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A class of spatial econometric methods in the empirical 
analysis of clusters of firms in the space1 

 
Giuseppe Arbia2, Giuseppe Espa3 and Danny Quah4 

 
Abstract: In this paper we aim at identifying stylized facts in order to suggest 

adequate models of spatial co–agglomeration of industries. We describe a class of spatial 
statistical methods to be used in the empirical analysis of spatial clusters. Compared to 
previous contributions using point pattern methods, the main innovation of the present 
paper is to consider clustering for bivariate (rather than univariate) distributions, which 
allows uncovering co–agglomeration and repulsion phenomena between the different 
industrial sectors. Furthermore we present the results of an empirical application of such 
methods to a set of European Patent Office (EPO) data and we produce a series of 
empirical evidences referred to the the pair–wise intra–sectoral spatial distribution of 
patents in Italy in the nineties. In this analysis we are able to identify some distinctive 
joint patterns of location between patents of different sectors and to propose some 
possible economic interpretations. 

 
JEL classification: C21; D92; L60; O18; R12 
Keywords: Agglomeration; Bivariate K–functions; co–agglomeration; Non parametric 
concentration measures; Spatial clusters; Spatial econometrics. 

 
 

 
1. Introduction 

 
The dominating feature of economic activities is certainly that of clustering both in space and 

time. However, even if the application of statistical techniques for modelling clustering in time 
(business cycles) has been a central concern of applied economists for decades, it is only relatively 
recently that the research has concentrated on the development of appropriate methods to detect 
spatial clustering of economic activities both on a discrete space and on a continuous space.  

The possibility of modelling the spatial dimension of economic activities is of paramount 
interest for a number of reasons. First of all the study of spatial concentration of economic activities 
can shed light on economic theoretic hypotheses concerning the nature of increasing returns and the 
determinants of agglomeration. These hypotheses are of paramount importance in international trade 
and in economic growth theories. A second important reason is constituted by the fact that the 
effects of policy measures to foster economic growth and development are strongly dependent on 
geographical clustering. Finally spatial clustering, as a synonym of regional inequality, is a central 
political issue as a proxy of individual inequality and as the basis for cross–country inequality. 

After the recent reinterpretation of Marshall's (Marshall, 1890) insights on 19th–century 
industrial clustering in space due mainly to Krugman (1991) and Fujita et al. (1999), the empirical 
analysis on this subject has developed along two distinct lines of research. Along the first of these 
two lines in the literature we record attempts to examine directly the underlying economic 
mechanism, using the spatial dimension primarily as a source of data. Under this respect panel data 
or pure spatial regressions are used, employing observable covariates related to space. Such 
                                                 
1 A previous version of this paper was presented at the Workshop on Spatial Econometrics and Statistics, held in Rome 
25th to 27th of may 2006. We wish to thank the participants for the useful comments received. 
2 Corresponding author: Department of the Business, Statistical, Technological and Environmental Sciences, University 
“G. d’Annunzio” of Chieti–Pescara, Viale Pindaro, 42, 65127 Pescara, Italy, arbia@unich.it. 
3 Department of Economics, University of Trento, via Inama, 5, 38100, Trento, Italy, giuseppe.espa@economia.unitn.it. 
4 Economics Department, London School of Economics, Houghton Street, London WC2A 2AE, UK, 
dq@econ.lse.ac.uk. 
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regressions end up constructing a hypothetical representative unit (a “site”) and concentrate on the 
impact of differing covariate values on the performance of that representative unit (see e. g. Ciccone 
and Hall, 1996; Jaffee, et al., 1993; Rauch, 1993; Henderson, 2003). 

Here we follow the second line of research which attempts to characterize the entire spatial 
distribution of economic activities relative to a set of hypotheses (e. g. a certain regularity patterns 
of industrial concentration). In this second instance interest does not rests on the characteristics of a 
representative unit, but rather on the joint behaviour of the different units distributed across space. 
Along these lines Duranton and Overman (2005) refer to three generations of measures of spatial 
concentration. A first generation considered Gini–type measures where space played no rule (e. g. 
Kurgman, 1991). A second generation (perhaps initiated by Ellison and Gleaser, 1997) introduced 
measures that take into account space and tend to control for the underlying industrial concentration 
(Maurel and Sedillot, 1999; Devereuex et al., 2004). Such measures are based on data observed on a 
grid of administrative areas thus neglecting the problem of the arbitrariness of the geographical 
partition used: this problem is known in the statistical literature as the Modifiable Unit Problem 
(Yule and Kendall, 1950) and assumes here the specific facet of the Modifiable Areal Unit Problems 
(or MAUP) discussed at length in Arbia (1989). Arbia (2001) and Duranton and Overman (2005) 
provide an exhaustive account of the advantages of a third generation of measures that look  at maps 
of points on a continuous, rather than on a discrete, space: following this approach we can easily 
compare the results across different scales.  

