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Abstract. The problem of computing risk measures associated to flood events is ex-

tremely important not only from the point of view of civil protection systems but also

because of the necessity for the municipalities of insuring against the damages. In this

work we propose, in the framework of an integrated strategy, an operating solution which

merges in a conditional approach the information usually available in this setup. First we

use a Logistic Auto-Logistic (LAM) model for the estimation of the univariate conditional

probabilities of flood events. This approach has two fundamental advantages: it allows to

incorporate auxiliary information and does not require the target variables to be indepen-

dent. Then we simulate the joint distribution of floodings by means of the Gibbs Sampler.

Finally we propose an algorithm to increase ex post the spatial autocorrelation of the

simulated events. The methodology is shown to be effective by means of an application

to the estimation of the flood probability of Italian hydrographic regions.

Keywords. Flood Risk, Conditional Approach, LAM Model, Pseudo-Ma-

ximum Likelihood Estimation, Spatial Autocorrelation, Gibbs Sampler.

1 Introduction

The last few years have witnessed a growing interest in the estimation of

the probability of catastrophic meteorological events; in particular, both



the development of new methods and their application to real data have

attracted a lot of attention. Broadly speaking, the reasons can be grouped

in at least three groups:

• these events can cause serious damages and put in danger human lives,

so that the knowledge of the risk of a certain place, as measured by

its probability, can influence decisions (for example, about building

houses, roads, dams or other structures) concerning that area;

• municipalities have to insure against the damages, and it is well known

that actuarial techniques for the quantification of the premium are

mainly based on the probability of occurrence, which determines its

frequency, and, possibly, on the severity of the event; see [1] for more

details;

• in recent years, the market for the so-called weather derivatives (see,

for example, [2]) has become more and more important, and tools for

pricing these instruments rely crucially on accurate estimation of the

probability of triggering events.

In this paper we focus on the estimation of the risk determined by flood-

ings. Historically, the statistical analysis of this kind of events has mostly

been based on Extreme Value Theory (EVT), which studies the distribution

of the largest observations of a population and has been frequently applied to

hydrological problems: a classical example is the analysis of the “River Nidd

data” ([3]; [4], pag. 284). However, EVT suffers of at least two drawbacks.

First, it is mainly restricted to univariate settings; second, it does not al-

low to include additional information contained in auxiliary variables. As a

consequence, it is particularly well suited when the investigator is interested

in assessing the probability of the event in a single place and does not have

any information possibly correlated with the event. It is worth adding that

[4], pag. 319-20, present an example concerning a portfolio of water-damage

insurance where EVT is not the most appropriate tool, because data is not

heavy-tailed.

The goal of the analysis performed here and the features of the data at

hand give precise indications about the model to be used. Consider indeed
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that we look at the problem from a multivariate point of view, i.e. we want

to estimate the probability of flood events affecting jointly all the areas un-

der investigation. This actually follows from the nature of the problem, as

it is clear that if an event takes place in a region, it is likely to impact neigh-

boring regions as well; in other words, the events are spatially dependent.

The second aim consists in estimating the flood probability as a function

of explanatory variables, because flood events can be related to a number

of factors as, for example, precipitation over a specified time horizon, ge-

ographical position, altitude etc. Thus, we have to build a model where

auxiliary variables can be taken into account. For the reasons mentioned

above, these two requirements essentially rule out EVT.

The data typically consists of indicator variables for the presence of

flood events in each area: more precisely, for each region we have a vector of

indicators where the i-th element takes value 1 if a flood took place at the

i-th date and value 0 otherwise. Moreover, the values of several explanatory

variables, to be described in detail in the next section, are known for each

region.

Considering that the indicator variable of the flood events is binary and

that the model should include auxiliary variables, it seems natural to resort

to a logistic regression model; however, classical logistic models require the

target variables to be independent, an hypothesis which is clearly not satis-

fied by the data at hand. For this reason, standard logistic regression is not

appropriate in the present work.

It is thus necessary to introduce some modifications in order to be able to

take care of the effects of the spatial dependence of georeferred data. More

specifically, spatial dependence can be “embedded” in the logistic approach

by means of a “conditional specification” model of spatial correlation: the

fact that an event is observed in a certain place of the geographic space

depends on what happens in the adjacent regions.

