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Abstract

In the field of statistical machine learning, the integration of kernel methods with
local information has been proposed through locality-improved kernels for Support
Vector Machines (SVM) that make use of prior information, local kernels and local
SVM that apply the SVM approach only on the subset of points close to the testing
one. Here we propose a novel family of operators on kernels able to integrate the local
information into any kernel without prior information obtaining quasi-local kernels.
The quasi-local kernels maintain the possibly global properties of the input kernel and
they increase the kernel value as the points get closer in the feature space of the input
kernel. The operators combine the input kernel with a locality-dependent term, and
accept two parameters that regulate the width of the exponential influence of points
in the locality-dependent term and the balancing between the two terms. Experiments
carried out with data-dependent systematic selection of the parameters of the operators
(i.e. without the need for model selection phase on the obtained kernels) on a total of
33 datasets with different characteristics and application domains, achieve very good
results.

Keywords: SVM, locality, kernel methods, operators on kernels, local SVM.

1 Introduction

Support Vector Machines [8] (SVM) are state-of-the-art classifiers and are now widely used
and applied over a wide range of domains. Reasons for SVM’s success are multiple: the
presence of an elegant bound on generalization error [33], the fact that SVM is based on
kernel functions k(·, ·) representing the scalar product of the sample mapped in a Hilbert
space and the relative lightweight computational cost of the model in the evaluation phase.
For a review on SVM and kernel methods the reader can refer to [28].

Locality in classification plays a crucial role [6]. Locality is invoked in non evenly
distributed datasets and, more generally, where the properties of a sample can be more
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precisely estimated by analysing only the samples of the sub-region in which it lies. For
example, one of the reasons for the success of the K-Nearest Neighbors (KNN)1 algorithm
is the fact that it is deeply based on the notion of locality. In kernel methods, locality
has been introduced with two meanings: i) as local relationship between the features, i.e.
local feature dependence, adding prior information reflecting it, ii) as distance proximity
between points, i.e. local points dependence, enhancing the kernel values for points that
are close to each other and/or penalizing the points that are far from each other. The first
meaning has been exploited by locality-improved kernels, the second by local kernels and
local SVM.

Locality-improved kernels [28] take into account the prior knowledge of the local struc-
ture in data such as local correlation between pixels in images. The way the prior in-
formation is integrated into the kernel depends on the specific task but, in general, the
kernel increases similarity and correlation of selected features that are considered locally
related. Locality-improved kernels were successfully applied on image processing [27] and
on bioinformatics tasks [35] [12].

Local kernels do not make use of prior information and when the distance between a
test point and a training point tends to infinity the value of the kernel is constant and
independent of the test point [2] [29]. A popular local kernel is the radial basis function
(RBF) kernel that tends to zero for points whose distance is high with respect to a width
parameter that regulates the degree of locality. On the other hand, distant points influence
the value of global kernels (e.g. linear, polynomial and sigmoidal kernels). Local kernels
and in particular the RBF kernel show very good classification capability but they can
suffer from the curse of dimensionality problem [3] and they can fail with datasets that
require long range extrapolation. An attempt to mix the good characteristics of local and
global kernels is reported in [29] where RBF and polynomial kernels are considered for SVM
regression.

Local SVM was independently proposed by Blanzieri and Melgani [4] [5] and by Zhang
et al. [34] and applied respectively to remote sensing and visual recognition tasks with good
results. The main idea of local SVM is to build at evaluation time a sample-specific maxi-
mal marginal hyperplane based on the set of K-neighbors. In [4] it is also proved that the
local SVM has chance to have a better bound on generalization with respect to SVM. Local
SVM can be seen as representative of the larger class of local learning algorithms [6] [10]
that try to locally adjust the separating surface considering the characteristics of each re-
gion of the training set, the assumption being that important properties of a test point can
be more precisely determined by the local neighbors rather than by the whole training set.
Local SVM suffers from the high computational cost of the testing phase that comprises for
each sample the selection of the K nearest neighbors and the computation of the maximal
separating hyperplane, and from the problem of tuning the K parameter. The first draw-
back prevents the scalability of the method for large datasets, the second makes necessary
complex tuning procedures.

1From now on, for notational reasons, we refer to the K parameter of KNN based methods with upper-
case K, reserving lower-case k for denoting kernel functions.
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In this work we present a family of operators that transform any existing input kernel
into a kernel that integrates locality information. The idea is to balance the input kernel
with a local kernel whose value increases as the points get closer in the feature space of the
input kernel. A very simple example is the balancing between the linear kernel and the RBF
kernel, where the RBF kernel is local in the feature space of the linear kernel coinciding
in this case with the input space. The operators make it possible to systematically add
locality information to kernel functions preserving the positive definite property in order
to take advantage of the spatial relationships between samples. The meaning of locality
we exploit is not only based on the distance on the input space but, more generally, relies
on the distance in the feature space which is accessible through the scalar product, namely
the kernel. This new family of kernels, opportunely tuned, maintains the original kernel
behaviour for non-local regions, while increasing the values of the kernel for points in regions
where the local information is more important. In this way we aim to take advantage of both
locality information and the long-range extrapolation ability of global kernels, alleviating
also the curse of dimensionality problem of the local kernels and balancing the compromise
between interpolation and generalization capability. Moreover, being a kernel applied on
normal SVM, this approach overcomes the computational limitation of local SVM.

The paper is organized as follows. After recalling in section 2 some preliminaries on
SVM, kernel functions and local SVM, in section 3 we present the new family of operators
that produces quasi-local kernels. The artificial example presented in section 4 illustrates
intuitively how the quasi-local kernels work. In section 5 we propose a first experiment
on 20 datasets with the double purpose of investigating the classification performance and
of identifying the most suitable systematic settings of the quasi-local kernel parameters.
The most promising quasi-local kernels with the chosen systematic parameters settings
are applied in the experiment of section 6 to 13 large classification datasets. Finally, in
section 7, we draw some conclusions.

2 SVM and kernel methods preliminaries

Support vector machines (SVMs) are classifiers based on statistical learning theory [33].
The decision rule of an SVM is SV M(x) = sign(〈w,Φ(x)〉F + b) where Φ(x) : Rp → F is a
mapping in some transformed feature space F with inner product 〈·, ·〉F . The parameters
w ∈ F and b ∈ R are such that they minimize an upper bound on the expected risk while
minimizing the empirical risk. The minimization of the complexity term is achieved by
minimizing the quantity 1

2 · ‖w‖2, which is equivalent to maximizing the margin between
the classes. The empirical risk term is controlled through the following set of constraints:

yi (〈w,Φ(xi)〉F + b) ≥ 1− ξi with ξi ≥ 0 and i = 1, . . . , N (1)

where yi ∈ {−1,+1} is the class label of the i -th nearest training sample. Such constraints
mean that all points need to be either on the borders of the maximum margin separating
hyperplane or beyond them. The margin is required to be 1 by a normalization of distances.
The presence of the slack variables ξi’s allows some misclassification on the training set. By
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reformulating such an optimization problem with Lagrange multipliers αi (i = 1, . . . , N),
and introducing a positive definite kernel function k(·, ·) that substitutes the scalar product
in the feature space 〈Φ(xi), Φ(x)〉F it is possible to obtain a decision rule expressed as:

SV M(x) = sign

(
N∑

i=1

αiyik(xi, x) + b

)

where training points with nonzero Lagrange multipliers are called support vectors. The
introduction of the positive definite (PD) kernels avoids the explicit definition of the feature
space F and of the mapping Φ [28] [9]. A kernel is PD if it is the scalar product in some
Hilber space, i.e. the kernel matrix is symmetric and positive definite2.

The maximal separating hyperplane defined by the SVM has been shown to have im-
portant generalization properties and nice bound on the VC dimension [33]. In particular
we refer to the following theorem:

Theorem 1 (Vapnik [33] p.139). The expectation of the probability of test error for a
maximal separating hyperplane is bounded by

EPerror ≤ E

{
min

(
m

l
,
1
l

[
R2

∆2

]
,
p

l

)}

where l is the cardinality of the training set, m is the number of support vectors, R is the
radius of the sphere containing all the samples, ∆ = 1/|w| is the margin, and p is the
dimensionality of the input space.

Theorem 1 states that the maximal separating hyperplane can generalize well as the
expectation on the margin is large (since a large margin minimizes the R2

∆2 ratio).

2.1 Local and global basic kernels

Kernel functions can be divided in two classes: local and global kernels [29]. Following [2]
we define the locality of a kernel as:

Definition 1 (Local kernel). A PD kernel k is a local kernel if, considering a test point x
and a training point xi, we have that

lim
‖x−xi‖→∞

k(x, xi) → ci (2)

with ci constant and not depending on x. If a kernel is not local, it is considered to be
global.

In this work we will consider as baseline and as inputs of the operators we will introduce
in the next section, the linear kernel klin, the polynomial kernel kpol, the radial basis function

2In the present work, we frequently refer to PD kernels simply as kernels.
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kernel krbf and the sigmoidal kernel ksig. We refer to these four kernels as reference input
kernels and we recall their definitions:

klin(x, x′) = 〈x, x′〉 kpol(x, x′) = (γpol · 〈x, x′〉+ rpol)d

krbf (x, x′) = exp(−γrbf · ||x− x′||2) ksig(x, x′) = tanh(γsig · 〈x, x′〉+ rsig)

with γpol, γrbf , γsig > 0, rpol, rsig ≥ 0 and d ∈ N.
It is simple to show that the only local kernel is krbf since for ‖x − xi‖ → ∞ we have

that krbf (x, xi) → 0 (i.e. a constant that does not depend on x), whereas klin, kpol and ksig

are global.
For the radial basis function kernel krbf we set the parameter γrbf with the inverse of

the 0.1 quantile of the distribution of ‖xi − xj‖, namely the Euclidean distances between
every pair of samples xi, xj in the training set [30]. In this way the width of the krbf is of
the same order of magnitude of the distance between points.

It is known that the linear, polynomial and radial basis function kernels are proper
kernels since they are PD. It has been shown, however, that the sigmoidal kernel is not
PD [28]; nevertheless it has been successfully applied in a wide range of domains as discussed
in [25]. In [22] is showed that the sigmoidal kernel can be conditionally positive definite
(CPD) for certain parameters and for specific inputs. Since CPD kernels can be safely used
for SVM classification [26], the sigmoidal kernel is suitable for SVM only on a subset of
the parameters and input space. In this work we use the sigmoidal kernel being aware of
its theoretical limitations, which can be reflected in non-optimal solutions and convergence
problems in the SVM application.

