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Abstract. In the last two decades we have witnessed an impressive
advance in the efficiency of propositional satisfiability techniques (SAT),
which has brought large and previously-intractable problems at the reach
of state-of-the-art SAT solvers. Most of this success is motivated by the
impressive level of efficiency reached by current implementations of the
DPLL procedure. Plain propositional logic, however, is not the only ap-
plication domain for DPLL. In fact, DPLL has also been successfully
used as a boolean-reasoning kernel for automated reasoning tools in much
more expressive logics.
In this talk I overview a 12-year experience on integrating DPLL with
logic-specific decision procedures in various domains. In particular, I
present and discuss three main achievements which have been obtained
in this context: the DPLL-based procedures for modal and description
logics, the lazy approach to Satisfiability Modulo Theories, and Delayed
Theory Combination.

1 Introduction

In the last two decades we have witnessed an impressive advance in the efficiency
of propositional satisfiability techniques (SAT), which has brought large and
previously-intractable problems at the reach of state-of-the-art SAT solvers. As
a consequence, many hard real-world problems have been successfully solved by
encoding into SAT. E.g., SAT solvers are now a fundamental tool in most formal
verification design flows for hardware systems.

Most of the success of SAT technologies is motivated by the impressive level of
efficiency reached by current implementations of the Davis-Putnam-Logemann-
Loveland procedure (DPLL) [13, 12], in its most-modern variants (see, e.g., [43]).

Plain propositional logic, however, is not the only application domain for
DPLL. In fact, DPLL has also been successfully used as a boolean-reasoning
kernel for automated reasoning tools in much more expressive logics, including
modal and description logics, and decidable subclasses of first-order logic. In
most cases, this has produced a boost in the overall performances, which rely
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both on the improvements in DPLL technology and on clever integration between
DPLL and the logic-specific decision procedures.

In this talk I overview a 12-year experience on integrating DPLL with logic-
specific decision procedures in various domains. In particular, I present and
discuss three main achievements which have been obtained in this context.

The first (§2) is the introduction of DPLL inside satisfiability procedures
for modal and description logics [23, 24, 37, 27, 35, 28, 25, 21, 22, 26], which caused
a boost in performances wrt. previous state-of-the-art procedures, which used
Smullyan’s analytic tableaux [39] as propositional-reasoning engine.

The second (§3) is the lazy approach to Satisfiability Modulo Theories (lazy
SMT) [1, 41, 15, 3, 4, 18, 19, 6, 16], in which DPLL is combined with satisfiability
procedures for (sets of literals in) expressive decidable first-order theories. Cur-
rent lazy SMT tools have reached a high degree of efficiency, so that they are
increasingly used in formal verification.

The third (§4) is Delayed Theory Combination (Dtc) [7–9, 17, 14], a general
method for tackling the problem of theory combination within the context of lazy
SMT . Dtc exploits the power of DPLL also for assigning truth values for the
interface equalities that the T -solver’s are not capable of inferring. Thus, it does
not rely on (possibly very expensive) deduction capabilities of the component
procedures —although it can fully benefit from them— and nicely encompasses
the case of non-convex theories.

2 DPLL for Modal Logics

We assume the reader is familiar with the basic notions on modal logics and
of first-order logic. Some very-basic background on SAT (see, e.g., [43]) and on
decision procedures and their combination (see, e.g., [31]) is also assumed.

We adopt the following terminology and notation. We call an atom any for-
mula which cannot be decomposed propositionally (e.g., A1, 2r(A1 ∧ 2rA2)),
and a literal an atom or its negation. We call a truth assignment µ for a formula
ϕ any set/conjunction of top-level literals in ϕ. Positive literals 2rαi, Ak [resp.
negative literals ¬2rβi, ¬Ak] mean that the corresponding atom is assigned to
true [resp. false]. We say that a truth assignment µ for ϕ propositionally satisfies
ϕ, written µ |=p ϕ, iff it tautologically entails ϕ. E.g., {A1,¬2r(A2∧2rA3)} |=p

(A1 ∧ (A2 ∨ ¬2r(A2 ∧2rA3))).

2.1 From Tableau-based to DPLL-based Procedures

We call “tableau-based” a system that implements and extends to other logics
the Smullyan’s propositional tableau calculus [39]. E.g., a typical Tableau-based
procedure for modal Km consists on some control strategy applied to the follow-
ing rules:

Γ, ϕ1 ∧ ϕ2

Γ, ϕ1, ϕ2
(∧)

Γ, ϕ1 ∨ ϕ2

Γ, ϕ1 Γ, ϕ2
(∨)

µ

α1 ∧ . . . ∧ αm ∧ ¬βj
(2r/¬2r) (1)



for each box-index r ∈ {1, ...,m}. Γ is an arbitrary set of formulas, and µ is
a set of literals which includes ¬2rβj and whose only positive 2r-atoms are
2rα1, . . . ,2rαm.

We call “DPLL-based” any system that implements and extends to other
logics the Davis-Putnam-Longeman-Loveland procedure (DPLL) [13, 12]. DPLL-
based procedures basically consist on the combination of a DPLL procedure
handling the purely-propositional component of reasoning, and some procedure
handling the purely-modal component. Thus, for instance, in our terminology
Ksat [23], Fact [27], Dlp [35], Racer [26] are DPLL-based systems. 1 From a
purely-logical viewpoint, it is possible to conceive a DPLL-based framework by
substituting the propositional tableaux rules with some rules implementing the
DPLL algorithms in a tableau-based framework [37]. A formal framework for
representing DPLL and DPLL-based procedures has been proposed in [40, 33].