A model is said to be of a conditional specification type if the joint

distribution function of the units is built on the basis of the univariate

conditional distributions. The choice of this strategy naturally follows from

the fact that these univariate conditional distributions are often simpler to

work with than the multidimensional distribution; the latter, in such a setup,
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can indeed only be studied numerically.

Among the conditional specification models the auto-logistic approach

proposed by Besag ([5], [6]) was at first deemed to be the best solution in

consideration of the first requirement above. Unfortunately this model de-

fines a structure of spatial dependence but does not allow to incorporate

auxiliary variables. In other words with the auto-logistic approach the a

priori information concerning the matter under study cannot be used for

estimation, whereas the classical logistic approach explicitly considers the

covariates but neglects the effects of spatial dependence. As pointed out by

[7], in applications both approaches (logistic and auto-logistic) can be in-

complete and not appropriate for modeling spatial data. Therefore it looks

reasonable to use a model which takes advantage of the features of both ap-

proaches; the logical choice seems to be the so-called Logistic Auto-Logistic

model. After estimating this model, it is straightforward to implement the

Gibbs Sampling algorithm to simulate the joint distribution.

Finally, given that the spatial autocorrelation estimated with the proce-

dure outlined above is rather small, we develop an algorithm which increases

the autocorrelation without modifying the frequency distribution of the flood

events.

The structure of the paper is as follows. In section 2 we describe the

data and give the details of the model; section 3 analyzes the estimation

and simulation techniques, focusing on the pseudo-MLE procedure and on

the Gibbs Sampler; section 4 applies the tools to the prediction of floods

in some Italian hydrographic regions; in section 5 we move towards risk

assessment, trying to introduce a measure of the severity of flood events.

Section 6 concludes and gives some directions for future research.

2 The data and the model

2.1 The data

As anticipated in the introduction, the data consists of historical information

about flood events and of auxiliary variables for a partition of the Italian

territory. The hydrographic areas considered here, which can be seen in
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figure 2 (section 4) correspond to a partition similar to the administrative

partition in regions: in some cases they coincide (it is, for example, the case

of Sardegna and Trentino Alto Adige), in other cases administrative regions

are smaller or larger: for example, Sicilia is divided in three areas, whereas

there is a single area covering Friuli Venezia Giulia and Veneto. We consider

27 hydrographic areas, so that, on average, they are slightly smaller than

administrative regions, which are 20.

In general, the data can be grouped into four categories.

(i) A spatio-temporal dataset consisting of the flood events which took

place in the past in areal units designed to this aim (hydrographic

units) or in administrative partitions of the territory under considera-

tion. In the majority of cases it can be represented by a binary matrix

Ỹ = (Ỹij) (i = 1, . . . , T, j = 1, . . . , N), where T is the number of

dates when a flood event hit at least one area and N is the number of

areas. Notice that Ỹij is just an indicator of presence or absence of a

flood event, because quantitative data concerning the severity of flood

events are usually not available, not even grouped in severity classes.

For notational simplicity, in the following we put Y = vec(Ỹ ), namely

Y is the TN × 1 vector obtained by stacking the columns of Y , one

below the other, with the columns ordered from left to right.

(ii) A contiguity matrix C for the areas described above, defining the

association structure of the sites. In our setup C is specified so that

the generic element cij is equal to 1 if the areas i and j are adjacent

and 0 otherwise.

(iii) A cross-sectional (or just sectional) set containing appropriate auxil-

iary variables X possibly related to the territory (meteorological vari-

ables as the average of the annual maximum rainfall in a one-hour,

three-hour etc. time horizon; hydrographic variables as the dimension

of the basin located, completely or partially, in a hydrographic unit;

topographic variables, etc.);

(iv) a matrix F of return time probabilities whose element fij denotes the

probability, for the i-th hydrographic unit, of the j-th class in which
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Figure 1: Observed data: number of regions hit by a single event.

the return times were previously grouped.

The data are shown in figure 1. They are a subset of the database of the

CNR-GNDCI AVI project, developed by the Italian Research Council; de-

tails can be found on the web site of the project (see www.avi.gndci.pg.cnr.it

and the references therein). The database contains more than 20000 flood

events for the whole Italian territory starting from the XVII century; we de-

cided to limit ourselves to the events of the period January 1900 - January

2002, which are supposed to be more reliable.