2.2 Local SVM

The method [4] combines locality and searches for a large margin separating surface by
partitioning the entire transformed feature space through an ensemble of local maximal
margin hyperplanes. In order to classify a given point x′ of the p-dimensional input feature
space, we need first to find its K nearest neighbors in the transformed feature space F and,
then, to search for an optimal separating hyperplane only over these K nearest neighbors.
In practice, this means that an SVM classifier is built over the neighborhood of each test
point x′. Accordingly, the constraints in (1) become:

yrx(i)

(
w · Φ(xrx(i)) + b

) ≥ 1− ξrx(i), with i = 1, . . . , K

where rx′ : {1, . . . , N} → {1, . . . , N} is a function that reorders the indexes of the N training
points defined recursively as:





rx′(1) = argmin
i=1,...,N

‖Φ(x)− Φ(x′)‖2

rx′(j) = argmin
i=1,...,N

‖Φ(x)− Φ(x′)‖2 with i 6= rx′(1), . . . , rx′(j − 1) for j = 2, . . . , N

In this way, xrx′ (j) is the point of the set X in the j-th position in terms of distance from
x′ and the following holds: j < K ⇒ ‖Φ(xrx′ (j)) − Φ(x′)‖ ≤ ‖Φ(xrx′ (K)) − Φ(x′)‖ because
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of the monotonicity of the quadratic operator. The computation is expressed in terms of
kernels as:

||Φ(x)− Φ(x′)||2 = Φ2(x) + Φ2(x′)− 2 · 〈Φ(x),Φ(x′)〉F =
= 〈Φ(x), Φ(x)〉F + 〈Φ(x′),Φ(x′)〉F − 2 · 〈Φ(x), Φ(x′)〉F = k(x, x) + k(x′, x′)− 2 · k(x, x′).

(3)
In the case of the linear kernel, the ordering function can be built using the Euclidean
distance, whereas if the kernel is not linear, the ordering can be different. If the kernel is
Gaussian the ordering function is equivalent to using the Euclidean metric.

The decision rule associated with the proposed method is:

KNNSVM(x) = sign

(
K∑

i=1

αrx(i)yrx(i)k(xrx(i), x) + b

)
.

For K = N , the KNNSVM method is the usual SVM whereas, for K = 2, the method
implemented with the linear kernel corresponds to the standard 1-NN classifier. Conven-
tionally, in the following, we assume that also 1-NNSVM is equivalent to 1-NN.

The method can be seen as a KNN classifier implemented in the input or in a trans-
formed feature space with a SVM decision rule or as a local SVM classifier. In this second
case the bound on the expectation of the probability of test error becomes:

EPerror ≤ E

{
min

(
m

K
,

1
K

[
R2

∆2

]
,

p

K

)}

where m is the number of support vectors. Whereas the SVM has the same bound with
K = N , apparently the three quantities increase due to K < N . However, in the case
of KNNSVM the ratio R2

∆2 decreases because: 1) R (in the local case) is smaller than the
radius of the sphere that contains all the training points; and 2) the margin ∆ increases
or at least remains unchanged. The former point is easy to show, while the second point
(limited to the case of linear separability) is stated in the following theorem [5].

Theorem 2. Given a set of N training points X = {xi ∈ Rp}, each associated with a label
yi ∈ {−1, 1}, over which is defined a maximal margin separating hyperplane with margin
∆X , if for an arbitrary subset X ′ ⊂ X there exists a maximal margin hyperplane with
margin ∆X′ then the inequality ∆X′ ≥ ∆X holds. For the proof see [5].

As a consequence of Theorem 2 the KNNSVM has the potential of improving over
both KNN and SVM as empirically shown in [4] and [34] in remote sensing and visual
applications.

Apart from the SVM parameters (C and the kernel parameters), the only parameter of
KNNSVM that needs to be tuned is the number of neighbors K. K can be estimated on
the training set among a predefined series of natural numbers (usually a subset of the odd
numbers between 1 and the total number of points) choosing the value that shows better
predictive accuracy with a 10-fold cross validation approach. In this work, when we refer to
the KNNSVM classifier we assume that K is estimated in this way. In the cases in which
we use a particular a-priori value of K for the KNNSVM we explicitly mention it or denote
it directly with the specific number (e.g. 1-NNSVM).
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3 Operators that transform kernels into quasi-local kernels

In this section we introduce the operators we use to integrate the locality information into
existing kernels obtaining quasi-local kernels. An operator on kernels, generically denoted
as O, is a function that accepts a kernel as input and transforms it into another a kernel, i.e.
O is an operator on kernels if O k is a kernel (supposing that k is a kernel). Note that we
are not limiting the definition of operator to linear function as sometimes the word operator
implies. A lot of operators on kernels have been defined: examples can range from the simple
multiplication by a constant (Oc k)(x, x′) = c · k(x, x′) which is a linear operator, to more
complex operators such as exponentiation (Oe k)(x, x′) = exp(k(x, x′)), since c ·k(x, x′) and
exp(k(x, x′)) are kernels [13] provided that k is a kernel. Also the identity function can be
thought of as an operator on kernel such that (I k)(x, x′) = k(x, x′).

Our operators produce kernels that we call quasi-local kernels, combining the input
kernel with another kernel based on the distance in the feature space of the input kernel.
The formal definition of quasi-locality will be discussed in subsection 3.4. In the case of
a global kernel as input of the operators, the intuitive effect of the quasi-locality of the
resulting kernels is that they are not local for definition 1 but at the same time the kernel
score is significantly increased for samples that are close in the feature space of the input
kernel. In this way the kernel can take advantage from both the locality in the feature
space and the long-range extrapolation ability of the global input kernel.

We first construct a kernel to capture the locality information with any kernel function;
such a family of kernels takes inspiration from the RBF kernel, substituting the Euclidean
distance with the distance in the feature space.

kexp(x, x′) = exp
(
−||Φ(x)− Φ(x′)||2

σ

)
σ > 0

where Φ is a mapping between the input space Rp and the feature space F . The feature
space distance ||Φ(x)− Φ(x′)||2 is dependent on the choice of kernel (see (3)):

||Φ(x)− Φ(x′)||2 = k(x, x) + k(x′, x′)− 2 · k(x, x′).

The kexp kernel can be obtained with the first operator, named Eσ, that accepts a
positive parameter σ applied on a kernel k producing Eσ k = kexp. Explicitly, the Eσ

operator is defined as:

(Eσ k)(x, x′) = exp
(−k(x, x)− k(x′, x′) + 2k(x, x′)

σ

)
σ > 0. (4)

Note that Eσ klin = krbf so as a special case we have the RBF kernel. However, the kernels
obtained with Eσ consider only the distance in the feature space without including explicitly
the input kernel. For this reason Eσ k is not a quasi-local kernel.

In order to overcome the limitation of Eσ which completely drops the global information,
the idea is to weight the input kernel with the local information to obtain a real quasi-local
kernel. So we include explicitly the input kernel in the output of the following operator:

(Pσ k)(x, x′) = k(x, x′) · (Eσk)(x, x′) σ > 0.
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Observing that the Eσ k kernel can assume values only between 0 and 1 (since it is an
exponential with negative exponent) and that the higher the distance in the feature space
between samples the lower the value of the Eσ k kernel, the idea of Pσ is to exponentially
penalize the basic kernel k with respect to the feature space distance between x and x′.

An opposite possibility is to amplify the values of input kernels in the cases in which
the samples contain local information. This can be done simply by adding the Eσ k kernel
to the input one.

(Sσ k)(x, x′) = k(x, x′) + (Eσk)(x, x′) σ > 0.

However, since Eσ gives kernels that can assume at most the value of 1 while the input
kernel in the general case does not have an upper bound, it is reasonable to weight the
Eσ operator with a constant reflecting the order of magnitude of the values that the input
kernel can assume in the training set. We call this parameter η and the new operator is:

(Sσ,η k)(x, x′) = k(x, x′) + η · (Eσk)(x, x′) σ > 0, η ≥ 0.

A different formulation of the Pσ operator that maintains the product form but adopts the
idea of amplifying the local information is:

(PSσ k)(x, x′) = k(x, x′)
[
1 + (Eσk)(x, x′)

]
σ > 0, η ≥ 0.

Also in this case the parameter η that controls the weight of the Eσ k kernel is introduced:

(PSσ,η k)(x, x′) = k(x, x′)
[
1 + η · (Eσk)(x, x′)

]
σ > 0, η ≥ 0.

The quasi-local kernels are more complicated then the corresponding input kernels, since
it is necessary to evaluate k(x, x), k(x′, x′), k(x, x′) and to perform a couple of addi-
tion/multiplication operation and an exponentiation instead of the evaluation of k(x, x′)
only. However, this is a constant computational overhead in the kernel evaluation phase,
that does not affect the complexity of the SVM algorithm either in the training or in the
testing phase.

Intuitively all the kernels produces by Sσ, Sσ,η, PSσ and Sσ,η are quasi-local since they
combine the original kernel with the locality information in its feature space. We will
formalise this in subsection 3.4, while in the following subsection we will prove that the
operators preserve the PD property of the input kernel.

3.1 The operators preserve the PD property of the kernels

We recall three well-known properties of PD kernels (for a comprehensive discussion of PD
kernels refer to [28] or [9]):

Proposition 1 (Some properties of PD kernels).

(i) the class of PD kernels is a convex cone, i.e. if α1, α2 ≥ 0 and k1, k2 are PD kernels
then α1k1 + α2k2 is a PD kernel;
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(ii) the class of PD kernels is closed under pointwise convergence, i.e. if k(x, x′) :=
limn→∞ kn(x, x′) exists for all x, x′, then k is a PD kernel;

(iii) the class of PD kernels is closed under pointwise product, i.e. if k1, k2 are PD kernels,
then (k1k2)(x, x′) := k1(x, x′) · k2(x, x′) is a PD kernel.

The introduced operators preserve the PD property of the kernels on which they are
applied, as stated in the following theorem.

Theorem 3. If k is a PD kernel, then O k with O ∈ {Eσ, Pσ, Sσ, Sσ,η, PSσ, PSσ,η} is a
PD kernel.