2.2 Basic Modal DPLL for Km

The first DPLL-based procedure for a modal logic, Ksat, was introduced in [23,
25] (Figure 1). This schema evolved from that of the PTAUT procedure in [2],
and is based on the “classic” DPLL procedure [13, 12]. Ksat takes in input a
modal formula ϕ and returns a truth value asserting whether ϕ is Km-satisfiable
or not. Ksat invokes K-DPLL passing as arguments ϕ and (by reference) an
empty assignment >. K-DPLL tries to build a Km-satisfiable assignment µ
propositionally satisfying ϕ. This is done recursively, according to the following
steps:

– (base) If ϕ = >, then µ propositionally satisfies ϕ. Thus, if µ is Km-
satisfiable, then ϕ isKm-satisfiable. Therefore K-DPLL invokes K-Solver(µ),
which returns a truth value asserting whether µ is Km-satisfiable or not.

– (backtrack) If ϕ = ⊥, then µ does not satisfy ϕ, so that K-DPLL returns
False.

– (unit) If a literal l occurs in ϕ as a unit clause, then l must be assigned >.
To obtain this, K-DPLL is invoked recursively with arguments the formula
returned by assign(l, ϕ) and the assignment obtained by adding l to µ.

– (split) If none of the above situations occurs, then choose-literal(ϕ) returns
an unassigned literal l according to some heuristic criterion. Then K-DPLL
is first invoked recursively with arguments assign(l, ϕ) and µ∧ l. If the result
is negative, then K-DPLL is invoked with assign(¬l, ϕ) and µ ∧ ¬l.

K-DPLL is a variant of the “classic” DPLL algorithm [13, 12]. The K-DPLL
schema differs from that of classic DPLL by only two steps.

1 Notice that there is not an universal agreement on the terminology “tableau-based”
and “DPLL-based”. E.g., tools like Fact, Dlp, and Racer are often called “tableau-
based”, although they use a DPLL-like algorithm instead of propositional tableaux
for handling the propositional component of reasoning [27, 35, 28, 26].



function Ksat(ϕ)
return K-DPLL(ϕ,>);

function K-DPLL(ϕ, µ)
if (ϕ == >) /* base */

then return K-Solver(µ);
if (ϕ == ⊥) /* backtrack */

then return False;
if {a unit clause (l) occurs in ϕ} /* unit */

then return K-DPLL(assign(l, ϕ), µ ∧ l);
l := choose-literal(ϕ); /* split */
return K-DPLL(assign(l, ϕ), µ ∧ l) or

K-DPLL(assign(¬l, ϕ), µ ∧ ¬l);

/* µ is
V

i 21α1i ∧
V

j ¬21β1j ∧ . . . ∧Vi 2mαmi ∧
V

j ¬2mβmj ∧
V

k Ak ∧Vh ¬Ah */

function K-Solver(µ)
for each box index r ∈ {1...m} do

for each literal ¬2rβrj ∈ µ do
if not (Ksat(

V
i αri ∧ ¬βrj))

then return False;
return True;

Fig. 1. The basic version of Ksat algorithm. assign(l, ϕ) substitutes every occurrence
of l in ϕ with > and evaluates the result.

The first is the “base” case: when standard DPLL finds an assignment µ
which propositionally satisfies the input formula, it simply returns “True”. K-
DPLL, instead, is also supposed to check theKm-satisfiability of the correspond-
ing set of literals, by invoking K-Solver on µ. If the latter returns true, then
the whole formula is satisfiable and K-DPLL returns True as well; otherwise,
K-DPLL backtracks and looks for the next assignment.

The second is in the fact that in K-DPLL the pure-literal step [12] is re-
moved. 2 In fact the sets of assignments generated by DPLL with pure-literal
might be incomplete and might cause incorrect results. This fact is shown by
the following example.

Example 1. Let ϕ be the following formula:

(21A1∨A1) ∧(21(A1 → A2)∨A2) ∧(¬21A2∨A2) ∧(¬A2∨A3) ∧(¬A2∨¬A3).

ϕ isKm-satisfiable, because µ = {A1,¬A2,21(A1 → A2),¬21A2} is aKm-consistent
assignment propositionally satisfying ϕ. It is easy to see that no satisfiable as-
signment propositionally satisfying ϕ assigns 21A1 to true. As 21A1 occurs only
positively in ϕ, DPLL with the pure literal rule would assign 21A1 to true as
first step, which would lead the procedure to return False.
2 Alternatively, the application of the pure-literal rule is restricted to atomic proposi-

tions only.



With these simple modifications, the embedded DPLL procedures works as
an enumerator of a complete set of assignments, whose Km-satisfiability is re-
cursively checked by K-Solver. K-Solver is a straightforward application of
the (2r/¬2r)-rule in (1).

The above schema has lately been extended to other modal and description
logics [27, 28, 22]. Moreover, the schema has been lately adapted to work with
modern DPLL procedures, and many optimizations have been conceived. Some
of them will be described in §3.3 in the context of Satisfiability Modulo Theories.

2.3 DPLL-based vs. Tableaux-based procedures

[23–25, 20, 21, 28, 29] presented extensive empirical comparisons, in which DPLL-
based procedures outperformed tableau-based ones, with orders-of-magnitude
performance gaps. (Similar performance gaps between tableau-based vs. DPLL-
based procedures were obtained lately also in a completely-different context [1].)
Remarkably, most such results were obtained with tools implementing variants
of the “classic” DPLL procedure of §2.2, still very far from the efficiency of
current DPLL implementations.

Both tableau-based and DPLL-based procedures for Km-satisfiability work
(i) by enumerating truth assignments which propositionally satisfy the input
formula ϕ and (ii) by recursively checking the Km-satisfiability of the assign-
ments found. As both algorithms perform the latter step in the same way, the
key difference relies in the way they handle propositional inference. In [24, 25] we
remarked that, regardless the quality of implementation and the optimizations
performed, DPLL-based procedures do not suffer from two intrinsic weaknesses
of tableau-based procedures which significantly affect their efficiency, and whose
effects are amplified up to exponentially when using them in modal inference.
We consider these weaknesses in turn.

