lib Magazine, 6(12), 2000.

154

BIBLIOGRAPHY 155

[96] William E. Winkler. The State of Record Linkage and Current Re-

search Problems. Technical report, Statistical Research Division, U.S.

Census Bureau, Washington, DC, 1999.

[97] Ian H. Witten and David Bainbridge. How to Build a Digital Library.

Elsevier Science Inc., New York, NY, USA, 2002.

[98] Mariemma Inmaculada Yagüe, Maŕıa del Mar Gallardo, and Antonio

Mana. Semantic access control model: A formal specification. In

Computer Security - ESORICS 2005, 10th European Symposium on

Research in Computer Security, Milan, Italy, September 12-14, 2005,

Proceedings, pages 24–43, 2005.

[99] Mariemma Inmaculada Yagüe, Antonio Mana, and Javier Lopez.

A metadata-based access control model for web services. Inter-

net Research: Electronic Networking Applications and Policy, 15:99–

116(18), 2005.

[100] Mariemma Inmaculada Yagüe, Antonio Mana, and Francisco

Sanchez. Semantic interoperability of authorizations. In Proceed-

ings of the 2nd International Workshop on Security In Information

Systems, WOSIS 2004, pages 269–278, 2004.

[101] Marcia Lei Zeng and Lois Mai Chan. Metadata Interoperability and

Standardization A Study of Methodology Part II Achieving (Inter-

operability at the Record and Repository Levels). D-Lib Magazine,

12(6), 2006.

[102] Xuan Zhou, Julien Gaugaz, Wolf-Tilo Balke, and Wolfgang Nejdl.

Query Relaxation using Malleable Schemas. In SIGMOD ’07: Pro-

ceedings of the 2007 ACM SIGMOD international conference on

Management of data, pages 545–556, New York, NY, USA, 2007.

ACM Press.

155

Appendix A

XML Schemas of API Data

Structures

A.1 AnnotatedQuery

Listing A.1: The AnnotatedQuery XML Schema

1 <?xml version="1.0" encoding="UTF -8"?>

2 <xs:schema

3 xmlns:okkam="http://www.okkam.org/schemas/AnnotatedQuery"

4 xmlns:xs="http://www.w3.org /2001/ XMLSchema"

5 targetNamespace="http://www.okkam.org/schemas/AnnotatedQuery"

6 elementFormDefault="qualified"

7 attributeFormDefault="qualified"

8 version="0.6">

9 <xs:element name="AnnotatedQuery">

10 <xs:annotation>

11 <xs:documentation>

12 AnnotatedQuery is the root object of the tree that is

used to represent a matching query posed by a client

application.

13 I contains obligatory and optional components that are

used by the server to compose query strategies for

finding good matches.

14 </xs:documentation>

15 </xs:annotation>

16 <xs:complexType>

157

158 APPENDIX A. XML SCHEMAS OF API DATA STRUCTURES

17 <xs:sequence>

18 <xs:element name="QueryString" type="xs:string">

19 <xs:annotation>

20 <xs:documentation>Simply the copy of the query

string. Required , in case to be generated by the

client application.</xs:documentation>

21 </xs:annotation>

22 </xs:element>

23 <xs:element name="QueryContext" type="okkam:Context"

minOccurs="0">

24 <xs:annotation>

25 <xs:documentation>Optional. The context in which the

query was posed. We have to see which parameters

we think are useful.</xs:documentation>

26 </xs:annotation>

27 </xs:element>

28 <xs:element name="QueryMetadata" type="okkam:Metadata"

minOccurs="0">

29 <xs:annotation>

30 <xs:documentation>Optional. What we can say about

the query in general.</xs:documentation>

31 </xs:annotation>

32 </xs:element>

33 <xs:element name="QueryAnnotation"

type="okkam:Annotation">

34 <xs:annotation>

35 <xs:documentation>token -by-token annotation. this is

NOT optional , in case the client must perform a

tokenization of the query and at least provide a

list of values.</xs:documentation>

36 </xs:annotation>

37 </xs:element>

38 <xs:element name="QueryExpansion"

type="okkam:ExpansionHints" minOccurs="0">

39 <xs:annotation>

40 <xs:documentation>Optional. Hints to the server for

potential query expansion.</xs:documentation>

41 </xs:annotation>

158

A.1. ANNOTATEDQUERY 159

42 </xs:element>

43 </xs:sequence>

44 </xs:complexType>

45 </xs:element>

46 <!--

47 *

48 * the Context type

49 *

50 -->

51 <xs:complexType name="Context">

52 <xs:annotation>

53 <xs:documentation> First draft specification of what we

want to say about the "context" in which a query was

posed.</xs:documentation>

54 </xs:annotation>

55 <xs:all>

56 <xs:element name="lang" type="xs:language" minOccurs="0"/>

57 <xs:element name="location" type="okkam:Location"