Proof. It is straightforward to see that, for a PD kernel k, all the kernels resulting from
the introduced operators can be obtained using properties (i) and (iii) of Proposition 1,
provided that Eσ k is a PD kernel. So the only thing that remains to prove is that Eσ k is
PD. Decomposing the definition of (Eσ k)(x, x′) into three exponential functions we obtain:

(Eσ k)(x, x′) = exp
(

2k(x,x′)
σ

)
exp

(−k(x,x)
σ

)
exp

(−k(x′,x′)
σ

)

that can be written as:

(Eσ k)(x, x′) = (Oe 2k/σ)(x, x′) · f(x)f(x′)

where Oe 2k/σ is the exponentiation of the 2k/σ kernel, and f is a real valued function such
that f(x) = exp(−k(x, x)/σ). The first term is the exponentiation of a kernel multiplied by
a non-negative constant and, since the kernel exponentiation can be seen as the limit of the
series expansion of the exponential function which is the infinite sum of polynomial kernels,
for property (ii) we conclude that Oe 2k/σ is a PD kernel. Moreover, recalling from the
definition of PD kernels, that the product f(x)f(x′) is a PD kernel for all the real-valued
functions f defined in the input space [9] we conclude that Eσ k is a PD kernel.

Obviously, if the input of Eσ is a non PD kernel, also the resulting function cannot be,
in the general case, a PD kernel since the exponentiation operator is valid only for PD
kernels. So, in the case of the sigmoidal kernel as input kernel, the resulting kernel is still
not ensured to be PD.

3.2 Properties of the operators

In order to understand how the operators modify the original feature space of the input
kernel we study the distances in the feature space of the quasi-local kernels. The new
feature space introduced by kernels produced by the operators is denoted with FO, the cor-
responding mapping function with ΦO and the distance between two input points mapped
in FO with distFO(x, x′) = m(ΦO(x), ΦO(x′)) where m is a metric in FO. Applying the
kernel trick for distances, we can express the squared distances in FO as:

dist2FO(x, x′) = ‖ΦO(x)− ΦO(x′)‖2 = (O k)(x, x) + (O k)(x′, x′)− 2(O k)(x, x′). (5)
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For O = Eσ, since it is clear that distF (x, x) = 0 for every x, we can derive distFEσ
as

follows:

dist2FEσ
(x, x′) = exp

(
−dist2F (x,x)

σ

)
+ exp

(
−dist2F (x′,x′)

σ

)
− 2 exp

(
−dist2F (x,x′)

σ

)
=

= 2
[
1− exp

(
−dist2F (x,x′)

σ

)]
.

(6)

Note that dist2FEσ
(x, x′) ≤ 2 for every pair of samples, and so the distances in FEσ are

bounded even if they are not bounded in F .
Substituting Pσ, Sσ,η and PSσ,η in equation (5), an taking into account equation (6),

the distances in FO for the quasi-local kernels are:

dist2FPσ
(x, x′) = dist2F (x, x′) + k(x, x′) dist2FEσ

(x, x′);
dist2FSσ,η

(x, x′) = dist2F (x, x′) + η · dist2FEσ
(x, x′);

dist2FPSσ,η
(x, x′) = (1 + η) dist2F (x, x′) + η · k(x, x′) dist2FEσ

(x, x′) =
= dist2F (x, x′) + η · dist2FPσ

(x, x′).

(7)

We can notice that the distances in FEσ and in FSσ,η do not contain explicitly the kernel
function but they are based only on the distances in F . So we can further analyse the
behaviour of the distances in FEσ and FSσ,η with the following proposition.

Proposition 2. The operators Eσ and Sσ,η preserve the ordering on distances in F . For-
mally

distF (x, x′) < distF (x, x′′) ⇒ distFO(x, x′) < distFO(x, x′′)

for O ∈ {Eσ,Sσ,η} and for every sample x, x′, x′′.

Proof. It follows directly from the observations that distFEσ
(x, x′) and distFSσ,η

(x, x′) are
defined with strictly increasing monotonic functions, equations (6) and the second equation
in (7) respectively, and that distF is always non-negative.

3.3 The operator parameters

There are two parameters for the operators on kernels through which we obtain the quasi-
local kernels: σ, which is present in Eσ and consequently in all the operators, and η, which
is present in Sσ,η and PSσ,η (notice that Sσ and PSσ can be seen as special cases of Sσ,η

and PSσ,η with η = 1).
The role of these two parameters will be illustrated in the next section. Here we propose

some data-dependent settings that do not require cross validation on the training set. In
other words, the σ and η parameters are chosen on the basis of statistical properties of the
datasets rather then tuning them with an expensive model selection phase. This choice
privileges the reduction of the computational effort of applying the quasi-local kernels on
an input kernel instead of the potential gain in terms of classification accuracy provided by
model selection.

The dataset-dependent estimation of σ take inspiration from the γrbf estimation, since σ
and γrbf play a similar role of controlling the width of the kernel. However, differently from
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the krbf kernel, the Eσ operator uses distances in the feature space F (except for the special
case k = klin). So two families of estimated values for σ are possible: one based on the
distances in the feature space (we call this family σF ) and the other based on the distances in
the input space (we call this second family σR

p
). In particular, denoting with qh[‖x−x′‖Z ]

the h quantile of the distribution of the distance in the Z space between every pair of points
x, x′ in the training dataset, we consider two possibilities for σ: σR

p

.1 = q.1[‖x− x′‖Rp
] and

σF.1 = q.1[‖x − x′‖F ]. In the following we will omit the “Rp” apex for denoting the input
space, so σR

p

.1 will be denoted simply by σ.1.
For η we choose a broad spectrum of possibility:

η.1 = q.1[‖x− x′‖Rp
] η.1r =

√
η.1

2 ηF.1 = q.1[‖x− x′‖F ]

η.5 = q.5[‖x− x′‖Rp
] η.5r =

√
η.5

2 ηF.5 = q.5[‖x− x′‖F ]

η.9 = q.9[‖x− x′‖Rp
] η.9r =

√
η.9

2 ηF.9 = q.9[‖x− x′‖F ]
Note that also for η we omit the apex Rp, similarly to the convention for σ.1.

3.4 Quasi-local kernels

In this section we formally introduce the notion of quasi-local kernels showing that kernels
produced by the Sσ, Sσ,η, PSσ and Sσ,η are quasi-local kernels. Firstly we introduce the
concept of locality with respect to a function:

Definition 2. Given a PD kernel k with implicit mapping function Φ : Rp 7→ F (namely
k(x, x′) = 〈Φ(x), Φ(x′)〉), and a function Ψ : Rp 7→ FΨ, k is local with respect to Ψ if there
exists a function Ω : FΨ 7→ F such that the following holds:

1. 〈Φ(x), Φ(xi)〉 = 〈Ω(Ψ(x)), Ω(Ψ(xi))〉
2. lim

‖u−vi‖FΨ
→∞

〈Ω(u), Ω(vi)〉 = ci with u = Ψ(x), vi = Ψ(xi) for some x, xi ∈ Rp and ci

constant and not depending on u.

In other terms, the notion of locality referred to samples in input space (Definition 1), is
modified here in order to consider the locality in any space accessible from the input space
through a corresponding mapping function. Notice that, as particular cases, we have that
every local kernel is local with respect to the identity function and with respect to its own
implicit mapping function.

With the next theorem we see that the Eσ formally respect the idea of producing kernels
that are local with respect to the feature space of the input kernel.

Theorem 4. If k is a PD kernel with the implicit mapping function Φ : Rp 7→ F , then
Eσ k is local with respect to Φ.

Proof. We have already shown that Eσ k is a PD kernel given that k is a PD kernel (see
Theorem 3). It remains to show that Eσ k is local with respect to Φ.

First we need to show that (Definition 2 point 1), denoted with Φ′ : Rp 7→ F ′ the implicit
mapping function of Eσ k, there exists a function Ω : F 7→ F ′ such that Φ′(x) = Ω(Φ(x)).
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Taking as Ω : F 7→ F ′ the implicit mapping of the kernel exp
(
−‖u−vi‖

σ

)
with u = Φ(x),

vi = Φ(xi) with x, xi ∈ Rp we have

〈Ω(u), Ω(vi)〉 = exp
(
−‖u− vi‖

σ

)
. (8)

Using the hypothesis on u and vi it becomes:

exp
(
−‖Φ(x)− Φ(xi)‖

σ

)
= 〈Ω(Φ(x)), Ω(Φ(xi))〉. (9)

The implicit mapping function of Eσ k is Φ′ and so

〈Φ′(x), Φ′(xi)〉 = (Eσ k)(x, xi) (10)

Moreover since (Eσ k)(x, xi) = exp
(
−‖Φ(x)−Φ(xi)‖

σ

)
for definition of Eσ (see equation (4)),

substituting equation (9) into (10) we conclude that

〈Φ′(x),Φ′(xi)〉 = 〈Ω(Φ(x)),Ω(Φ(xi))〉.
Second, we need to show that (Definition 2 point 2) 〈Ω(u), Ω(vi)〉 → ci with ci constant

for ‖Ω(u) − Ω(vi)‖ → ∞. From the equation (8), it is clear that, as the distance between
u = Φ(x) and vi = Φ(xi) tend to infinity, the kernel value is equal to the constant 0
regardless of x.

Now we can define the quasi-locality property of a kernel.

Definition 3 (Quasi-local kernel). A PD kernel k is a quasi-local kernel if k = f(kinp, kloc)
where kinp is a PD kernel with implicit mapping function Φ : Rp 7→ F , kloc is a PD kernel
which is local with respect to Φ and f is a function involving legal and non trivial operations
on PD kernels.

For legal operations on kernels we mean operations preserving the PD property. For
non trivial operations we intend operations that always maintain the influence of all the
input kernels in the output kernel; more precisely a function f(k1, k2) does not introduce
trivial operations if there exists two kernels k′ and k′′ such that f(k′, k2) 6= f(k1, k2) and
f(k1, k

′′) 6= f(k1, k2). Notice that the kinp kernel of the definition corresponds to the input
kernel of the operator that produces the quasi-local kernel k.

Theorem 5. If k is a PD kernel, then Sσ k, Sσ,η k, PSσ k and Sσ,η k are quasi-local kernels.