Syntactic vs. semantic branching. In a propositional tableaux truth assign-
ments are generated as branches induced by the application of the ∨-rule to
disjunctive subformulas of the input formula ϕ. Thus, they perform syntactic
branching [24], that is, the branching in the search tree is induced by the syntac-
tic structure of ϕ. As discussed in [11], an application of the ∨-rule generates two
subtrees which can be mutually consistent, i.e., which may share propositional
models. 3 Therefore, the set of truth assignments enumerated by a proposi-
tional tableau grows exponentially with the number of disjunctions occurring
positively in ϕ, regardless the fact that it may contain up to exponentially-many
duplicated and/or subsumed assignments.

Things get even worse in the modal case. When testing Km-satisfiability,
unlike the propositional case where they look for one assignment satisfying the

3 As pointed out in [11], propositional tableaux rules are unable to represent bivalence:
“every proposition is either true or false, tertium non datur”. This is a consequence
of the elimination of the cut rule in cut-free sequent calculi, from which propositional
tableaux are derived.
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Fig. 2. Search trees for the formula Γ = (α ∨ ¬β) ∧ (α ∨ β) ∧ (¬α ∨ ¬β). Left: a
tableau-based procedure. Right: a DPLL-based procedure.

input formula, the propositional tableaux are used to enumerate up to all satis-
fying assignments, which must be recursively checked for Km-consistency. This
requires checking recursively possibly-many sub-formulas of the form

∧
i αri∧¬βj

of depth d − 1, for which a propositional tableau will enumerate all satisfying
assignments, and so on. At every level of nesting, a redundant truth assign-
ment introduces a redundant modal search tree. Thus, with modal formulas, the
redundancy of the propositional case propagates up-to-exponentially with the
modal depth.

DPLL instead, performs a search which is based on semantic branching [24],
i.e., a branching on the truth value of sub-formulas ψ of ϕ (typically atoms): 4

ϕ

ϕ[ψ/>] ϕ[ψ/⊥],

where ϕ[ψ/>] is the result of substituting with > all occurrences of ψ in ϕ and
then simplify the result. Thus, every branching step generates two mutually-
inconsistent subtrees. Thus, DPLL always generates non-redundant sets of as-
signments. This avoids search duplications and, in the case of modal search, the
recursive exponential propagation of redundancy.

Example 2. Consider the formula Γ = (α∨¬β)∧(α∨β)∧(¬α∨¬β), where α and
β are modal atoms s.t. α ∧ ¬β is Km-inconsistent, and let d be the depth of Γ .
The only assignment propositionally satisfying Γ is µ = α∧¬β. Consider Figure
2, left. Two distinct but identical open branches are generated, both representing
the assignment µ. Then the tableau expands the two open branches in the same
way, until it generates two identical (and possibly-big) closed modal sub-trees T
of modal depth d, each proving the Km-unsatisfiability of µ.

This phenomenon may repeat itself at the lower level in each sub-tree T , and
so on. For instance, if α = 21((α′ ∨ ¬β′) ∧ (α′ ∨ β′)) and β = 21(α′ ∧ β′), then
at the lower level we have a formula Γ ′ of depth d − 1 analogous to Γ . This
propagates exponentially the redundancy with the depth d.
4 Notice that the notion of “semantic branching” introduced in [24] is stronger than

that lately used in [27, 28]; the former coarsely corresponds to the latter plus the
usage of unit-propagation.
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Fig. 3. Search trees for the formula Γ = (α ∨ φ1) ∧ (β ∨ φ2) ∧ φ3 ∧ (¬α ∨ ¬β). Left: a
tableau-based procedure. Right: a DPLL-based procedure.

Finally, notice that if we considered the formula ΓK =
∧K

i=1(αi∨¬βi)∧(αi∨
βi) ∧ (¬αi ∨ ¬βi), the tableau would generate 2K identical truth assignments
µK =

∧
i αi ∧ ¬βi, and things would get exponentially worse.

Look at Figure 2, right. A DPLL-based procedure branches asserting α = >
or α = ⊥. The first branch generates α ∧ ¬β, whilst the second gives ¬α ∧
¬β ∧ β, which immediately closes. Therefore, only one instance of µ = α∧¬β is
generated. The same applies to µK .

Detecting constraint violations. A propositional formula ϕ can be seen as a
set of constraints for the truth assignments which possibly satisfy it. For instance,
a clause A1 ∨ A2 constrains every assignment not to set both A1 and A2 to ⊥.
Unlike tableaux, DPLL prunes a branch as soon as it violates some constraint of
the input formula. (For instance, in Ksat this is done by the function assign.)

Example 3. Consider the formula Γ = (α ∨ φ1) ∧ (β ∨ φ2) ∧ φ3 ∧ (¬α ∨ ¬β),
α and β being atoms, φ1, φ2 and φ3 being sub-formulas, such that α ∧ β ∧ φ3

is propositionally satisfiable and α ∧ φ2 is Km-unsatisfiable. Look at Figure 3,
left. Again, assume that, in a tableau-based procedure, the ∨-rule is applied in
order, left to right. After two steps, the branch α, β is generated, which violates
the constraint imposed by the last clause (¬α∨¬β). A tableau-based procedure
is not able to detect such a violation until it explicitly branches on that clause,
that is, only after having generated the whole sub-tableau T3 for α ∧ β ∧ φ3,
which may be rather big. DPLL instead (Figure 3, right) avoids generating the
violating assignment detects the violation and immediately prunes the branch.

3 Integrating DPLL and Theory Solvers: Lazy SMT

Satisfiability Modulo Theories is the problem of deciding the satisfiability of a
first-order formula with respect to some decidable first-order theory T (SMT (T )).
Examples of theories of interest are, those of Equality and Uninterpreted Func-
tions (EUF), Linear Arithmetic (LA), both over the reals (LA(Q)) and the in-
tegers (LA(Z)), its subclasses of Difference Logic (DL) and Unit-Two-Variable-



Per-Inequality (UT VPI), the theories of bit-vectors (BV), of arrays (AR) and
of lists (LI).