minOccurs="0"/>

58 <xs:element name="device" type="okkam:Device"

minOccurs="0"/>

59 <xs:element name="clientIdentifier" type="xs:string"

minOccurs="0">

60 <xs:annotation>

61 <xs:documentation>A string identifying the client

software (protege plugin , web client ,

etc.)</xs:documentation>

62 </xs:annotation>

63 </xs:element>

64 </xs:all>

65 </xs:complexType>

66 <!--

67 *

68 * the Device type

69 *

70 -->

71 <xs:complexType name="Device">

72 <xs:annotation>

159

160 APPENDIX A. XML SCHEMAS OF API DATA STRUCTURES

73 <xs:documentation> To be defined: the type of device the

user is working on.</xs:documentation>

74 </xs:annotation>

75 <xs:all>

76 <xs:element name="name" type="xs:string"/>

77 </xs:all>

78 </xs:complexType>

79 <!--

80 *

81 * the Location type

82 *

83 -->

84 <xs:complexType name="Location ">

85 <xs:annotation>

86 <xs:documentation>To be defined. Need to check how to

easily implement this.</xs:documentation>

87 </xs:annotation>

88 <xs:all>

89 <xs:element name="name" type="xs:string"/>

90 </xs:all>

91 <xs:attribute ref="okkam:OkId" use="optional"/>

92 </xs:complexType>

93 <!--

94 *

95 * the Metadata type

96 *

97 -->

98 <xs:complexType name="Metadata ">

99 <xs:annotation>

100 <xs:documentation> First draft specification , what we can

say about the query in general</xs:documentation>

101 </xs:annotation>

102 <xs:all>

103 <xs:element name="limit" type="xs:int" minOccurs="0">

104 <xs:annotation>

105 <xs:documentation>The maximum number of desired

results from the server.</xs:documentation>

106 </xs:annotation>

160

A.1. ANNOTATEDQUERY 161

107 </xs:element>

108 <xs:element name="typeHint" type="xs:string" minOccurs="0">

109 <xs:annotation>

110 <xs:documentation>A hint about the type of entity we

are looking for.</xs:documentation>

111 </xs:annotation>

112 </xs:element>

113 </xs:all>

114 </xs:complexType>

115 <!--

116 *

117 * the Relevance enum type

118 *

119 -->

120 <!-- the old solution

121 <xs:simpleType name="Relevance">

122 <xs:restriction base="xs:NMTOKEN">

123 <xs:enumeration value="low"/>

124 <xs:enumeration value="medium"/>

125 <xs:enumeration value="high"/>

126 </xs:restriction>

127 </xs:simpleType>

128 -->

129

130 <xs:simpleType name="Relevance">

131 <xs:restriction base="xs:integer">

132 <xs:minInclusive value="1" />

133 <xs:maxInclusive value="100" />

134 </xs:restriction>

135 </xs:simpleType>

136

137

138

139 <!--

140 *

141 * the Annotation type and its components (tokens)

142 *

143 -->

161

162 APPENDIX A. XML SCHEMAS OF API DATA STRUCTURES

144 <xs:complexType name="Annotation">

145 <xs:annotation>

146 <xs:documentation>

147 Sequence of tokens of the query with individual

148 annotations. Tokens are obligatory.

149 </xs:documentation>

150 </xs:annotation>

151 <xs:sequence>

152 <xs:element name="Token" type="okkam:QueryToken"

maxOccurs="unbounded"/>

153 </xs:sequence>

154 </xs:complexType>

155 <xs:complexType name="QueryToken">

156 <xs:annotation>

157 <xs:documentation> Representation of a single query

token</xs:documentation>

158 </xs:annotation>

159 <xs:all>

160 <xs:element name="label" type="xs:string" minOccurs="0">

161 <xs:annotation>

162 <xs:documentation>The label of a token , if

available.</xs:documentation>

163 </xs:annotation>

164 </xs:element>

165 <xs:element name="value" type="xs:string">

166 <xs:annotation>

167 <xs:documentation>The value part of a

token.</xs:documentation>

168 </xs:annotation>

169 </xs:element>

170 <xs:element name="typeHint " type="xs:string" minOccurs="0">

171 <xs:annotation>

172 <xs:documentation>a string giving a hint about the

type the token.</xs:documentation>

173 </xs:annotation>

174 </xs:element>

175 <xs:element name="relevanceHint" type="okkam:Relevance"