Proof. Theorem 4 already states that Eσ k is a PD kernel which is local with respect to the
implicit mapping function Φ of the kernel k which is PD for hypothesis. It is easy to see that
all the kernels resulting from the introduced operators can be obtained using properties (i)
and (iii) of Proposition 1 starting from the two PD kernels k and Eσ k, and thus Sσ k, Sσ,η k,
PSσ k and Sσ,η k are PD kernels obtained with legal operations. Moreover the properties (i)
and (iii) of Proposition 1 introduce multiplications and sums between kernels and between
kernels and constant. The sums introduced by the operators are always non trivial because
they always consider positive addends, and so it is for the multiplications because they
never consider null factors (the introduced constants are non null for definition).
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Both quasi-local kernels and KNNSVM classifiers are based on the notion of locality in
the feature space. However, two main theoretical differences can be found between them.
The first is that in KNNSVM locality is included directly, considering only the points that
are close to the testing point, while for the quasi-local kernels the information of the input
kernel is only balanced with the local information. The second consideration concerns the
fact that KNNSVM has a variable but hard boundary between the local and non local
points, while Sσ,η and PSσ,η produce kernels whose locality decreases exponentially but in
a continuous way.

4 Intuitive behaviour of quasi-local kernels

0

1.5

0 1

y

x

(a) klin and krbf

0

1.5

0 1

y

x

(b) Sσ,η klin varying η

0

1.5

0 1

y

x

(c) Sσ,η klin varying σ

Figure 1: The separating hyperplanes for a two-feature hand-built artificial datasets defined
by the application of the SVM (all with C = 3) with (a) linear kernel klin and RBF kernel
krbf (with γrbf = 150), (b) the Sσ,η klin quasi-local kernel with fixed σ (σ = 1/150 =
1/γrbf ) and variable η (η = 106, 50, 10, 1, 0.5, 0.1, 0.05, 0.03, 0.01, 0.005, 0.001, 0.000001),
and (c) the Sσ,η klin quasi-local kernel with fixed η (η = 0.05) and variable σ (σ =
1/5000, 1/2000, 1/1000, 1/500, 1/300, 1/150, 1/100).

The operators on kernels defined in the previous section aim to modify the behaviour
of an input kernel k in order to produce a kernel more sensitive to local information in the
feature space, maintaining however the original behaviour for regions in which the locality
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is not important. In addition the η and σ parameters control the balance between the input
kernel k and its local reformulation Eσ k, in other words the effects of the local information.

These intuitions are highlighted in Figure 1 with an example that illustrates the ef-
fects of the Sσ,η operator on the linear kernel klin using a two-feature hand-built artificial
dataset. We chose the linear kernel because its effects are easily recognizable in plots. The
transformed kernel is:

(Sσ,η klin)(x, x′) = klin(x, x′) + η · (Eσ klin)(x, x′) = klin(x, x′) + η · krbf (x, x′) (11)

with γrbf = 1/σ. So the Sσ,η operator on the klin kernel gives a linear combination of klin

and krbf . Figure 1(a) shows the behaviour of only the global term klin and of only the local
term Eσ klin = krbf . Figure 1(b) illustrates what happens when the local and the global
terms are balanced with different values of η and a fixed σ. Figure 1(c) shows the behaviour
of the separating hyperplane with a fixed balancing factor η but varying the σ parameter.

The η parameter regulates the influence on the separating hyperplane of the local term
of the quasi-local kernel. In fact, in Figure 1(b), we see that all the planes lie between
the input kernel (klin, obtained with η → 0 from Sσ,η klin) and the local reformulation
of the same kernel (obtained with η = 106 from Sσ,η klin which behaves as krbf since the
high value of η partially hides the effect of the global term). Moreover, since σ is low, the
modifications induced by different values of η are global, influencing all the regions of the
separating hyperplane.

We can observe in Figure 1(c), on the other hand, that σ regulates the magnitude
of the distortion from the linear hyperplane for the region containing points close to the
plane itself. The σ parameter in the Eσ klin term of Sσ,η klin has a similar role to the
K parameter in the local SVM approach (i.e. it regulates the range of the locality), even
though K defines an hard boundary between local and non local points instead of a negative
exponential one. It is important to underline that in the central region of the dataset the
separating hyperplane remains linear, highlighting that the kernel resulting from the Sσ,η

operator is able to modify the input kernel only where the information is local.
The example simply illustrates the intuition behind the proposed family of quasi-local

kernels, and in particular how the input kernel behaviour is maintained for the regions in
which the information is not local, so it is not important here to analyse the classification
accuracy. However, kernels that are sensitive to important local information but retain
properties of global input kernels, can also be obtained from very elaborated and well
tuned kernels defined on high-dimensionality input spaces. Notice that in this toy example
we are considering locality in input space since, using the linear kernel, the kernel trick is
not applied. In the following two sections we investigate the accuracy performances of the
quasi-local kernels in a number of real datasets using a data-dependent method of choosing
η and σ parameters.

5 Experiment 1

The first experiment consists in the evaluation of the accuracy of the quasi-local kernels
with different but systematic choices of σ and η parameters on quite a large number of
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datasets. The aim of the experiment is to understand which quasi-local kernels achieve
better results with respect to the four reference input kernels. The implementation of the
classifiers used in this work is based on the LibSVM library [7] version 2.84.

5.1 Experimental procedure

Table 1 lists the 20 datasets from different sources and scientific fields used in this exper-
iment; some datasets are multiclass and the number of features ranges from 2 to 7129.
All the datasets are collected and freely available online at the homepage of LibSVM [7].
They are small- or medium-size datasets permitting the Leave-One-Out (Loo) evaluation
strategy for the classifiers which is a special case of the Cross Validation technique [31]
consisting in testing every sample of the dataset with the classifier built on all the other
points and averaging the correct classification cases with the dataset cardinality. The Loo
is computationally expensive, but as shown in [32] it gives a good bound on the expectation
of error for SVM. We denote with ALoo(ω, D) the Loo accuracy obtained by the ω classifier
on the D dataset.

The reference input kernels for the quasi-local operators considered are the linear kernel
klin, the polynomial kernel kpol, the radial basis function kernel krbf and the sigmoidal
kernel ksig. The quasi-local kernels we tested are those resulting from the application of
the Eσ, Pσ, Sσ, Sσ,η, PSσ and PSσ,η operators on the reference input kernels. We also
evaluated the accuracy of the KNNSVM classifier with the same reference input kernels.

Dataset name source # classes train. size # features
iris UCI [1] 3 150 4

wine UCI [1] 3 178 13
leukemia TG99 [14] 2 38 7129

glass UCI [1] 6 214 9
heart Statlog [18] 2 270 13
sonar UCI [1] 2 208 60

liver-disorders UCI [1] 2 345 6
ionosphere UCI [1] 2 351 34
svmguide2 CWH03a [16] 3 391 20

breast-cancer UCI [1] 2 683 10
vowel UCI [1] 11 528 10

fourclass TKH96a [15] 2 862 2
australian Statlog [18] 2 690 14
diabetes UCI [1] 2 768 8
vehicle Statlog [18] 4 846 18
splice UCI [1] 2 1000 60

german-numer Statlog [18] 2 1000 24
a1a UCI [1] 2 1605 123
w1a JP98a [23] 2 2477 300

segment Statlog [18] 7 2310 19

Table 1: The 20 datasets for Experiment 1.

For the reference input kernels we set the parameters in the following way: for the
polynomial kernel d = 3, γpol = p and rpol = 0, for the sigmoidal kernel rsig = 0. For
γrbf we used the estimation described in section 2 based on the distribution of the Eu-

15



clidean distance between the samples of the datasets. For the quasi-local kernels obtained
with the operators, the parameters to set are η and σ and we use the data-dependent
estimation described in subsection 3.3; in particular we set η ∈ {η.1, η.5, η.9, η.1r, η.5r,
η.9r, ηF.1 , ηF.5 , ηF.9} and σ = σ.1 without extensively use σ = σF.1 since preliminary tests
gave bad results for this setting. The C parameter of SVM is set to 1. Finally, the
value of K in the KNNSVM classifier is automatically chosen on the training set between
K = {1, 3, 5, 7, 9, 11, 15, 23, 39, 71, 135, 263, 519, 1031} (the first 5 odd natural numbers fol-
lowed by the ones obtained with a base-2 exponential increment from 9) as described in
section 2.2. We also evaluate KNNSVM without automatic K choice, i.e. with a-priori
fixed values of K ∈ K.

In order to compare the quasi-local kernel results with the best potentially achievable
results of the KNNSVM locality-based classifier, we compute the K that maximizes the
Loo accuracy, denoted as K∗. Formally, K∗ is:

K∗ = argmin
K∈K

ALoo(KNNSVM, D).

So K∗NNSVM has the best Loo accuracy among the local SVM with fixed value of K, but
we remark that this a-posteriori choice of the best K for KNNSVM to obtain K∗NNSVM
is not a classification method because it uses information of test samples.

As stated above, the classification capability of an SVM with a kernel k on a specific
dataset D, is evaluated considering the Loo accuracy, denoted by ALoo(SV Mk, D) or simply,
assuming that we use a kernel always through the SVM algorithm, ALoo(k, D). To assess the
accuracy difference between two kernels in the same dataset, we can calculate the absolute
difference between the Loo accuracies (both expressed in percentage):

∆ALoo(k1, k2, D) = (ALoo(k1, D)−ALoo(k2, D)) · 100

In order to make the ∆ALoo independent from the absolute values of the accuracies, we also
introduce the relative percentage difference of Loo accuracy:

δALoo(k1, k2, D) =
∆ALoo(k1, k2, D)

ALoo(k2, D)

Applying δALoo(k1, k2, D) (or ∆ALoo(k1, k2, D)) on a considerable number of datasets D with
k1 = O k the kernel obtained with the application of the operator O on the input kernel k
and k2 = k, we can obtain a distribution of relative (or absolute) Loo accuracy differences
between O k and k. On this distribution we compute descriptive statistics; the mean, the
standard deviation (sd) and the skewness (skew). By means of box-plot diagrams, we show
the median, the first quartile, the third quartile, the whiskers (i.e. the maximum value
within the third quartile plus 1.5 times the interquartile range and the minimum value
within the first quartile minus 1.5 times the interquartile range), and the extreme or outlier
values (i.e. values that are over the third quartile plus 1.5 times the interquartile range or
under the first quartile minus 1.5 times the interquartile range). Moreover, we define νδ>t
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to be the percentage of datasets in which the relative percentage difference δALoo between
O k and k is greater than a fixed threshold t:

νδ>t =
|{Di | δALoo(O k, k, Di) > t}|

nD
· 100 i = 1, . . . , nD

where nD is the total number of datasets considered. Similarly the percentage of datasets
in which the relative percentage difference between O k and k is negative and lower than a
threshold -t is:

νδ<-t =
|{Di | δALoo(O k, k,Di) < -t}|

nD
· 100 i = 1, . . . , nD.