As for the auxiliary variables, we have a list containing mostly physical

variables:

• area;

• position (geographical coordinates);

• population;

• maximum, minimum and average altitude;

• rainfall in 1, 3, 12 and 24 hours;
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• dimension of the basin.

The interpretation of the role played by these variables with respect to

flood events is sometimes, but not always, easy (we expect a flood event to be

more frequent where it falls more rain and where the altitude is larger; on the

other hand, the role of position is less clear); as for the single non-physical

variable (population), it is more difficult to predict its impact. In any case,

the selection of significant variables is likely to require both statistical tools

and “expert opinions”.

2.2 The Logistic Auto-Logistic (LAM) model

The specification of the model has to take into account the features listed

above and, in particular, the facts that Yi is a binary variable and that

we are interested in estimating the impact of auxiliary variables on the

probability of an event. In order to satisfy both requirements, we adopt a

further extension of the standard logistic framework, namely the so-called

Logistic Auto-Logistic (LAM) model ([8], pag. 125-126; see [9] for a more

general treatment of auto-models). Before giving a formal definition of the

model, we need two definitions.

Definition 1 (Neighborhood criterion). A site j is called neighbor of site

i if the distribution of Yi, conditionally on the values of Y in all the other

sites, depends on Yj.

Definition 2 (Neighborhood set). The set C{i} = {j : j is a neighbor of i}

(j = 1, . . . , N) is called neighbors set of i.

Notice that, from a theoretical point of view, the neighborhood criterion

is not necessarily related to geographical adjacency, but is defined by a

known matrix C (the connectivity matrix) which identifies the areas belong-

ing to C{i} (this is sometimes called contiguity-based neighborhood); roughly

speaking, what happens in the areas not belonging to C{i} does not have

any influence on the conditional probability of success.
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The model can now be formalized writing down explicitly the conditional

probability of “success” in area i:

P (Yi = 1|Yj , j 6= i, j ∈ C{i}) =
exp{α + γ ′xi + β

∑

j∈C{i} yj}

1 + exp{α + γ′xi + β
∑

j∈C{i} yj}
. (1)

At first glance, model (1) may seem similar to the standard logit model, but

from the probabilistic point of view the differences are remarkable.

First, the observations Yi are dependent, because of the presence of the

term
∑

j∈C{i} yj in the score function, which implies that the probability of

observing a success in region i is influenced by the number of successes in

contiguous regions. Second, the vector xi contains the auxiliary variables

of the i-th area, and α, γ and β are the unknown parameters to be esti-

mated. Formulation (1) and, in particular, the dependence of the Yi’s, has

a relevant impact on estimation: as we will see in the next section, classical

Maximum Likelihood Estimation (MLE) is not feasible, and the most con-

venient solution consists in using Pseudo Maximum Likelihood Estimation

(PMLE), which provides us with estimators which share most of the well

known properties of MLE’s and allows to avoid the problems of standard

MLE in this setup.

The probabilistic model underlying (1) is a spatial random process or a

random field. Referring to [8], chap. 2, for details, we limit ourselves to recall

that a random field is an extension of the well known concept of random

process: while the latter describes the stochastic evolution over time of a

single variable, the random field gives the same information for a family of

random vectors. It represents the natural model for our framework, because

Y is a binary vector evolving over time.

So far, we have only specified the conditional distribution of Yi given Yj

(j 6= i). From the theoretical point of view, this introduces a major problem:

is it possible to define a functional form for the conditional distribution of

each random variable and then derive the joint distribution of the N random

variables? In other words, do the univariate conditional distributions contain

enough information to fully characterize the joint distribution? The answer

to this question is positive under the so-called positivity condition, which

requires all the marginal distributions of Y to be strictly positive. This
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result was proved by Hammersley and Clifford ([10]) in a famous theorem

which circulated for some years in a private form and was subsequently

published by other authors ([6], [11], [12]).