Efficient SMT solvers have been developed in the last five years, called lazy
SMT solvers, which combine DPLL with decision procedures (T -solvers) for
many theories of interest (e.g., [1, 41, 15, 3, 4, 18, 19, 6, 16]).

3.1 Theory Solvers

In its simplest form, a Theory Solver for T (T -solver) is a procedure which takes
as input a collection of T -literals µ and decides whether µ is T -satisfiable. In
order to be effectively used within a lazy SMT solver, the following features of
T -solver are often important or even essential.

Model generation: when T -solver is invoked on a T -consistent set µ, it is able
to produce a T -model I witnessing the consistency of µ, i.e., I |=T µ.

Conflict set generation: when T -solver is invoked on a T -inconsistent set µ, it
is able to produce the (possibly minimal) subset η of µ which has caused its
inconsistency. η is called a theory conflict set of µ.

Incrementality: T -solver “remembers” its computation status from one call to
the other, so that, whenever it is given in input a set µ1 ∪ µ2 such that µ1

has just been proved T -satisfiable, it avoids restarting the computation from
scratch.

Backtrackability: it is possible for the T -solver to undo steps and return to a
previous status on the stack in an efficient manner.

Deduction of unassigned literals: when T -solver is invoked on a T -consistent set
µ, it can also perform a set of deductions in the form η |=T l, s.t. η ⊆ µ and
l is a literal on a not-yet-assigned atom in ϕ.

Deduction of interface equalities: when returning Sat, T -solver can also perform
a set of deductions in the form µ |=T e (if T is convex) or µ |=T

∨
j ej (if

T is not convex) s.t. e, e1, ..., en are equalities between variables or terms
occurring in atoms in µ. We denote the equality (vi = vj) by eij , and we
call eij-deduction a deduction of (disjunctions of) eij ’s. A T -solver is eij-
deduction-complete if it always capable to inferring the (disjunctions of) eij ’s
which are entailed by the input set of literals. Notice that here the deduced
equalities need not occur in the input formula ϕ.

3.2 Lazy Satisfiability Modulo Theories

We adopt the following terminology and notation. The bijective function T 2B
(“theory-to-propositional”), called boolean abstraction, maps propositional vari-
ables into themselves, ground T -atoms into fresh propositional variables, and
is homomorphic w.r.t. boolean operators and set inclusion. The function B2T
(“propositional-to-theory”), called refinement, is the inverse of T 2B. The sym-
bols ϕ, ψ denote T -formulas, and µ, η denote sets of T -literals; ϕp, ψp denote
propositional formulas, µp, ηp denote sets of propositional literals (i.e., truth



1. SatValue T -DPLL (T -formula ϕ, T -assignment & µ) {
2. if (T -preprocess(ϕ, µ) == Conflict);
3. return Unsat;
4. ϕp = T 2P(ϕ); µp = T 2P(µ);
5. while (1) {
6. T -decide next branch(ϕp, µp);

7. while (1) {
8. status = T -deduce(ϕp, µp);

9. if (status == Sat) {
10. µ = P2T (µp);

11. return Sat; }
12. else if (status == Conflict) {
13. blevel = T -analyze conflict(ϕp, µp);

14. if (blevel == 0)

15. return Unsat;
16. else T -backtrack(blevel,ϕp, µp);

17. }
18. else break;
19. } } }

Fig. 4. Schema of T -DPLL based on modern DPLL.

assignments) and we often use them as synonyms for the boolean abstraction of
ϕ, ψ, µ, and η respectively, and vice versa (e.g., ϕp denotes T 2B(ϕ), µ denotes
B2T (µp)). If T 2B(ϕ) |= ⊥, then we say that ϕ is propositionally unsatisfiable,
written ϕ |=p ⊥.

Figure 4 represent the schema of a T -DPLL procedure based on a modern
DPLL engine. This schema evolved from that of the DPLL-based procedures
for modal logics, see §2.2. The input ϕ and µ are a T -formula and a reference to
an (initially empty) set of T -literals respectively. The DPLL solver embedded
in T -DPLL reasons on and updates ϕp and µp, and T -DPLL maintains some
data structure encoding the set Lits(ϕ) and the bijective mapping T 2P/P2T
on literals.

T -preprocess simplifies ϕ into a simpler formula, and updates µ if it is the
case, so that to preserve the T -satisfiability of ϕ∧µ. If this process produces some
conflict, then T -DPLL returns Unsat. T -preprocess combines most or all the
boolean preprocessing steps for DPLL with some theory-dependent rewriting
steps on the T -literals of ϕ. (The latter are described in §3.3.)

T -decide next branch selects the next literal like in standard DPLL (but
it may consider also the semantics in T of the literals to select).

T -deduce, in its simplest version, behaves similarly to standard BCP in
DPLL: it iteratively deduces boolean literals lp deriving propositionally from the
current assignment (i.e., s.t. ϕp ∧ µp |= lp) and updates ϕp and µp accordingly,
until one of the following facts happens:



(i) µp propositionally violates ϕp (µp ∧ ϕp |= ⊥). If so, T -deduce behaves like
deduce in DPLL, returning Conflict.

(ii) µp propositionally satisfies ϕp (µp |= ϕp). If so, T -deduce invokes T -solver
on µ: if the latter returns Sat, then T -deduce returns Sat; otherwise, T -deduce
returns Conflict.

(iii) no more literals can be deduced. If so, T -deduce returns Unknown. A
slightly more elaborated version of T -deduce can invoke T -solver on µ at
this intermediate stage: if T -solver returns Unsat, then T -deduce returns
Conflict. (This enhancement, called early pruning, is discussed in §3.3.)