Representing the accuracy values of O k and k on a scatter plot, νδ>t and νδ<-t with t = 0
can be seen as the number of points lying over and under the bisector line (y = x), i.e. the
number of datasets in which the quasi-local kernels perform better and worse with respect
to the input kernels. With non-zero values for t, the graphical meaning of νδ>t and νδ<-t is
the number of points lying over y = x · (1 + t/100) and under y = x · (1− t/100).

5.2 Results

segment sonar vehicle splice

HH kη klin kpol krbf ksig klin kpol krbf ksig klin kpol krbf ksig klin kpol krbf ksig

I k .94 .89 .96 .89 .77 .64 .87 .76 .77 .46 .75 .66 .81 .54 .86 .81
Eσ k .96 .91 .96 .91 .87 .53 .73 .60 .75 .49 .75 .71 .86 .52 .55 .75
Pσ k .97 .91 .96 .92 .89 .64 .87 .77 .81 .46 .74 .70 .89 .54 .87 .81
Sσ k .97 .93 .97 .92 .84 .68 .87 .79 .79 .54 .76 .72 .85 .54 .86 .80
Sσ,η k η.1 .97 .93 .97 .92 .88 .71 .91 .79 .78 .54 .77 .73 .89 .80 .89 .80
Sσ,η k η.5 .97 .94 .97 .94 .89 .74 .90 .77 .82 .69 .79 .76 .89 .81 .89 .79
Sσ,η k η.9 .97 .96 .97 .94 .89 .78 .90 .77 .82 .74 .80 .80 .89 .82 .88 .81
Sσ,η k η.1r .96 .92 .97 .92 .88 .70 .88 .78 .79 .52 .76 .72 .88 .57 .87 .80
Sσ,η k η.5r .97 .93 .97 .93 .88 .72 .89 .77 .79 .56 .77 .73 .89 .57 .87 .80
Sσ,η k η.9r .97 .94 .97 .93 .88 .71 .89 .80 .81 .65 .77 .74 .89 .58 .87 .81
Sσ,η k ηF.1 .97 .90 .97 .90 .88 .64 .88 .77 .78 .46 .76 .67 .89 .54 .86 .81
Sσ,η k ηF.5 .97 .90 .97 .90 .89 .64 .88 .77 .82 .47 .77 .69 .89 .54 .86 .80
Sσ,η k ηF.9 .97 .91 .97 .92 .89 .65 .88 .77 .82 .47 .77 .70 .89 .54 .86 .81
PSσ k .97 .92 .97 .92 .89 .71 .88 .80 .83 .51 .76 .73 .88 .71 .88 .81
PSσ,η k η.1 .97 .92 .97 .92 .89 .79 .90 .76 .82 .52 .76 .72 .89 .84 .89 .80
PSσ,η k η.5 .97 .94 .98 .94 .89 .83 .90 .75 .81 .66 .79 .77 .89 .84 .89 .80
PSσ,η k η.9 .97 .95 .98 .95 .89 .87 .90 .81 .82 .71 .79 .80 .89 .84 .89 .79
PSσ,η k η.1r .98 .91 .97 .92 .90 .72 .90 .79 .82 .50 .76 .71 .89 .82 .89 .79
PSσ,η k η.5r .97 .93 .97 .93 .89 .73 .90 .77 .82 .53 .76 .73 .89 .83 .89 .78
PSσ,η k η.9r .97 .94 .98 .93 .90 .74 .90 .79 .81 .57 .77 .74 .89 .83 .89 .79
PSσ,η k ηF.1 .97 .90 .97 .90 .89 .65 .89 .77 .82 .46 .76 .67 .89 .56 .89 .81
PSσ,η k ηF.5 .97 .90 .97 .90 .89 .67 .91 .78 .81 .46 .77 .69 .89 .60 .89 .81
PSσ,η k ηF.9 .97 .91 .97 .92 .89 .67 .91 .77 .82 .47 .77 .71 .89 .65 .89 .81

Table 2: Experiment 1. Loo accuracy of input kernels ALoo(I k, D) and of quasi-local
kernels ALoo(O k, D) on segment, sonar, vehicle and splice datasets.

Table 2 presents the Loo accuracy values for the segment, sonar, vehicle and splice
datasets. These four datasets were arbitrarily selected for their representativeness. For
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space reasons, the accuracy results of the remaining datasets are available in the Additional
Material. Formally the table shows the ALoo(O k, D) values usingO ∈ {I, Eσ,Pσ,Sσ,Sσ,η,PSσ,PSσ,η}
with σ = σ.1 and η ∈ {η.1, η.5, η.9, η.1r, η.5r, η.9r, ηF.1 , ηF.5 , ηF.9}, k ∈ {klin, kpol, krbf , ksig},
D ∈ {segment, sonar, vehicle, splice}.
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Figure 2: Experiment 1. Scatter plots for the Loo accuracy comparison between Eσ k and
Pσ k quasi-local kernels and the corresponding input kernels k with k ∈ {klin, kpol, krbf , ksig}
for all the 20 datasets.

Considering all the 20 datasets of experiment 1, the scatter plots in Figure 2 and Figure 3
summarize the results for the Eσ k, Pσ k, Sσ,η k and PSσ,η k quasi-local kernels with η = η.5

and σ = σ.1 comparing their Loo accuracies with those of the corresponding input kernels.
Points over the bisector line mean accuracy improvements of quasi-local kernels with respect
to the input kernels, the opposite for points under the bisector line. The dotted lines denote
accuracy deviations of 1% and 5% from the bisector line, i.e. the limits defined by νδ>t and
νδ<-t with t = 1 and t = 5.

Table 3 and the box-plots of Figure 4 report the statistics on the differences between
the Loo accuracies of the quasi-local kernels and the corresponding input kernels. Table 3
presents the mean and the standard deviation (sd) of the distribution of the absolute
differences ∆ALoo(O k, k, D), and the mean, the standard deviation (sd) and the skewness
(skew) of the distribution of the relative differences δALoo(O k, k, D) for every dataset D
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Figure 3: Experiment 1. Scatter plots for the Loo accuracy comparison between
Sσ,η k and PSσ,η k quasi-local kernels and the corresponding input kernels k with k ∈
{klin, kpol, krbf , ksig} for all the 20 datasets.

of Experiment 1. Figure 4 shows graphically, by means of box-plots, the median, the
first quartile, the third quartile, the whiskers and the extreme values of the relative Loo
differences.

Table 4 reports the percentages of datasets in which the quasi-local kernels achieve
substantially better results, in terms of Loo accuracy relative differences, with respect to
the corresponding input kernel, formally νδ>t, and in which they perform substantially
worse, formally νδ<-t. For example, for t = 5 and for the kernel resulting from Sσ,η with
σ = σ.1 and η = η.5, we have that the accuracy is never worse than 5% of the input
kernels (except for one dataset in the linear kernel case) while the percentages of datasets
in which we have a gain in accuracy of at least 5% are 40% for the linear kernel, 55% for
the polynomial kernel, 10% for the RBF kernel and 30% for the sigmoidal kernel.

The input-space estimated values of the dataset-dependent parameter used in this ex-
periment (σ.1 = η.1, η.5, η.9, η.1r, η.5r, η.9r) are reported in the Additional Material for every
dataset of Experiment 1; here we notice that the ratios between η.5 and η.1r are about of
one order of magnitude. In particular the median of the ratios is 6.5, the first quartile is
4.5, the third quartile is 9.4; in only one case (svmguide2 dataset) is η.5 lower than η.1r and
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Statistics on ∆ALoo Statistics on δALoo

klin kpol krbf ksig klin kpol krbf ksig

@
@ k

η mean±sd mean±sd mean±sd mean±sd mean±sd skew mean±sd skew mean±sd skew mean±sd skew
Eσ k 4.2±9.7 2.8±6.6 -7.0±10.0 2.4±12.6 6.3±14.4 2.0 4.9±11.8 1.3 -8.4±12.0 -1.4 6.0±20.4 6.0
Pσ k 3.1±8.5 0.1±1.6 -4.0±8.2 3.0±6.6 4.3±10.8 1.0 0.1±2.4 -0.9 -5.0±10.0 -2.1 5.2±12.2 5.2
Sσ k 5.1±8.7 5.3±6.3 0.1±0.8 6.0±9.4 7.4±13.5 2.3 9.8±12.9 1.4 0.1±1.0 0.2 10.5±17.8 10.5
Sσ,η k η.1 3.7±7.1 5.7±7.5 0.9±2.1 3.4±7.3 4.9±9.2 1.5 10.6±15.6 2.0 1.0±2.4 2.3 5.8±12.6 5.8
Sσ,η k η.5 4.1±7.8 10.8±14.1 1.1±2.2 5.6±10.4 5.4±10.1 1.2 21.3±33.2 2.5 1.2±2.6 1.8 9.9±19.5 9.9
Sσ,η k η.9 4.2±8.1 12.6±14.7 0.6±2.7 5.6±11.6 5.7±10.7 1.1 24.1±34.2 2.2 0.6±3.3 1.1 10.0±21.0 10.0
Sσ,η k η.1r 3.9±6.7 3.9±4.5 0.3±0.6 3.8±7.3 5.2±8.7 1.7 6.9±8.5 1.1 0.3±0.7 1.1 6.4±13.2 6.4
Sσ,η k η.5r 4.3±7.1 6.5±7.9 0.4±0.9 4.9±8.9 5.9±9.4 1.4 12.5±17.8 2.2 0.4±1.1 1.1 8.6±16.7 8.6
Sσ,η k η.9r 4.8±7.6 8.5±11.8 0.3±1.1 5.5±9.6 6.7±10.5 1.2 17.0±28.2 2.8 0.3±1.3 0.6 9.7±18.2 9.7
Sσ,η k ηF.1 3.7±7.1 0.3±0.4 0.2±0.9 0.9±2.4 4.9±9.2 1.5 0.4±0.6 2.0 0.2±1.0 0.3 1.7±4.1 1.7
Sσ,η k ηF.5 4.1±7.8 0.9±1.3 0.1±1.2 2.7±6.6 5.4±10.1 1.2 1.4±2.3 1.9 0.1±1.5 0.3 4.5±10.6 4.5
Sσ,η k ηF.9 4.2±8.1 2.2±3.5 0.1±1.2 3.8±8.0 5.7±10.7 1.1 3.4±5.4 1.6 0.1±1.5 0.2 6.6±14.7 6.6
PSσ k 4.3±7.7 4.0±5.4 0.7±1.9 4.5±7.8 5.8±10.2 1.2 7.1±9.5 1.7 0.8±2.3 2.9 7.8±14.8 7.8
PSσ,η k η.1 3.0±7.8 5.1±8.6 0.8±2.3 2.4±5.3 4.2±9.9 0.8 9.6±15.8 1.9 0.9±2.7 1.1 4.1±9.7 4.1
PSσ,η k η.5 3.2±8.9 8.8±14.5 0.7±2.7 4.6±9.4 4.4±11.5 1.0 18.0±33.9 2.8 0.8±3.3 0.1 8.0±17.4 8.0
PSσ,η k η.9 3.0±9.0 10.9±14.6 0.2±2.9 6.2±11.2 4.2±11.5 1.0 21.5±33.8 2.4 0.1±3.6 0.5 10.8±20.8 10.8
PSσ,η k η.1r 3.1±8.0 4.3±7.4 0.7±2.0 2.6±4.8 4.4±10.2 0.7 7.6±13.3 2.6 0.8±2.4 2.6 4.5±9.1 4.5
PSσ,η k η.5r 3.5±8.6 5.3±8.1 0.7±2.1 3.9±7.6 4.9±11.1 0.9 9.8±15.3 1.9 0.8±2.5 2.2 6.7±14.3 6.7
PSσ,η k η.9r 3.4±8.7 6.1±8.5 0.8±2.1 4.8±8.9 4.8±11.3 1.0 11.5±16.8 1.7 0.9±2.6 2.0 8.4±16.6 8.4
PSσ,η k ηF.1 3.0±7.8 0.5±0.8 0.6±2.1 0.6±1.3 4.2±9.9 0.8 0.7±1.3 2.1 0.7±2.5 2.5 1.0±2.3 1.0
PSσ,η k ηF.5 3.2±8.9 0.9±1.5 0.7±2.3 2.1±4.9 4.4±11.5 1.0 1.5±2.6 2.7 0.7±2.8 1.6 3.4±7.7 3.4
PSσ,η k ηF.9 3.0±9.0 1.7±2.5 0.6±2.4 3.3±7.1 4.2±11.5 1.0 2.9±4.7 2.9 0.7±2.8 1.6 5.7±12.6 5.7