Theorem 1 (Hammersley-Clifford). Under the positivity condition, the

joint distribution g of Y satisfies

g(y1, . . . , yp) ∝

p
∏

j=1

glj (ylj |yl1 , . . . , yli−1
, y′li+1

, . . . , y′lp)

glj (yl′j
|yl1 , . . . , yli−1

, y′li+1
, . . . , y′lp)

for every permutation l on {1, 2, . . . , p} and every y′ ∈ Y, where Y is the

sample space of Y .

Proof: see, for example, [13], sect. 7.1.5.

It is easily verified ([7], sect. 2.4.2.4) that both the autologistic model and

the LAM model satisfy the positivity condition, so that the Hammersley-

Clifford theorem holds in our setup and we can safely estimate the condi-

tional distributions and use them to simulate the model.

In applications, model (1) is certainly useful in a conditional setup, in the

sense that it gives an estimate of the probability of a flood event in the i-th

region given that we know what has happened in the neighborinhg regions.

However, this is usually only part of the information needed for practical

purposes: both insurance companies and civil protection plans are indeed

mostly interested in an “overall” probability of observing a flood event in a

certain region, not dependent on the presence of the event in neighboring

regions. This unconditional probability can be interpreted as the average

riskiness of a region if we ignore what has happened elsewhere: it follows

that it is clearly the most important one in the long run, because it can

also be thought of as the average riskiness, in the sense that it corresponds

to the average of the conditional probabilities as the conditioning events

change over time. The latter probability is obviously the risk measure of

interest for insurance companies.

It is worth noting that a similar interpretation of risk is common to

other fields: in particular, credit risk measurement is interested in both

conditional default probabilities (for short run analysis) and unconditional
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default probabilities, which give an average riskiness over a longer time

horizon.

2.3 The unconditional distribution

The Hammersley-Clifford theorem guarantees the existence and uniqueness

of the joint distribution of the Yi’s, but it does not give its exact form,

and the normalizing constant needed to identify it may be very difficult

to compute. As a consequence, finding analytically the unconditional joint

distribution of Y is often impossible. To see where the problem comes from

in the autologistic model, consider the following well known example ([14],

pag. 323; [8], pag. 52-55).

Example 1 (Ising model). From the statistical point of view, the Ising

model of statistical mechanics is a particular version of the autologistic

model. The setup is as follows. A binary variable Yij is defined on a rect-

angular array; two sites (i, j) and (k, s) are neighbors if either i = k and

|j − s| = 1 or j = s and |i − k| = 1. Let S =
∑∑

yij be the total num-

ber of successes and nij the sum of yks over the four neighboring sites of

(i, j). Let finally N = (1/2)
∑ ∑

nij. In the Ising model the probability of

a realization y of the random field is given by

P (y) =
1

Z(α, β)
exp {αS + βN}. (2)

The normalizing constant Z(α, β) is such that
∑∑

P (Yij) = 1; in other

words, it has to be introduced in order to make (2) a probability distribution.

Unfortunately, this quantity is computationally intractable, so that the joint

distribution cannot be determined.

On the other hand, the conditional probabilities of Yij given all the other

y’s take a simple form:

P (Yij = 1|all other y’s) =
exp {α + βnij}

1 + exp {α + βnij}
.

Although the Hammersley-Clifford theorem is not useful for the compu-

tation of the joint distribution, it guarantees its existence, giving a sound
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foundation to the common practice of using the conditional probabilities

in applications. In the following we will indeed see that estimation can be

performed by means of (1) and that the joint distribution can be obtained

numerically, via the Gibbs Sampling algorithm, using again the conditional

distributions (1).

3 Estimation and simulation: a MCMC Approach

In the preceding section we have recalled that the Hammersley-Clifford the-

orem does not allow to find exactly the joint distribution of the random field

Y . For estimation purposes, this is a serious problem.

Example 1 (continued). We pointed out in the preceding section that the

normalization constant Z(α, β) is not computable; moreover, it depends on

the unknown parameters α and β, so that we cannot drop it when we write

down the likelihood function. The conclusion is that standard MLE of α

and β cannot be performed if we start from the joint distribution (2).

3.1 Maximum Pseudo-Likelihood Estimation

The conditional distributions in the autologistic model take a very simple

form because, if we consider the joint distribution and apply the definition

to find the conditional distributions, the normalization constant drops down

(see [15]). This feature, combined with the difficulties associated to stan-

dard MLE, led researchers to develop an estimation theory based on the

conditional distributions.