A much more elaborated version of T -deduce can be implemented if T -solver
is able to perform deductions of unassigned literals η |=T l s.t. η ⊆ µ, as in §3.1.
If so, T -deduce can iteratively deduce and propagate also the corresponding
literal lp. (This enhancement, called T -propagation, is discussed in §3.3.)

T -analyze conflict is an extensions of analyze conflict of DPLL [42,
43]: if the conflict produced by T -deduce is caused by a boolean failure (case
(i) above), then T -analyze conflict produces a boolean conflict set ηp and
the corresponding value of blevel; if the conflict is caused by a T -inconsistency
revealed by T -solver (case (ii) or (iii) above), then T -analyze conflict pro-
duces the boolean abstraction ηp of the theory conflict set η ⊆ µ produced
by T -solver, or computes a mixed boolean+theory conflict set by a backward-
traversal of the implication graph starting from the conflicting clause ¬ηp (see
§3.3). Once the conflict set ηp and blevel have been computed, T -backtrack
behaves analogously to backtrack in DPLL: it adds the clause ¬ηp to ϕp, ei-
ther temporarily or permanently, and backtracks up to blevel. (These features,
called T -backjumping and T -learning, are discussed in §3.3.)

T -DPLL differs from the standard DPLL [42, 43] because it exploits:

– an extended notion of deduction of literals: not only boolean deduction (µp ∧
ϕp |= lp), but also theory deduction (µ |=T l);

– an extended notion of conflict: not only boolean conflict (µp ∧ ϕp |=p ⊥),
but also theory conflict (µ |=T ⊥), or even mixed boolean+theory conflict
((µ ∧ ϕ) |=T ⊥).

Example 4. Consider the LA(Q)-formulas ϕ and its boolean abstraction ϕp of
Figure 5. Suppose T -decide next branch selects, in order, µp := {¬B5, B8, B6,¬B1}
(in c4, c7, c6, and c1). T -deduce cannot unit-propagate any literal. By the en-
hanced version of step (iii), it invokes T -solver on µ := {¬(3x1 − x3 ≤ 6), (x3 =
3x5+4), (x2−x4 ≤ 6),¬(2x2−x3 > 2)}. The enhanced T -solver not only returns
Sat, but also it deduces ¬(3x1 − 2x2 ≤ 3) (c3 and c5) as a consequence of the
first and last literals. The corresponding boolean literal ¬B3, is added to µp and
propagated (T -propagation). Hence A1, A2 and B2 are unit-propagated from c5,
c3 and c2.

Let µ′p be the resulting assignment {¬B5, B8, B6,¬B1,¬B3, A1, A2, B2}). By
step (iii), T -deduce invokes T -solver on µ′: {¬(3x1 − x3 ≤ 6), (x3 = 3x5 + 4), (x2−



ϕ = ϕp =
c1 : ¬(2x2 − x3 > 2) ∨A1

c2 : ¬A2 ∨ (x1 − x5 ≤ 1)
c3 : (3x1 − 2x2 ≤ 3) ∨A2

c4 : ¬(2x3 + x4 ≥ 5) ∨ ¬(3x1 − x3 ≤ 6) ∨ ¬A1

c5 : A1 ∨ (3x1 − 2x2 ≤ 3)
c6 : (x2 − x4 ≤ 6) ∨ (x5 = 5− 3x4) ∨ ¬A1

c7 : A1 ∨ (x3 = 3x5 + 4) ∨A2

¬B1 ∨A1

¬A2 ∨B2

B3 ∨A2

¬B4 ∨ ¬B5 ∨ ¬A1

A1 ∨B3

B6 ∨B7 ∨ ¬A1

A1 ∨B8 ∨A2

¬B3

A1

A2

B2

¬B2

¬A2

B3

c8 : B5 ∨ ¬B8 ∨ ¬B2

T

¬B5

B8

B6

¬B1

Fig. 5. Boolean search (sub)tree in the scenario of Example 4. (A diagonal line, a ver-
tical line and a vertical line tagged with “T ” denote literal selection, unit propagation
and T -propagation respectively; a bullet “•” denotes a call to T -solver.)

x4 ≤ 6),¬(2x2 − x3 > 2),¬(3x1 − 2x2 ≤ 3), (x1 − x5 ≤ 1)} which is inconsis-
tent because of the 1st, 2nd, and 6th literals, so that returns Unsat, and hence
T -deduce returns Conflict. Then T -analyze conflict and T -backtrack learn
the corresponding boolean conflict clause

c8 =def B5 ∨ ¬B8 ∨ ¬B2

and backtrack, popping from µp all literals up to {¬B5, B8}, and then unit-
propagate ¬B2 on c8 (T -backjumping and T -learning). Then, starting from
{¬B5, B8,¬B2}, also ¬A2 and B3 are unit-propagated on c2 and c3 respectively.

As in standard DPLL, an excessive number of T -learned clauses may cause
an explosion in size of ϕ. Thus, many lazy SMT tools introduce techniques for
discharging T -learned clauses when necessary. Moreover, like in standard DPLL,
T -DPLL can be restarted from scratch in order to avoid dead-end portions of
the search space. The learned clauses prevent T -DPLL to redo the same steps
twice. Most lazy SMT tools implement restarting mechanisms as well.

3.3 Enhancements

In the schema of Figure 4, even assuming that the DPLL engine and the T -solver
are extremely efficient as a stand-alone procedures, their combination can be
extremely inefficient. This is due to a couple of intrinsic problems.

– The DPLL engine assigns truth values to (the boolean abstraction of) T -
atoms in a blind way, receiving no information from T -solver about their
semantics. This may cause up to an huge amount of calls to T -solver on
assignments which are obviously T -inconsistent, or whose T -inconsistency
could have been easily derived from that of previously-checked assignments.