Table 3: Experiment 1. Mean and standard deviation of the absolute differences, and
mean, standard deviation and skewness of the relative differences between Loo accuracies
of quasi-local kernels and of corresponding input kernels, for all the 20 datasets.

in only one case (leukemia dataset) is the ratio greater then 100.
Table 5 shows the Loo accuracy of the KNNSVM classifier and of the KNNSVM clas-

sifier with fixed a-priori K values for the segment, sonar, vehicle and splice datasets (the
results for all the datasets are available in the Additional Material). Obviously for values
of K in KNNSVM greater than the dataset cardinality the accuracy results are missing.
Similarly to the classifier accuracy statistics reported in Table 3 and Table 4, the KNNSVM
classifier and the K∗NNSVM values are also summarized in Table 6 using the relative Loo
accuracy values.

Finally, the scatter plot in Figure 5 compares the performance of the Sσ,η k with η.5 and
σ.1 with the KNNSVM classifier and with K∗NNSVM for every dataset.

5.3 Discussion

Observing the box-plots diagrams of Figure 4 regarding the relative variation in the Loo
accuracy produced by the quasi-local kernels in the SVM classification, we can see that
most of the quasi-local kernels are able to significantly improve the classification accuracy
of the reference input kernels. The same conclusion can be deduced from Table 4 in which,
apart from Eσ k and Pσ k with k = krbf , the quasi local kernels exhibit always a higher (or
at lest equal) percentage of datasets showing accuracy gains than percentage of datasets
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klin kpol krbf ksig

@
@ k

η νδ>1 νδ<-1 νδ>5 νδ<-5 νδ>1 νδ<-1 νδ>5 νδ<-5 νδ>1 νδ<-1 νδ>5 νδ<-5 νδ>1 νδ<-1 νδ>5 νδ<-5

Eσ k 50 35 40 5 45 15 35 10 10 55 0 45 40 25 30 25
Pσ k 50 40 40 10 15 10 5 5 5 30 0 25 35 5 25 0
Sσ k 50 10 35 0 50 0 45 0 15 10 0 0 50 0 30 0
Sσ,η k η.1 45 20 35 5 60 0 45 0 30 10 5 0 45 25 20 5
Sσ,η k η.5 50 25 40 5 65 10 55 0 40 10 10 0 55 15 30 0
Sσ,η k η.9 50 30 40 5 65 10 55 0 30 30 10 0 45 30 35 10
Sσ,η k η.1r 50 20 35 0 55 0 40 0 15 0 0 0 50 5 20 0
Sσ,η k η.5r 50 25 40 0 60 0 50 0 20 0 0 0 45 5 25 0
Sσ,η k η.9r 50 25 40 0 60 0 55 0 25 10 0 0 50 5 30 0
Sσ,η k ηF.1 45 20 35 5 10 0 0 0 15 10 0 0 20 5 15 0
Sσ,η k ηF.5 50 25 40 5 35 0 10 0 20 20 0 0 35 5 15 0
Sσ,η k ηF.9 50 30 40 5 45 0 25 0 25 20 0 0 40 0 20 0
PSσ k 55 25 40 5 60 0 35 0 30 10 5 0 45 0 30 0
PSσ,η k η.1 50 35 40 10 50 5 35 0 25 5 5 5 45 10 20 5
PSσ,η k η.5 50 35 40 10 55 10 45 0 40 20 10 5 50 15 25 5
PSσ,η k η.9 50 35 40 20 60 10 55 0 30 35 10 5 55 20 40 5
PSσ,η k η.1r 45 30 40 10 60 0 35 0 25 10 5 0 45 10 20 0
PSσ,η k η.5r 50 30 40 10 60 0 35 0 35 15 5 0 50 10 20 0
PSσ,η k η.9r 50 35 40 10 60 5 45 0 35 15 5 0 55 10 25 5
PSσ,η k ηF.1 50 35 40 10 25 0 0 0 35 20 5 0 25 0 15 0
PSσ,η k ηF.5 50 35 40 10 35 0 5 0 35 25 5 0 35 5 20 0
PSσ,η k ηF.9 50 35 40 20 55 0 20 0 35 25 5 0 35 0 20 0

Table 4: Experiment 1. Table of the percentages of datasets νδ>t (and νδ<−t) in which the
quasi-local kernels achieve sensibly better (and worse) Loo accuracy values with respect to
to the corresponding input kernels. Thresholds of 1% and 5% are considered.

showing accuracy losses. More precisely, analysing also the mean relative Loo variations
in Table 3, the quasi-local kernels that are shown to be more accurate are Sσ, Sσ,η with
η ∈ {η.1, η.5, η.9, η.1r, η.5r, η.9r}, PSσ and PSσ,η with η ∈ {η.1, η.5, η.9, η.1r, η.5r, η.9r}
all with σ = σ.1. All their Loo variations are in fact positive, and observing that also
the skewness is always positive, the standard deviation is rather high because of positive
outliers. On the other hand, the kernels resulting from Eσ shows important limitations, as
reported in Table 4; for example only 45% of the datasets do not give accuracy values lower
than 1% of the accuracy of the RBF kernel, meaning that in 55% of cases the results are
lower than 1%. The only case in which Eσ k seem to perform quite well is with the linear
kernel as input kernel, but this is not surprising since Eσ klin = krbf . Kernels obtained from
Pσ are even worse than the one produced by Eσ. The low Loo accuracy results of Eσ and
Pσ are also highlighted by the scatter plots of Figure 2, in which it is clear that there is
not a predominance of points over the bisector line.

For Sσ,η the best results in terms of Loo accuracy improvements are achieved for η.1,
η.5 and η.9 and in general Sσ,η k gives Loo accuracy values higher than PSσ,η k as we can
see especially in Table 3. In contrast, the quasi-local kernels that seem to guarantee less
risk of achieving worse results are those obtained from Sσ,η with η.1r, η.5r and η.9r (see
the percentages of relative Loo accuracy losses in Table 4). So we can reasonably conclude
that the quasi-local kernel that seems more promising are produced by the operators Sσ,η
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segment sonar vehicle splice

HH k klin kpol krbf ksig klin kpol krbf ksig klin kpol krbf ksig klin kpol krbf ksig

KNNSVM .97 .97 .97 .97 .88 .80 .85 .84 .70 .69 .70 .71 .77 .63 .86 .85
1-NNSVM .97 .97 .97 .97 .88 .80 .88 .87 .70 .69 .70 .70 .70 .61 .70 .71
3-NNSVM .97 .96 .96 .97 .86 .79 .84 .85 .71 .71 .70 .71 .70 .63 .70 .70
5-NNSVM .96 .96 .96 .96 .88 .78 .82 .81 .72 .71 .70 .72 .72 .57 .70 .70
7-NNSVM .95 .95 .96 .95 .89 .77 .80 .80 .72 .70 .71 .72 .72 .48 .71 .71
9-NNSVM .95 .95 .96 .95 .89 .72 .76 .77 .72 .71 .70 .71 .75 .48 .71 .71
11-NNSVM .95 .95 .95 .95 .91 .68 .81 .72 .72 .69 .72 .70 .75 .48 .71 .70
15-NNSVM .95 .95 .96 .95 .88 .67 .83 .73 .72 .69 .72 .69 .77 .64 .73 .72
23-NNSVM .95 .94 .97 .94 .87 .67 .86 .72 .74 .66 .73 .68 .78 .57 .75 .73
39-NNSVM .95 .92 .97 .93 .89 .67 .88 .75 .74 .64 .74 .67 .79 .48 .77 .78
71-NNSVM .95 .89 .97 .90 .88 .64 .89 .75 .76 .59 .75 .63 .80 .49 .83 .83
135-NNSVM .95 .86 .97 .88 .80 .59 .88 .79 .78 .55 .75 .61 .78 .48 .85 .85
263-NNSVM .95 .86 .97 .89 - - - - .80 .49 .75 .67 .79 .48 .86 .82
519-NNSVM .94 .88 .96 .89 - - - - .79 .43 .75 .69 .77 .48 - .86 .80
1031-NNSVM .94 .90 .96 .90 - - - - - - - - - - - -