In particular, Besag ([17], [18]) was the first to introduce a methodology

called Pseudo-Maximum Likelihood Estimation (PMLE). The basic idea is

simple: according to classical MLE, if the observations are dependent we

cannot compute the likelihood function for all the variables by simply taking

the product of the conditional distributions of each observations given all the

other observations. To apply PMLE, we ignore this problem and compute

the function

PL =
∏

P (yi|all other yj’s) (3)
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as if the observations were conditionally independent. Of course (3) is not a

likelihood function, and for this reason it is called Pseudo-Maximum Likeli-

hood.

Given that one of the main hypotheses of maximum likelihood estima-

tion is violated, we expect that the properties of MLE’s do not extend to this

setup, but fortunately most of these properties continue to hold true. In par-

ticular, under standard regularity conditions, [19] have shown that PMLE’s

are consistent and asymptotically normal, with asymptotic variances given

by quantities whose interpretation is similar to the elements of the inverse

of the Fisher information matrix in classical MLE (see, for example, [20],

sect. 9.2).

Essentially, as pointed out by [14], the only property not inherited by

PMLE’s is efficiency. However, inefficiency is usually small, and compen-

sated by huge computational advantages; using Cressie’s words ([9], pag.

461), the pseudo-maximum likelihood procedures “trade away efficiency in

exchange for closed-form expressions that avoid working with the exact like-

lihood’s unwieldy normalizing constant”. In our setup, the application of

PMLE to (1) is straightforward: we employ standard maximum likelihood

techniques for the estimation of the parameters of the logit model.

3.2 The simulation of the joint distribution

Having estimated the parameters of (1) by means of PML techniques, the

next step consists in finding the joint distribution of the Yi’s. This prob-

lem cannot be solved analytically, so that we have to resort to simulation

techniques. Considering that we know the univariate conditional probabil-

ity distributions, it is natural to use the Gibbs sampling algorithm for the

determination of the joint distribution.

The Gibbs sampler ([21]; see [13] for a general treatment and [22] for

a more application-oriented analysis) is an algorithm which allows to simu-

late the joint distribution of p random variables using only the p univariate

conditional distributions.

Definition 3 (Gibbs Sampler). Let Y = (Y1, . . . , Yp)
′ be a p-variate ran-

dom vector; suppose we can simulate from the p corresponding univariate
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conditional densities fi, namely

Yi|y1, y2, . . . , yi−1, yi−1, . . . , yp ∼ fi(yi|y1, y2, . . . , yi−1, yi−1, . . . , yp)

for i = 1, . . . , p. Then the Gibbs Sampler is given by the following steps:

given the values (y
(t)
1 , . . . , y

(t)
p ) obtained at the t-th iteration, simulate

1. Y
(t+1)
1 ∼ f1(y1|y

(t)
2 , . . . , y

(t)
p );

2. Y
(t+1)
2 ∼ f2(y2|y

(t+1)
1 , y

(t)
3 , . . . , y

(t)
p );

...

p. Y
(t+1)
p ∼ fp(yp|y

(t+1)
1 , . . . , y

(t+1)
p−1 ).

The application of the algorithm to our setup is rather straightforward:

all we need are the univariate conditional densities, which are given by (1).

Thus, the t-th replication of the algorithm consists in simulating p Bernoulli

random variables Y
(t)
i with parameters π̂

(t)
i (i = 1, . . . , p), where π̂

(t)
i is given

by:

π̂
(t)
i =

exp{α̂ + γ̂′xi + β̂
∑

j∈C{i} y
(t−1)
j }

1 + exp{α̂ + γ̂′xi + β̂
∑

j∈C{i} y
(t−1)
j }

.

The crucial feature of the algorithm ([13], chap. 7) is that each sequence of

random variables generated by the Gibbs Sampler is an ergodic Markov chain

whose stationary distribution is the joint distribution of the p variables;

nonetheless, this result is of little use for practical purposes, because it does

not tell us when convergence is reached. Thus, the last important issue in

applications is the determination of a stopping criterion.

Diagnosing convergence has always proved to be a difficult problem.

Unfortunately, no general recipe is available, as the convergence behavior

of the chain depends on the setting; in other words, it is problem-specific.