– The T -solver is used as a memory-less subroutine, in a master-slave fashion.
Therefore T -solver may be called on assignments that are subsets of, super-
sets of or similar to assignments it has already checked, with no chance of
reusing previous computations.

Therefore, it is essential to improve the integration schema so that the DPLL
solver is driven in its boolean search by T -dependent information provided by
T -solver, whilst the latter is able to take benefit from information provided by
the former, and it is given a chance of reusing previous computation.

We describe some of the most effective techniques which have been proposed
in order to optimize the interaction between DPLL and T -solver. (We refer the
reader to [36] for a much more extensive and detailed survey.) Some of them, like
Normalizing T -atoms, Early pruning, T -backjumping and pure-literal filtering,
derive from those developed in the context of DPLL-based procedures for modal
logics.

Normalizing T -atoms. In order to avoid the generation of many trivially-
unsatisfiable assignments, it is wise to preprocess T -atoms so that to map as
many as possible T -equivalent literals into syntactically-identical ones. This can
be achieved by applying some rewriting rules, like, e.g.:

– Drop dual operators: (x1 < x2), (x1 ≥ x2) ⇒ ¬(x1 ≥ x2), (x1 ≥ x2).
– Exploit associativity: (x1 + (x2 + x3) = 1), ((x1 + x2) + x3) = 1) ⇒ (x1 +
x2 + x3 = 1).

– Sort: (x1 + x2 − x3 ≤ 1), (x2 + x1 − 1 ≤ x3) ⇒ (x1 + x2 − x3 ≤ 1)).
– Exploit T -specific properties: (x1 ≤ 3), (x1 < 4) ⇒ (x1 ≤ 3) if x1 ∈ Z.

The applicability and effectiveness of these mappings depends on the theory T .

Static learning. On some specific kind of problems, it is possible to quickly
detect a priori short and “obviously T -inconsistent” assignments to T -atoms in
Atoms(ϕ) (typically pairs or triplets). Some examples are:

– incompatible values (e.g., {x = 0, x = 1}),
– congruence constraints (e.g., {(x1 = y1), (x2 = y2),¬(f(x1, x2) = f(y1, y2))}),
– transitivity constraints (e.g., {(x− y ≤ 2), (y − z ≤ 4),¬(x− z ≤ 7)}),
– equivalence constraints ({(x = y), (2x− 3z ≤ 3),¬(2y − 3z ≤ 3)}).

If so, the clauses obtained by negating the assignments (e.g., ¬(x = 0)∨¬(x = 1))
can be added a priori to the formula before the search starts. Whenever all
but one literals in the inconsistent assignment are assigned, the negation of
the remaining literal is assigned deterministically by unit propagation, which
prevents the solver generating any assignment which include the inconsistent
one. This technique may significantly reduce the boolean search space, and hence
the number of calls to T -solver, producing very relevant speed-ups [1, 6].

Intuitively, one can think to static learning as suggesting a priori some small
and “obvious” T -valid lemmas relating some T -atoms of ϕ, which drive DPLL



in its boolean search. Notice that the clauses added by static learning refer only
to atoms which already occur in the original formula, so that the boolean search
space is not enlarged.

Early pruning. Another optimization, here generically called early pruning –
EP, is to introduce an intermediate call to T -solver on intermediate assignment
µ. (I.e., in the T -DPLL schema of Figure 4, this is represented by the “slightly
more elaborated” version of step (iii) of T -deduce.) If T -solver(µ) returns Unsat,
then all possible extensions of µ are unsatisfiable, so that T -DPLL returns Unsat
and backtracks, avoiding a possibly big amount of useless search.

In general, EP may introduce a drastic reduction of the boolean search space,
and hence of the number of calls to T -solvers. Unfortunately, as EP may cause
useless calls to T -solver, the benefits of the pruning effect may be partly counter-
balanced by the overhead introduced by the extra EP calls. To this extent, many
different improvements to EP and strategies for interleaving calls to T -solvers
and boolean reasoning steps [41, 19, 3, 6, 10] have been proposed.

T -propagation. As discussed in §3.1, for some theories it is possible to im-
plement T -solver so that a call to T -solver(µ) returning Sat can also perform
one or more deduction(s) in the form η |=T l, s.t. η ⊆ µ and l is a literal on an
unassigned atom in ϕ. If this is the case, then T -solver can return l to T -DPLL,
so that lp is added to µp and unit-propagated [1, 3, 19]. This process, which is
called T -propagation, may induce a beneficial loop with unit-propagation. As
with early-pruning, there are different strategies by which T -propagation can be
interleaved with unit-propagation [1, 3, 19, 6, 10, 33].

Notice that T -solver can return the deduction(s) performed η |=T l to T -
DPLL, which can add the deduction clause (ηp → lp) to ϕp, either temporarily
and permanently. The deduction clause will be used for the future boolean search,
with benefits analogous to those of T -learning (see §3.3).

T -backjumping and T -learning. Modern implementations inherit the back-
jumping mechanism of current DPLL tools: T -DPLL learns the conflict clause
¬ηp and backtracks to the highest point in the stack where one lp ∈ ηp is not
assigned, and unit propagates ¬lp on ¬ηp. Intuitively, DPLL backtracks to the
highest point where it would have done something different if it had known in
advance the conflict clause ¬ηp from the T -solver.

As hinted in §3.2, it is possible to use either a theory conflict η (i.e., ¬η is a T -
valid clause) or a mixed boolean+theory conflicts sets η′, i.e., s.t. an inconsistency
can be entailed from η′ ∧ ϕ by means of a combination of boolean and theory
reasoning ( η′ ∧ ϕ |=T ⊥). Such conflict sets/clauses can be obtained starting
from the theory-conflicting clause ¬ηp by applying the backward-traversal of the
implication graph, until one of the standard conditions (e.g., 1UIP) is achieved.
Notice that it is possible to learn both clauses ¬η and ¬η′.