Table 5: Experiment 1. Loo accuracy result of the KNNSVM classifier and of KNNSVM
classifier with fixed a-priori values of K. KNNSVM results for K greater than the dataset
cardinality are missing because the classifier is not applicable. The K∗NNSVM values are
highlighted in bold.

klin kpol krbf ksig

@
@@ k

mean sd skew med mean sd skew med mean sd skew med mean sd skew med
KNNSVM 4.7 12.9 1.4 -0.4 21.7 31.4 -0.9 0.0 -0.7 2.7 -0.1 -1.3 11.9 23.4 2.1 1.4
K∗NNSVM 7.7 12.3 1.6 0.9 23.8 31.9 2.4 10.5 1.4 2.4 2.2 0.5 14.2 23.8 2.0 2.9

νδ>1 νδ<-1 νδ>5 νδ<-5 νδ>1 νδ<-1 νδ>5 νδ<-5 νδ>1 νδ<-1 νδ>5 νδ<-5 νδ>1 νδ<-1 νδ>5 νδ<-5

KNNSVM 40 40 30 15 65 10 65 5 25 55 0 5 50 25 40 5
K∗NNSVM 50 10 35 0 65 0 65 0 45 0 5 0 55 5 45 0

Table 6: Experiment 1. Mean, standard deviation, skewness and median of relative Loo
accuracy differences between SVM using the input kernels and the KNNSVM classifier and
with K∗NNSVM on all the 20 datasets.

with η.5 and σ.1 and Sσ,η with η.1r and σ.1; in particular the first is the one that appear to
potentially achieve better results, while the second is the one with less possibility to achieve
worse results. In addition, the performances of the PSσ,η derived class of kernels are very
close to the Sσ,η ones, although they are a bit lower. The fact that η.5 is statistically almost
10 times greater than η.1r confirms the observation that Sσ,η k and PSσ,η k with η = η.1r are
more conservative with respect to the k input kernel behaviour than the same quasi-local
kernels with η = η.5 and make reasonable the use of both parameter settings.

The resulting statistics (see for example the box-plots in Figure 4) show that all the
input kernels benefit from the quasi-local transformation by the Sσ, Sσ,η, PSσ and PSσ,η

operators. However, the quasi-local kernels with lower accuracy improvements are those
applied on the RBF input kernel (they rarely improve the krbf accuracy by more than 5%
as reported in Table 4). This is reasonable since the RBF kernel is already a local kernel
and thus should not take advantage of the operator transformation, so even the small
improvements observed are very positive. The explanation for the accuracy improvements
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of O krbf can regard the γrbf parameter for krbf ; its estimation with the 0.1 quantile of
the distribution of all pairwise distances probably gives values that permits the influence
of points not very close to each other. It is reasonable to argue that, in these conditions,
the quasi-local operators on the RBF kernel maintain the influence of non very close points
due to rather large value of γrbf , enhancing locality only in some regions.

The scatter plot in Figure 5(a), showing the Loo accuracy of KNNSVM classifier and
SVM with Sσ,η k kernel with η.5 and σ.1, highlights that the quasi-local kernels perform
better in the majority of cases (61% against 35% of cases in which the KNNSVM per-
forms better). The comparison with K∗NNSVM in Figure 5(b), on the other hand, gives a
percentage of 34% of cases in which the quasi-local kernels perform better. The two com-
parisons lead us to conclude that, for the datasets of Experiment 1, the quasi-local kernels
(and in particular Sσ,η k with η.5 and σ.1) perform significantly better than the KNNSVM
classifier even though they do not perform as well as K∗NNSVM which is however not a
proper classifier. The Loo accuracy differences between the family of SVM classifiers with
quasi-local kernels and the family of KNNSVM classifiers can be due to the two theoretical
differences between them: the partial preservation of the global kernel behaviour of the first
and the hard-boundary between local and non local points of the second (see section 3).

6 Experiment 2

The second experiment applies the SVM with the quasi-local kernels that, in the exploratory
Experiment 1, seem to achieve better accuracy values. We recall that we found that the
most promising quasi-local kernels are those obtained by Sσ,η with η = η.5 or η = η.1r, and
by PSσ,η with η = η.5 or η = η.1r all with σ = σ.1. The aim of this experiment is to verify if
these kernels are able to improve the input kernel classification accuracy in a considerable
number of quite large datasets.

6.1 Experimental procedure

The 13 datasets used in the second experiment are summarized in Table 7 and are avail-
able at the homepage of LibSVM [7]. The datasets are quite large and for this reason
kernels resulting from the four chosen operators with the four input kernels are simply
trained on the training set and tested on the testing set as provided online on the LibSVM
website. The evaluation of the classifiers is performed with the same statistical tools de-
scribed for Experiment 1 using the testing set accuracy AT instead of the Loo accuracy
(ALoo). The corresponding absolute and relative testing differences are ∆AT (O k, k,D) and
δAT (O k, k, D).

We do not test the KNNSVM classifier on these datasets because of the computational
weight of the method. For example, on the a9a dataset, the SVM methods require several
minutes of computation on a Pentium D 3.40 GHz desktop system, while K∗NNSVM with
K ∈ K requires about 4 hours. Moreover the K set must be enlarged for this experiment
since the maximum value in K is too small in comparison with the training set cardinalities
thus further increasing the computational effort. For example, KNNSVM with a fixed
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value of K equal to 1/10 of the training set cardinality requires about 10 hours on the a9a
dataset. Remembering that KNNSVM with automatic choice of K is done with the 10-fold
cross validation, it requires the training of |K|× (|train. set|− 1) SVM for every test point.
This means that we can estimate the computational time for testing KNNSVM on the a9a
dataset to be in the order of months.

Dataset source classes training testing features
name size size
dna Statlog [18] 3 2000 1186 180
a9a UCI [1] 2 32561 16281 123

shuttle Statlog [18] 7 43500 14500 9
w8a JP98a [23] 2 49749 14951 300

letter Statlog [18] 26 15000 5000 16
satimage Statlog [18] 6 4435 2000 36
news20 KL95a [19] 20 15935 3993 62061
ijcnn1 DP01a [24] 2 49990 91701 22
usps JJH94a [17] 10 7291 2007 256

mnist1 YL98a [20] 10 21000 49000 780
rcv1.binary DL04b [21] 2 20242 677399 47236

acoustic Sensit [11] 3 78823 19705 50
seismic Sensit [11] 3 78823 19705 50

Table 7: Datasets for Experiment 2.

6.2 Results

Table 8 shows the accuracy results of the input kernels k and of the four quasi-local kernels
considered in this experiment on all the 13 datasets listed in Table 7. Formally we report
AT (O k, D) with O ∈ {I, Sσ,η, Sσ,η, Sσ,η, Sσ,η}, σ = σ.1, η ∈ {η.1r, η.5}, k ∈ {klin, kpol,
krbf , ksig}, D ∈ {dna, a9a, shuttle, w8a, letter, satimage, news20, ijcnn1, usps, mnist1,
rcv1.binary, acoustic, seismic}. The 12 cases in which a quasi-local kernel exhibits worse
accuracy values with respect to the corresponding input kernels (νδ<0) are underlined. They
corresponds to the 5.77% of the total comparisons and 8 of them regard the a9a dataset.
On the other hand, the percentage of times in which the quasi-local kernels achieve, in
total, better results with respect to the input kernels (i.e. νδ>0) is 79.81%. In 14.42% of
cases the accuracy remains unchanged.

Figure 7 shows by means of scatter plots the comparison of the accuracy of the four
quasi-local kernels considered in this experiment with the accuracy of the corresponding
input kernels. The points representing accuracy values lower than 0.7 are not shown in the
scatter plots, but are reported in the complete results table (Table 8) and are all cases in
which the quasi-local kernels perform better or at least equally to the input kernels. Simi-
larly to Experiment 1, in Table 9 the description of the distribution of the difference in test
classification accuracy between the quasi-local kernels and the corresponding input kernels
is performed with the mean and the standard deviation of the distribution of the absolute
differences and the mean, the standard deviation and the skewness of the distribution of
the relative differences. The description of the relative differences distribution is also per-
formed with the box-plots in Figure 6 representing graphically the median, the first and
third quartile, the whispers and the extreme values. The mean and the median percentage
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dna a9a shuttle w8a

HH kη klin kpol krbf ksig klin kpol krbf ksig klin kpol krbf ksig klin kpol krbf ksig

k .931 .508 .951 .938 .850 .764 .850 .849 .972 .823 .998 .960 .987 .970 .991 .972
Sσ,η k η.5 .954 .508 .954 .947 .832 .821 .846 .850 .997 .922 .998 .989 .995 .970 .993 .982
Sσ,η k η.1r .954 .508 .955 .949 .840 .814 .849 .850 .986 .894 .998 .981 .994 .970 .993 .977
PSσ,η k η.5 .954 .931 .955 .938 .807 .834 .826 .850 .993 .833 .998 .981 .995 .970 .995 .985
PSσ,η k η.1r .954 .920 .955 .941 .807 .828 .833 .850 .984 .825 .998 .977 .995 .970 .994 .982

letter satimage news20 ijcnn1

HH kη klin kpol krbf ksig klin kpol krbf ksig klin kpol krbf ksig klin kpol krbf ksig

k .843 .376 .955 .772 .858 .666 .910 .833 .840 .050 .836 .050 .916 .905 .976 .906
Sσ,η k η.5 .967 .656 .977 .842 .913 .801 .917 .870 .841 .050 .842 .050 .971 .905 .980 .949
Sσ,η k η.1r .957 .554 .973 .828 .912 .721 .918 .852 .841 .050 .842 .050 .963 .905 .981 .926
PSσ,η k η.5 .975 .599 .979 .846 .909 .793 .922 .871 .844 .050 .840 .050 .969 .905 .979 .930
PSσ,η k η.1r .970 .504 .975 .824 .910 .712 .920 .851 .843 .050 .840 .050 .966 .905 .981 .922

usps mnist1 rcv1.binary acoustic

HH kη klin kpol krbf ksig klin kpol krbf ksig klin kpol krbf ksig klin kpol krbf ksig

k .930 .938 .953 .917 .922 .264 .971 .915 .963 .525 .965 .525 .702 .704 .790 .681
Sσ,η k η.5 .953 .949 .957 .915 .972 .653 .975 .928 .964 .525 .966 .525 .795 .756 .799 .690
Sσ,η k η.1r .952 .947 .957 .922 .970 .579 .975 .926 .964 .525 .966 .525 .789 .743 .798 .688
PSσ,η k η.5 .953 .954 .957 .878 .976 .930 .976 .934 .965 .525 .966 .525 .785 .759 .798 .693
PSσ,η k η.1r .953 .954 .957 .882 .976 .918 .976 .935 .965 .525 .966 .525 .795 .746 .799 .690

seismic

HH kη klin kpol krbf ksig

k .727 .725 .760 .691
Sσ,η k η.5 .766 .745 .761 .693
Sσ,η k η.1r .758 .735 .764 .704
PSσ,η k η.5 .748 .746 .758 .700
PSσ,η k η.1r .766 .735 .764 .706

Table 8: Experiment 2. The test accuracy results of the quasi-local kernels. The cases in
which the quasi-local kernels achieve less accurate results with respect to the input kernels
are underlined.

variation in accuracy are always positive (Table 9 and Figure 6) and, in total, are 7.76%
and 1.07% respectively. Finally, the percentages of datasets that achieve significantly better
or worse accuracy results with the quasi-local kernels with respect to the input kernels are
shown in Table 10, using 1% and 5% as thresholds.