minOccurs="0">

162

A.1. ANNOTATEDQUERY 163

176 <xs:annotation>

177 <xs:documentation>a choice of low -med -high about the

relevance of this token in the

query.</xs:documentation>

178 </xs:annotation>

179 </xs:element>

180 <xs:element name="namespaceHint" type="xs:string"

minOccurs="0">

181 <xs:annotation>

182 <xs:documentation>hint about a potentially

"well -known" namespace , e.g. FOAF</xs:documentation>

183 </xs:annotation>

184 </xs:element>

185 </xs:all>

186 </xs:complexType>

187 <!--

188 *

189 * the ExpansionHints type and its components

190 *

191 -->

192 <xs:complexType name="ExpansionHints">

193 <xs:annotation>

194 <xs:documentation>a list of hints. if the ExpansionHints

element is used , at least one hint must be given.

</xs:documentation>

195 </xs:annotation>

196 <xs:sequence>

197 <xs:element name="Hint" type="okkam:ExpansionHint"

maxOccurs="unbounded"/>

198 </xs:sequence>

199 </xs:complexType>

200 <xs:complexType name="ExpansionHint">

201 <xs:annotation>

202 <xs:documentation>name -value pairs that the client

proposes to the server for potential query expansion.

</xs:documentation>

203 </xs:annotation>

204 <xs:all>

163

164 APPENDIX A. XML SCHEMAS OF API DATA STRUCTURES

205 <xs:element name="label" type="xs:string" minOccurs="0"/>

206 <xs:element name="value" type="xs:string"/>

207 <xs:element name="typeHint " type="xs:string"

minOccurs="0"/>

208 </xs:all>

209 </xs:complexType>

210 <!--

211 *

212 * the OKKAM ID global attribute

213 *

214 -->

215 <xs:attribute name="OkId" type="xs:anyURI">

216 <xs:annotation>

217 <xs:documentation> The OKKAM ID of an

element </xs:documentation>

218 </xs:annotation>

219 </xs:attribute>

220 </xs:schema>

A.2 OkkamURIResult

Listing A.2: The OkkamURIResult XML Schema

1 <?xml version="1.0" encoding ="UTF -8"?>

2 <xs:schema xmlns:xs="http://www.w3.org /2001/ XMLSchema"

elementFormDefault="qualified"

attributeFormDefault="unqualified">

3 <xs:complexType name="Confidences">

4 <xs:sequence>

5 <xs:element name="Confidence" type="xs:float "

minOccurs="0" maxOccurs="unbounded"/>

6 </xs:sequence>

7 </xs:complexType>

8 <xs:element name="OkkamURIResult">

9 <xs:annotation>

10 <xs:documentation>Return value for search

query.</xs:documentation>

11 </xs:annotation>

164

A.2. OKKAMURIRESULT 165

12 <xs:complexType>

13 <xs:all>

14 <xs:element name="Result" type="Uris" minOccurs="0">

15 <xs:annotation>

16 <xs:documentation>List of top -k

URIs.</xs:documentation>

17 </xs:annotation>

18 </xs:element>

19 <xs:element name="Confidences" type="Confidences">

20 <xs:annotation>

21 <xs:documentation>List of confidences , one for each

URI in Result , same order.</xs:documentation>

22 </xs:annotation>

23 </xs:element>

24 <xs:element name="Message" type="xs:string"

minOccurs="0">

25 <xs:annotation>

26 <xs:documentation>Server message as String , for

display to user.</xs:documentation>

27 </xs:annotation>

28 </xs:element>

29 <xs:element name="Code" type="xs:int" minOccurs="0">

30 <xs:annotation>

31 <xs:documentation>

32 # 0: OK, data attached .

33 # 1: Internal OkkamCore error caused by JAXBException.

34 # 2: Internal OkkamCore error with the database (SQLException).

35 # 3: No Query Specified. The input query was empty.

36 # 4: Processing OK, but no results were found.</xs:documentation>

37 </xs:annotation>

38 </xs:element>

39 </xs:all>

40 </xs:complexType>

41 </xs:element>

42 <xs:complexType name="Uris">

43 <xs:annotation>

44 <xs:documentation>List of String</xs:documentation>

45 </xs:annotation>

165

166 APPENDIX A. XML SCHEMAS OF API DATA STRUCTURES

46 <xs:sequence>

47 <xs:element name="Uri" type="xs:string" minOccurs="0"

maxOccurs="unbounded"/>

48 </xs:sequence>

49 </xs:complexType>

50 </xs:schema>

A.3 EntityProfile

Listing A.3: The EntityProfile XML Schema

1 <?xml version="1.0" encoding ="UTF -8"?>

2 <xs:schema xmlns:xs="http://www.w3.org /2001/ XMLSchema"

elementFormDefault="qualified"