Example 5. The scenario depicted in Example 4 represents a form of T -backjumping
and T -learning, in which the conflict clause c8 used is a LA(Q)-conflict clause
(i.e., P2T (c8) is LA(Q)-valid). However, T -analyze conflict could instead
look for a mixed boolean+theory conflict clause by treating c8 as a conflicting
clause and backward-traversing the implication graph, that is, by resolving back-
ward c8 with c2 and c3, (i.e., with the antecedent clauses of B2 and A2) and with
the deduction clause c9 (which “caused” the propagation of ¬B3):

c8: theory conflicting clause︷ ︸︸ ︷
B5 ∨ ¬B8 ∨ ¬B2

c2︷ ︸︸ ︷
¬A2 ∨B2

B5 ∨ ¬B8 ∨ ¬A2
(B2)

c3︷ ︸︸ ︷
B3 ∨A2

B5 ∨ ¬B8 ∨B3
(¬A2)

c9︷ ︸︸ ︷
B5 ∨B1 ∨ ¬B3

B5 ∨ ¬B8 ∨B1︸ ︷︷ ︸
c′8: mixed boolean+theory conflict clause

(B3)

finding the mixed boolean+theory conflict clause c′8 : B5 ∨ ¬B8 ∨ B1. (Notice
that, P2T (c′8) = (3x1−x3 ≤ 6)∨¬(x3 = 3x5 +4)∨(2x2−x3 > 2) is not LA(Q)-
valid.) If so then T -backtrack pops from µp all literals up to {¬B5, B8}, and
then unit-propagates B1 on c′8, and hence A1 on c1.

As with static learning, the clauses added by T -learning refer only to atoms
which already occur in the original formula, so that no new atom is added. [18]
proposed an interesting generalization of T -learning, in which learned clause
may contain also new atoms. [7, 8] used a similar idea to improve the efficiency
of Delayed Theory Combination (see §4).

Pure-literal filtering. If we have non-boolean T -atoms occurring only posi-
tively [resp. negatively] in the input formula, we can safely drop every negative
[resp. positive] occurrence of them from the assignment to be checked by T -solver
[41, 22, 3, 6, 36]. 5 We call this technique, pure-literal filtering

There are two potential benefits for this behavior. Let µ′ be the reduced
version of µ. First, µ′ might be T -satisfiable despite µ is T -unsatisfiable. If so,
and if µ propositionally satisfies ϕ, then T -DPLL can stop, potentially saving
a lot of search. Second, if µ′ (and hence µ) is T -unsatisfiable, then checking the
consistency of µ′ rather than that of µ can be faster and cause smaller conflict
sets, so that to improve the effectiveness of T -backjumping and T -learning.

Moreover, this technique is particularly useful in some situations. For in-
stance, many T -solvers for DL(Z) and LA(Z) cannot efficiently handle dise-
qualities (e.g., (x1 − x2 6= 3)), so that they are forced to split them into the
disjunction of strict inequalities (x1 − x2 > 3) ∨ (x1 − x2 < 3). This causes
an enlargement of the search, because the two disjuncts must be investigated
5 If both T -propagation and pure-literal filtering are implemented, then the filtered

literals must be dropped not only from the assignment, but also from the list of
literals which can be T -deduced, so that to avoid the T -propagation of literals which
have already been filtered away.



separately. In many problems, however, it is very frequent that most equalities
(t1 = t2) occur with positive polarity only. If so, then pure-literal filtering avoids
adding (t1 6= t2) to µ when (t1 = t2)p is assigned to false by T -DPLL, so that
no split is needed [3].

4 DPLL for Theory Combination: DTC

We consider the SMT problem in the case of combined theories, SMT (T1 ∪
T2). In the original Nelson-Oppen method [31] and its variant due to Shostak
[38] (hereafter referred as deterministic N.O. 6) the two T -solvers cooperate by
inferring and exchanging equalities between shared terms (interface equalities),
until either one T -solver detects unsatisfiability (Unsat case), or neither can
perform any more entailment (Sat case). In case of a non-convex theory Ti,
the Ti-solver may generate a disjunction of interface equalities; consequently,
a Ti-solver receiving a disjunction of equalities from the other one is forced to
case-split on each disjunct. Deterministic N.O. requires that each T -solver is
always capable to inferring the (disjunctions of) equalities which are entailed by
the input set of literals (see §3.1). Whilst for some theories this feature can be
implemented very efficiently (e.g., EUF [32]), for some others it can be extremely
expensive (e.g., DL(Z) [30]).

Delayed Theory Combination (Dtc) is a general method for tackling the
problem of theory combination within the context of lazy SMT [7, 8]. As with
N.O., we assume that T1, T2 are two signature-disjoint stably-infinite theories
with their respective Ti-solvers. Importantly, no assumption is made about the
eij-deduction capabilities of the Ti-solvers (§3.1): for each Ti-solver, every inter-
mediate situation from complete eij-deduction (like in deterministic N.O.) to no
eij-deduction capabilities (like in non-deterministic N.O.) is admitted.

In a nutshell, in Dtc the embedded DPLL engine not only enumerates truth
assignments for the atoms of the input formula, but also assigns truth values for
the interface equalities that the T -solver’s are not capable of inferring, and han-
dles the case-split induced by the entailment of disjunctions of interface equalities
in non-convex theories. The rationale is to exploit the full power of a modern
DPLL engine by delegating to it part of the heavy reasoning effort previously
due to the Ti-solvers.