6.3 Discussion

The two quasi-local kernels with two different parameter choices considered in the exper-
iment are shown to improve the corresponding reference input kernel results in terms of
accuracy gain in the great majority of cases (80% improvements and less than 6% accuracy
losses). Looking at Table 10 the accuracy improvements of at least 1% are present in the
majority of cases, while the number of improvements of at least 5% remain considerable
only for the linear and polynomial kernel. The losses of accuracy greater than 1% are
very rare. The main statistical descriptors of the distribution of relative differences are
always positive (the mean, the median) and the first quartile is also always non-negative.
So Experiment 2 confirms the results of Experiment 1, concluding that the Sσ,η and PSσ,η

operators with parameter estimation based on the dataset statistics (σ = σ.1 and η = η.1r
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Statistics on ∆AT Statistics on δAT

klin kpol krbf ksig klin kpol krbf ksig

@
@ k

η mean±sd mean±sd mean±sd mean±sd mean±sd skew mean±sd skew mean±sd skew mean±sd skew
Sσ,η k η.5 3.7±3.9 8.0±12.3 0.5±0.6 1.7±2.2 4.4±5.0 1.00 21.0±42.9 2.06 0.5±0.66 1.06 2.0±2.7 1.07
Sσ,η k η.1r 3.4±3.6 5.6±9.2 0.5±0.5 1.3±1.5 4.1±4.6 1.02 15.2±33.7 2.09 0.5±0.52 1.03 1.6±1.9 2.04
PSσ.η k η.5 3.3±4.3 12.4±20.3 0.3±1.0 1.3±2.6 4.0±5.1 0.08 33.5±70.5 2.09 0.3±1.17 -1.2 1.6±3.1 0.09
PSσ,η k η.1r 3.4±4.3 10.6±19.9 0.4±0.8 1.0±1.9 4.1±5.4 0.07 30.0±69.15 3.00 0.4±0.91 -1.1 1.2±2.3 0.03

Table 9: Experiment 2. Mean, standard deviation of absolute differences and mean, stan-
dard deviation and skewness of relative differences between the test accuracies of the quasi-
local kernels and the corresponding input kernels.

klin kpol krbf ksig

@
@ k

η νδ>1 νδ<-1 νδ>5 νδ<-5 νδ>1 νδ<-1 νδ>5 νδ<-5 νδ>1 νδ<-1 νδ>5 νδ<-5 νδ>1 νδ<-1 νδ>5 νδ<-5

Sσ,η k η.5 69.2 7.7 46.2 0.0 61.5 0.0 46.2 0.0 15.4 0.0 0.0 0.0 53.8 0.0 7.7 0.0
Sσ,η k η.1r 69.2 7.7 38.5 0.0 61.5 0.0 46.2 0.0 15.4 0.0 0.0 0.0 53.8 0.0 7.7 0.0
PSσ,η k η.5 69.2 7.7 38.5 7.7 69.2 0.0 46.2 0.0 15.4 7.7 0.0 0.0 61.5 7.7 7.7 0.0
PSσ,η k η.1r 69.2 7.7 46.2 7.7 61.5 0.0 46.2 0.0 23.1 7.7 0.0 0.0 61.5 7.7 7.7 0.0

Table 10: Experiment 2. Percentages of datasets in which the quasi-local kernels achieve
better (and worse) results with respect to the input kernels with thresholds of 1% and 5%.

or η = η.5) are able to improve the classification accuracies of the input kernels in the
majority of the cases, while only in very few cases do the accuracies deteriorate.

As for Experiment 1, the reference input kernels whose accuracy is more improved are
the polynomial and the sigmoidal ones (this is easy to see from box-plots of Figure 6). The
explanation for this regards the parameter choices that are not very well tuned for kpol and
ksig, since we do not perform model selection on the training set. The estimation of γrbf

for krbf with the inverse of the 0.1 quantile of the distribution of the Euclidean distances
between every pair of points is instead a good choice, so krbf is reasonably well tuned even
without model selection and thus the possible gain is less marked. In fact, from Table 10,
the quasi-local operators never improve the classification accuracy of krbf by more than 5%.
In any case we can observe the ability of the quasi-local kernels to improve the input kernels
as much as the reference kernels are badly tuned (see for example in Table 8 the mnist1
dataset in which the accuracy of PSσ,η kpol with η = η.5 is .930 against the accuracy of kpol

which is .264). This allows us to argue that the quasi-local kernels make the input kernel
parameter selection less critical. Further investigations are however necessary to confirm
this observation.

From the box-plots and the scatter plots of Experiment 2 (Figures 6 and 7), we can
observe that the accuracy results of the quasi-local kernels with the two different parameter
settings (η = η.5 and η = η.1r) are similar. So, what was hypothesized in Experiment 1
regarding the fact that η = η.1r is more conservative with respect to the input kernels than
η = η.5, appears here less accentuated. The dataset-dependent estimation of η is thus not
so crucial for good accuracy results of the quasi-local kernels. On the other hand, the Sσ,η

operator seems to perform better than PSσ,η, especially in terms of accuracy losses. In
fact the 4 cases in which the quasi-local kernels achieve accuracy results lower than 3% of
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the corresponding input kernels are all due to PSσ,η. The same aspect is highlighted by
the negative values of the skewness of the relative accuracy differences between PS krbf

and krbf shown in Table 9. In conclusion the operator that has demonstrated to be more
accurate is Sσ,η with σ = σ.1 and η = η.5.

The news20 and rcv1.binary datasets are the only datasets in which very low accuracy
results of kpol and ksig are not improved by the quasi-local kernels and in general the im-
provements for klin and krbf are minimal. Observing that these two datasets are the only
ones that have a large number of features (62061 for news20, 47236 for rcv1.binary) this
can be due to the curse of dimensionality problem (discussed in general for local learning
algorithms in [3]) that affects the locality information. This means that, for a very high
number of features, the kernels resulting from the Eσ operator have low classification ca-
pability. However, in the quasi-local kernels the input kernel and the local kernel term are
both considered and thus, as the locality information is lost for the curse of dimensionality
problem, the kernel resulting from the Eσ term becomes negligible and the maximal sepa-
rating hyperplane is determined only by the k term. So we can reasonably conclude that
the quasi-local kernels are affected by the curse of dimensionality problem in the sense that
it is difficult to improve the input kernels for a very high number of features, but at the
same time they remain robust since the input kernel k becomes predominant and thus the
resulting kernel accuracy does not decrease.

This experiment also confirms the scalability of the SVM approach with the quasi-local
kernels because it requires a computational effort very similar to the SVM with the cor-
responding input kernels even for medium and large datasets. Since we showed in the
Experiment 1 that the quasi-local kernels achieve accuracy results that are at least sta-
tistically equal to the KNNSVM classifier, and since the KNNSVM has computational
limitations as the training and the testing sets become larger, we can conclude that, as far
as we know, SVM with quasi-local kernels is the only SVM-based method able to capture
the locality information in the feature space for any input kernel.

7 Conclusions

In this paper, we have presented a novel family of operators on kernels that add locality
information to the input kernel. The resulting kernels are called quasi-local kernels since
they balance the global information of the original kernel (if it is a non-local kernel) with
the local kernel with respect to the distance in the feature space. The intuition is that
the resulting kernels are able to maintain the original kernel behaviour for regions in which
the information is not local, adapting instead the separating hyperplane following the local
distribution of the data.

In the first experiment we tested the classification capability of all the quasi-local op-
erators, setting the operator parameters through statistical analysis of the dataset without
an expensive model selection phase, achieving very encouraging results in comparison with
the classification capability of the input kernels. The second experiment confirmed that
the two more promising operators (Sσ,η and PSσ,η) with two different parameter settings
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(σ = σ.1 and η = η.1r or η = η.5), achieved in the majority of the datasets an accuracy
gain with respect to to the input kernels, with very few cases in which the accuracies are
lower. In particular, although the quasi-local kernels were shown to be rather robust to the
dataset-dependent estimation of their parameters, the operator that demonstrated better
performances is (Sσ,η k)(x, x′) = k(x, x′) + η · exp

(−k(x,x)−k(x′,x′)+2k(x,x′)
σ

)
with σ = σ.1

and η = η.5. We tested the Sσ,η and PSσ,η quasi-local kernels on a total of 33 datasets,
and the results let us argue that their application on a specific dataset with a particular
input kernel (not necessarily the four input kernels considered here), possibly with model
selection, is extremely promising.

We compared the classification capability of the quasi-local kernel with the local SVM
approach, finding that the quasi-local kernels are a little more precise than KNNSVM with
the automatic tuning of the K parameter, even though they cannot reach the theoretical
results of K∗NNSVM, i.e. with the a-posteriori best choice for K. Quasi-local kernels
and local SVM are both based on the notion of locality in the feature space, but differ
since the first always balances the local and non-local components of the kernel and the
locality decreases exponentially, while the second is a compromise between locality and
non-locality (depending on K) and defines a hard boundary between local and non-local
points. Considering the computational performances we can conclude that, at least for large
datasets, quasi-local kernels are preferable to local SVM since the theoretical approach and
the classification accuracy are very similar but the computational weight of local SVM is
much greater, especially if we need to classify a considerable number of new samples.
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Figure 4: Experiment 1. Box-plots representing the distribution of the Loo relative differ-
ence δALoo(O k, k, D) between quasi-local kernels and the corresponding input kernels on
all the 20 datasets D .
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