Referring the reader to [13], chap. 8, for details, here we limit ourselves

to mention the classical criterion consisting in simulating B independent

chains and discarding the “initial” observations (corresponding to the so-

called burn-in period) of every chain; if correctly implemented, it is still one

of the most reliable criteria. The idea of simulating B independent chains

seems to be a sound solution to the problem that adjacent observations of
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a single chain are dependent, which implies that, when an iid sample is

needed, including contiguous observations is incorrect. After simulating B

chains, an iid sample is obtained by taking the “final” observations of each

chain.

4 Application

4.1 Estimation of the conditional distributions

According to section 3.1, the first step of the estimation procedure consists

in estimating the parameters α, β and γ in (1) by means of the Pseudo-

Maximum Likelihood methodology. This means that we treat the obser-

vations as if they were independent and use standard maximum likelihood

procedures.

The results are shown in table 1. The auxiliary variables used in the

analysis have been obtained by means of a selection procedure performed

on a larger set of variables: in particular, the original dataset contained the

average rainfall (measured as the average of the yearly maximum rainfall in

a given time) for 1, 3, 6, 12, 24 hours, but the only significant one was the

12-hour average.

Table 1. Estimated coefficients, standard errors and t-statistics

Variable β̂ se tβ̂

constant (α) -4.6600 0.1125 -41.44

Area 0.0001 < 0.0001 40.74

Rainfall in 12 hours 0.0180 0.0016 11.19

spatial correlation (β) 0.0564 0.0084 6.71

As pointed out by [15], we cannot apply standard distributional results,

so that the t statistics should only be considered an informal basis for model

selection. However, roughly speaking, we believe that in this case they are

reliable for at least two reasons:

• the small value of β̂ implies that the dependence of the Yi’s is weak, so

that the use of standard asymptotic theory should not be completely
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Figure 2: A typical simulated chain.

inappropriate;

• the p-values of the t-statistics are very small, therefore they provide us

with a very clear-cut indication about the significance of the variables.

4.2 Simulating the joint distribution

The estimation of the univariate conditional distributions constitutes a nec-

essary step for the implementation of the Gibbs Sampler, because the sim-

ulation is based on the univariate conditional distributions with parameters

α̂, β̂ and γ̂. The application of the Gibbs Sampler follows closely definition

3.

As for the issue of diagnosing convergence, monitoring the sequences

{π̂
(j)
i }j=1,2,... (i = 1, . . . , N) we noticed that, for any starting value and for

any region, the chain immediately moves in a well defined interval (see figure

2).
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Figure 3: Simulated data: number of regions hit by a single event.

Thus we decided to simulate, for each region, a single chain of length T =

1000 and take the average of the last 100 observations π̂i = (1/100)
∑1000

t=901 π̂
(t)
i

as an estimate of π
(t)
i . The fact that convergence is relatively fast is proba-

bly related to the small spatial correlation of the areas under investigation

as measured by the numerical value of β̂.

The final values of the chains obtained in a single replication of the

algorithm form an observation from the joint (N -variate) distribution of the

Yi’s. Given the binary nature of the variables of interest, each simulated

observation is a vector y∗ ∈ {0, 1}N . Simulating B = 100, 000 observations

and computing W ∗
k =

∑N
i=1 y∗i (k = 1, . . . , N), we get the distribution shown

in figure 3.

The graph gives the frequency distribution of the number of areas hit by

a flood event, and can therefore be interpreted as a measure of its spatial

extension; this information is clearly important both for civil protection

purposes and for insurance companies, because, in absence of a ranking of

the severity of floodings, it can be taken as the most basic measure of the

gravity of an event.
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Estimated values π̂GS of π are given in table 2 along with standard

errors. For comparison purposes, we also reported the probabilities π̂PMLE

obtained by means of the univariate logistic regressions estimated in the

preceding section.