An implementation of Dtc [8, 9] is based on the schema of Figure 4, ex-
ploiting early pruning, T -propagation, T -backjumping and T -learning. Each of
the two Ti-solvers interacts only with the DPLL engine by exchanging literals
via the truth assignment µ in a stack-based manner, so that there is no direct
exchange of information between the Ti-solvers. Let T be T1∪T2. The T -DPLL
algorithm is modified to the following extents [8, 9]: 7

– T -DPLL must be instructed to assign truth values not only to the atoms
in ϕ, but also to the interface equalities not occurring in ϕ. P2T and T 2P

6 We also call nondeterministic N.O. the non-deterministic variant of N.O. method
first presented in [34].

7 For simplicity, we assume ϕ is pure, although this condition is not necessary.)



SAT!

and the consequent two branches

µ′LA(Z) |=LA(Z) ((v1 = v3) ∨ (v1 = v4))

Mimics the eij-deduction

{¬(v1 = v4), v1 = v3}, {v1 = v4}

v1 = v4

EUF -unsat, C14

C14 : (µ′′′EUF ∧ (v1 = v3) ∧ (v2 = v4)) → ⊥

v2 = v4

EUF -unsat, C24

v2 = v3

C24 : (µ′′EUF ∧ (v1 = v3) ∧ (v2 = v3)) → ⊥
LA(Z)-unsat, C23

C23 : (µ′′LA(Z) ∧ (v5 = v6)) → ((v2 = v3) ∨ (v2 = v4))

¬(v2 = v4)

¬(v2 = v3)

v5 = v6

EUF -unsat, C56

¬(v5 = v6)

C56 : (µ′EUF ∧ (v1 = v3)) → (v5 = v6)

v1 = v3

LA(Z)-unsat, C13

¬(v1 = v4)

¬(v1 = v3)

C13 : (µ′LA(Z)) → ((v1 = v3) ∨ (v1 = v4))

v5 = v4 − 1v1 ≥ 0
v3 = 0

v2 ≥ v6 v4 = 1
v2 ≤ v6 + 1

v1 ≤ 1

µLA(Z):
¬(f (v1) = f (v2))¬(f (v2) = f (v4))

f (v3) = v5
f (v1) = v6

µEUF :

Fig. 6. The Dtc search tree for Example 6 on LA(Z) ∪ EUF , with no eij-deduction.
v1, . . . , v6 are interface terms. µ′T i

, µ′′T i
, µ′′′T i

denote generic subsets of µT i , T ∈
{EUF ,LA(Z)}.

are modified accordingly. In particular, T -decide next branch is modified
to select also new interface equalities not occurring in the original formula.

– µp is partitioned into three components µp
T1

, µp
T2

and µp
e, s.t. µTi is the set

of i-pure literals and µe is the set of interface (dis)equalities in µ.
– T -deduce is modified to work as follows: for each Ti, µ

p
T i
∪ µp

e, is fed to the
respective Ti-solver. If both return Sat, then T -deduce returns Sat, otherwise
it returns Conflict.

– Early-pruning is performed; if some Ti-solver can deduce atoms or single
interface equalities, then T -propagation is performed. If one Ti-solver per-
forms the eij-deduction µ∗ |=Ti

∨k
j=1 ej , s.t. µ∗ ⊆ µT i ∪µe, each ej being an

interface equality, then the deduction clause T 2B(µ∗ → ∨k
j=1 ej) is learned.

– T -analyze conflict and T -backtrack are modified so that to use the
conflict set returned by one Ti-solver for T -backjumping and T -learning.
Importantly, such conflict sets may contain interface equalities.

In order to achieve efficiency, other heuristics and strategies have been further
suggested in [7–9], and more recently in [17, 14].

Example 6. [9] Consider the set of EUF ∪ LA(Z)-literals µ =def µEUF ∪ µLA(Z)
of Figure 6. We assume that both the EUF- and LA(Z)-solvers have no eij-
deduction capabilities (like with non-deterministic N.O.). For simplicity, we also
assume that both Ti-solvers always return conflict sets which do not contain
redundant interface disequalities ¬eij . (We adopt here a strategy for Dtc which



is described in detail in [9].) In short, T -DPLL performs a boolean search on
the eij ’s, backjumping on the T -conflicting clauses C13, C56, C23, C24 and C14,
which in the end causes the unit-propagation of (v1 = v4). Then, T -DPLL
selects a sequence of ¬eij ’s without generating conflicts, and concludes that the
formula is T1 ∪ T2-satisfiable. Notice that the backjumping steps on the clauses
C13, C56, and C25 mimic the effects of performing eij-deductions.

By adopting T -solvers with different eij-deduction power, one can trade part
or all the eij-deduction effort for extra boolean search. [9] shows that, if the
T -solvers have full eij-deduction capabilities, then no extra boolean search on
the eij ’s is required; otherwise, the boolean search is controlled by the quality
of the conflict sets returned by the T -solvers: the more redundant ¬eij ’s are
removed from the conflict sets, the more boolean branches are pruned. If the
conflict sets do not contain redundant ¬eij ’s, the extra effort is reduced to one
branch for each deduction saved, as in Example 6.

Variants of DTC are currently implemented in the MathSAT [8], Yices
[17], and Z3 [14] lazy SMT tools.

4.1 Splitting on Demand

The idea of delegating to the DPLL engine part of the heavy reasoning effort
previously due to the Ti-solvers is pushed even further in the Splitting on demand
technique proposed in [5]. This work is built on top of the observation that for
many theories, in particular for non-convex ones, T -solvers must perform lots
of internal case-splits in order to decide the satisfiability of a set of literals.
Unfortunately most T -solvers cannot handle boolean search internally, so that
they cannot do anything better then doing naive case-splitting on all possible
combinations of the alternatives.

With splitting on demand, whenever the T -solver encounters the need of
a case-split, it gives back the control to the DPLL engine by returning (the
boolean abstraction of) a clause encoding the alternatives, which is learned and
split upon by the DPLL engine. (Notice that the atoms encoding the alternatives
in the learned clause may not occur in the original formula.) This is repeated
until the T -solver can decide the T -satisfiability of its input literals without
case-splitting. Therefore the T -solver delegates the boolean search induced by
the case-splits to the DPLL solver, which presumably handles it in a much more
efficient way.
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