attributeFormDefault="unqualified">

3 <xs:element name="EntityProfile">

4 <xs:annotation>

5 <xs:documentation>Comment describing your root

element </xs:documentation>

6 </xs:annotation>

7 <xs:complexType>

8 <xs:all>

9 <xs:element name="Labels">

10 <xs:complexType>

11 <xs:complexContent>

12 <xs:extension base="LabelsType"/>

13 </xs:complexContent>

14 </xs:complexType>

15 </xs:element>

16 <xs:element name="References" type="ReferencesType"

minOccurs="0"/>

17 <xs:element name="AssertionsOfIdentity"

type="AssertionsOfIdentityType" minOccurs="0"/>

18 <xs:element name="AlternativeIdentifiers"

type="AlternativeIdentifiersType" minOccurs="0"/>

19 <xs:element name="OkkamURI" type="xs:anyURI"/>

20 <xs:element name="PreferredIdentifier" type="xs:string"

minOccurs="0"/>

166

A.3. ENTITYPROFILE 167

21 <xs:element name="WordnetIdentifier" type="xs:string"

minOccurs="0"/>

22 </xs:all>

23 </xs:complexType>

24 </xs:element>

25 <xs:complexType name="LabelsType">

26 <xs:annotation>

27 <xs:documentation>List of labels</xs:documentation>

28 </xs:annotation>

29 <xs:sequence>

30 <xs:element name="Label" type="LabelType"

maxOccurs="unbounded"/>

31 </xs:sequence>

32 </xs:complexType>

33 <xs:complexType name="ReferencesType">

34 <xs:annotation>

35 <xs:documentation>List of references</xs:documentation>

36 </xs:annotation>

37 <xs:sequence>

38 <xs:element name="Reference" type="ReferenceType"

minOccurs="0" maxOccurs="unbounded"/>

39 </xs:sequence>

40 </xs:complexType>

41 <xs:complexType name="AssertionsOfIdentityType">

42 <xs:annotation>

43 <xs:documentation>List of URI</xs:documentation>

44 </xs:annotation>

45 <xs:sequence>

46 <xs:element name="okkamuri" type="xs:anyURI" minOccurs="0"

maxOccurs="unbounded"/>

47 </xs:sequence>

48 </xs:complexType>

49 <xs:complexType name="AlternativeIdentifiersType">

50 <xs:annotation>

51 <xs:documentation>List of String</xs:documentation>

52 </xs:annotation>

53 <xs:sequence>

54 <xs:element name="Identifier" type="xs:string"

167

168 APPENDIX A. XML SCHEMAS OF API DATA STRUCTURES

minOccurs="0" maxOccurs="unbounded"/>

55 </xs:sequence>

56 </xs:complexType>

57 <xs:complexType name="LabelType">

58 <xs:annotation>

59 <xs:documentation>Representation of a name/value pair in

the profile </xs:documentation>

60 </xs:annotation>

61 <xs:all>

62 <xs:element name="prefix" type="xs:string"/>

63 <xs:element name="value" type="xs:string"/>

64 </xs:all>

65 </xs:complexType>

66 <xs:complexType name="ReferenceType">

67 <xs:annotation>

68 <xs:documentation>A reference</xs:documentation>

69 </xs:annotation>

70 <xs:sequence>

71 <xs:element name="type" type="xs:string"/>

72 <xs:element name="value" type="xs:string"/>

73 </xs:sequence>

74 </xs:complexType>

75 </xs:schema>

168

This document and the work described in it was (almost) entirely made with Open Source Software:

• LATEX(http://www.latex-project.org)

• TeXnicCenter (http://texniccenter.org)

• JabRef (http://jabref.sourceforge.net)

• Miktex (http://miktex.org)

• Ghostscript (http://pages.cs.wisc.edu/~ghost/)

• R (http://www.r-project.org and [75])

• JavaNCSS (http://www.kclee.de/clemens/java/javancss)

• The GNU Image Manipulation Program (GIMP) (http://www.gimp.org)

• OpenOffice (http://www.openoffice.org)

• The SUN Java Developer’s Kit (http://java.sun.com)

• The Eclipse IDE (http://www.eclipse.org)

• JBoss (http://www.jboss.org)

• Apache Tomcat and numerous other tools and libraries of the Apache Project (http://www.

apache.org)

• Subversion (http://subversion.tigris.org)

• GNU/Linux (http://www.gnu.org)

Consequently, the source code of the Okkam prototype as described in Chapter 5 has been

released as Open Source under the Mozilla Public License 1.1 (http://www.mozilla.org/MPL/

MPL-1.1.html), and this text and the contained artwork is released under the Creative Commons

Attribution License 3.0 (http://creativecommons.org/licenses/by/3.0/).