Table 2. Parameter estimates and standard errors obtained by means

of univariate PMLE (π̂PMLE) and Gibbs Sampler (π̂GS)

Region π̂pmle π̂gs Region π̂pmle π̂gs

1 0.0571 0.0582 (0.0019) 15 0.0694 0.0703 (0.0019)

2 0.0862 0.0678 (0.0022) 16 0.0692 0.0701 (0.0018)

3 0.0955 0.0835 (0.0026) 17 0.0672 0.0680 (0.0017)

4 0.1705 0.1240 (0.0037) 18 0.0603 0.0611 (0.0016)

5 0.1174 0.1083 (0.0033) 19 0.0871 0.0882 (0.0022)

6 0.0733 0.0748 (0.0024) 20 0.0561 0.0562 (0.0006)

7 0.2613 0.2538 (0.0059) 21 0.0567 0.0568 (0.0006)

8 0.0504 0.0488 (0.0016) 22 0.0580 0.0581 (0.0007)

9 0.2695 0.2510 (0.0056) 23 0.1203 0.1204 (0.0009)

10 0.0651 0.0665 (0.0022) 24 0.0455 0.0456 (0.0004)

11 0.0954 0.0973 (0.0031) 25 0.0775 0.0776 (0.0006)

12 0.0826 0.0841 (0.0025) 26 0.0727 0.0728 (0.0007)

13 0.0520 0.0530 (0.0017) 27 0.2304 0.2337 (0.0057)

14 0.0821 0.0794 (0.0024)

The differences between the flooding probabilities computed with the

two methods are displayed graphically in figure 4.

The map shows that the difference between the univariate and the joint

estimates are mostly small; the most relevant exception is given by region 4,

for which π̂PMLE is significantly larger than π̂GS . It is difficult to identify the

causes of this outcome: we checked the values of the auxiliary variables, and

they are similar to the values observed in other regions. Thus, the difference

must be related to the spatial autocorrelation between the regions, and this

difference underlines the importance of estimating the probability of flood

events on the basis of the joint distribution.
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Figure 4: Differences between univariate and joint estimates.

5 Risk Assessment

It is intuitively clear that not all floodings cause the same damages, and this

is obviously important. Thus, in order to give a more precise description of

the associated risk, we need to introduce some measure of the severity of

the events.

In the application at hand, times of return based on expert opinions are

available; in Extreme Value Theory, times of return are a common way of

describing the severity of events (see [4]), because there is a monotonically

increasing function relating the severity of an event to its time of return.

The information available is given in table 3.
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Table 3. Times of return in years

Region 5 10 25 30 50 100 200 300 500 Region 5 10 25 30 50 100 200 300 500

1 - - - - - - x - x 15 - - - - x x x - x

2 - - - - - - x - x 16 - - - - x x x - -

3 - - - x x - x - x 17 - - - x - x x x -

4 - - - - - - x - x 18 - - - x x x x x -

5 - - - - - - x - x 19 - - - x x x x - x

6 - - - x x x x - x 20 - - - x - x - x x

7 - - - x x x x - x 21 - - - x - - x - x

8 - - - x x x x - x 22 - - - - x - x - x

9 - - - - x x x - x 23 - - - - x - x - x

10 x x x x x - x - x 24 - - - - x - x - x

11 - - - x x x x - x 25 - - - - x - x - x

12 - - - x x x x - x 26 - - - - x - x - x

13 - - - - x x x - x 27 - - - - x x x - x

14 - - - - x x x - x

Unfortunately, we do not have any probabilistic measure about the times

of return, whose interpretation is as follows: the symbol × in the table

means that the flood event affecting that region has the time of return

corresponding to the column. For example, floodings which impact region

1 have a time of return equal to either 200 or 500 years. The only way of

associating a probability to the symbols in the table consists in introducing

the following two assumptions:

(i) the severity of events is a linear function of the times of return and

is labelled from 1 (lightest event, corresponding to a 5 years time of

return) to 9 (strongest event, corresponding to a 500 years time of

return).

(ii) as a “light” event is supposed to occur more frequently than a “strong”

event, the probability of a certain time of return is negatively related

to its severity. In particular, we decided to compute the probability of

the j-th time of return for the i-th region as follows:

qij =







1/tj if the j-th time of return occurs in the i-th area,

0 else,

where tj is the j-th time of return. Obviously, we then have to normal-

ize these probabilities so that their sum is equal to one; after normal-

ization, we call these probabilities pij. As an example, probabilities of

times of return for area 10 are given in table 4.
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Table 4. Probabilities of times of return for region 10

Time of return probability

5 0.2

10 0.1

25 0.04

30 0.03̄

50 0.02

100 0

200 0.005

300 0

500 0.002

The simulation then proceeds according to the probabilities of the times

of return pij. Defining Si to be a discrete random variable taking values

in {1, . . . , 9} with probabilities pi1, . . . , pi9, for each region we perform the

following steps:

1. find the flood events (i.e., find the values y∗ij = 1, j = 1, . . . , B) in the

simulated vectors y∗
1, . . . ,y

∗
B;

2. for each y∗ij = 1, simulate a random number s∗i from the discrete

distribution of Si and substitute s∗i to y∗ij.

The new vector y∗
j is such that the frequency of flood events is the same as in

the first part of the simulation, but now the events have different severities,

according to the estimated times of return. As an example, figure 5 shows

the distribution of the severities of the events simulated for area 10.

5.1 Introducing spatial autocorrelation

From section 4 (see table 1) we know that the estimated numerical value of

the autocorrelation parameter β is rather small, so that the autocorrelation

of the events simulated from the joint distribution is small as well. The value

of β̂ is undoubtedly related to the specification of the contiguity matrix C: in

particular, such a result is likely to be determined by the fact that C contains

“many” zeros or, in other words, each region has few neighbors. From

the practitioners’ point of view, underestimating spatial dependence can be
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Figure 5: Severity of the simulated events for area 10.

dangerous, as it would imply an underrate of the total risk as measured by

means of the joint distribution.

A possible remedy consists in increasing spatial autocorrelation ex post;

to this aim, we propose to use an algorithm which “switches” the simulated

events in order to increase spatial autocorrelation as measured by the Moran

index (see [16] for a thorough description):

I =
N

∑

i

∑

j cij

∑

i

∑

j cij(y
∗
i − ȳ∗)(y∗j − ȳ∗)

∑

i(y
∗
i − ȳ∗)2

.

More precisely, the k-th iteration of the algorithm, which resembles the

spin-exchange algorithm ([23]; [24]; [9], pag. 572), is based on the following

steps:

(i) two replications of the simulation (that is, two N -dimensional vectors

y∗
i and y∗

j) are chosen at random;

(ii) if at least one component y∗ij and y∗sj is non-zero in both vectors and

has different severity, sum the values of the Moran index computed on

the two replications; call M1 the value obtained;

(iii) switch the events y∗ij and y∗sj and recompute the Moran index; call M2

the value obtained;
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Figure 6: Iterations needed for a 10% (top) and 20% (bottom) increase.

(iv) if M2 > M1, start a new iteration; else, undo the switch and go back

to step (i).

When should we stop the algorithm? We have to decide a priori the

amount of spatial autocorrelation we want to add, and then stop the algo-

rithm at the smallest t such that the quantity M (t) − M (1) is larger than a

predefined value ǫ.

To determine the effectiveness of the algorithm, we performed some nu-

merical experiments. We ran it 100 times and kept track of the number

of iterations needed to increase the spatial autocorrelation of the simulated

events by a percentage of ǫ%, with values of ǫ equal respectively to 10% and

20%. Figure 6 gives the results.

6 Conclusions

In this paper we have proposed a multivariate model for the estimation and

simulation of flood events. The model allows to incorporate two essential

requirements: the inclusion of additional information possibly contained in

auxiliary variables and the explicit consideration of spatial autocorrelation.
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The simulation procedure accounts for the severity of events, according to

times of return estimated by means of expert opinions. Although spatial

dependence is explicitly considered by the model, it may be appropriate to

modify ex post the results in order to get a larger spatial autocorrelation

without changing the marginal probability distributions of the events in

each area; to this aim, we developed an algorithm, based on a methodology

similar to the spin-exchange, for increasing the spatial dependence of the

simulated events.

Although this model constitutes an improvement with respect to more

standard approaches used in this field, many problems remain open. In par-

ticular, we stress the necessity of introducing a more precise estimate of the

severity of events, which is strictly related to the availability of more accu-

rate data concerning either the times of return or other auxiliary variables

carrying some information about the “magnitude” of observed floodings.

Another issue that should be explored more thoroughly concerns the use

of the algorithm which increases ex post the spatial autocorrelation of the

simulated events: some criterion about the amount of the increase should

indeed be established.
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