In the present paper we look at the distribution of industries as a map of points in the space and 
we characterize their geographical distribution through the Lotwick–Silverman (Lotwick and 
Silverman, 1982) extension of the spatial statistical non–parametric tool known as the K–function 
(Ripley, 1977). The use of the K functions in economic analysis was first introduced in the literature 
by Arbia and Espa (1996) and then exploited by Marcon and Puesch (2003a; 2003b), by Quah and 
Simpson (2003) and by Duranton and Overman (2005) amongst the others. Ioannidis and Overman 
(2004) look also at the properties of points on a continuous space, but using a different approach. 
Compared to previous contributions the major innovation of the present paper is to consider 
clustering for bivariate (rather than univariate) distributions, which allows uncovering 
agglomeration and repulsion phenomena between different sectors. The literature often refers to this 
subject as to co–agglomeration or co–localization (Devereux, et al., 2004; Duranton and Overman, 
2005). The functionals we propose to characterize a joint pattern of points satisfies the five 
conditions suggested by Duranton and Overman (2005) for a concentration measure5. In particular 
we introduce the use of the K function to control for the underlying industrial concentration. 

The theoretical ground on which such a modelling framework is based is well described in Quah 
and Simpson (2003) where the authors stressed the importance of being able to specify a model 
determining a spatial law of motion and its evolution through time. Quah–Simpson model assumes 
that each individual economic agent aims at maximizing his own profit by locating his activity 
where the average spatial return is higher with a gradual time–adjustment based on a cost function. 
Equilibrium is then achieved by optimizing the choices of each individual economic agent. The 
result is a (space–time) partial differential equation that expresses the economic activity in each 
point in time and space as a density. A good way of approaching the empirical analysis of clusters in 
space is then represented by a modelling framework that is able to describe how such densities 
change in space conditionally upon the observed pattern of points. 

A field were what Quah and Simpson (2003) define as a spatial law of motion is particularly 
theoretically grounded is the analysis of the spatial diffusion of innovation and of technological 
spillovers. For this reason the empirical part of this paper is devoted to the analysis of the joint 
location of innovations. 
                                                 
5 The five requirements suggested by Duranton and Overman (2005) for a concentration measure are the following: any 
measure  (i) should be comparable across industries; (ii) should control for the overall agglomeration of manufacturing; 
(iii) should control for industrial concentration; (iv) should be unbiased with respect to scale and aggregation; and, 
finally (v) should also give an indication of the significance of the results. 
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The studies on knowledge spillovers have received increasing importance in the literature on 
economic growth. In fact some theories explicitly link the presence of innovations to the growth of 
cities (Jacobs 1969, 1984; Bairoch 1988) seen as the places where the big concentration of 
individuals, firms and workers create positive externalities which, in turn, foster economic growth.  
Even if economic theory has produced important advances in this direction (Arrow 1962; Romer 
1986; Lucas 1988; Porter 1990) empirical evidences are still largely lacking. In fact a large part of 
the empirical literature concentrated on measuring the impact of technological spillovers on the 
innovation performances of regions. In many instances the number of patents and the patents 
citations have been used as a proxy of the flow of knowledge and of the related innovative output 
(Jaffe and Trajtenbergerg, 1996; 2002; Jaffe et al., 2000). One possible approach is based on the 
notion of knowledge production function introduced by Griliches (1979) which links regional 
innovative output with measures of regional innovative inputs like R&D expenses (see e. g. Jaffe 
1989; Audretsch e Feldman 1996; Acs et al. 1994). These studies provide significant evidences of 
the impact of localized R&D inputs on the innovation performances of regions. There are 
comparatively less empirical evidences on the effects of localized knowledge spillovers (Glaeser et 
al. 1992; Henderson and Kunkoro 1995; Henderson 2003) and no definite answer is yet available to 
the question whether knowledge flows are favoured by regional specialization within firms or, vice 
versa by industrial diversification. 

In this paper we wish to show the importance of the distance–based measures of spatial 
concentration in tackling this important emerging research area and to provide new statistical tools 
to study the complex interaction between spatial concentration, regional growth and knowledge 
spillovers. The layout of the paper is the following. In Sections 2 and 3 we will thoroughly review 
the statistical reference framework by presenting a set of tools to identify clusters of industries in the 
space. Specifically in Section 2 we will concentrate on the bivariate version of Ripley’s (Ripley, 
1977) K function whereas in Section 3 we will discuss the system of hypotheses at the basis of the 
identification of clusters and by distinguishing two possible null hypotheses to be contrasted with 
the hypothesis of spatial clustering of industries. Section 4 is devoted to the analysis of the results of 
an empirical application of the bivariate K function in the study of the inter–sectoral location of 
innovation in Italy based on a dataset of the European Patent Office (EPO) which records all patent 
applications in Europe. Finally Section 5 contains some conclusions and directions for further 
developments in the field. 

 
 
2. The statistical theoretical framework: bivariate K functions 

 
Univariate K–functions (proposed by Ripley, 1976; 1977) have been already used in economic 

geography to characterize the geographical concentration of industries (see e. g. Arbia and Espa, 
1996; Marcon and Puech, 2003a; Quah and Simpson, 2003). In this paper we will consider a 
bivariate extension of such a method to describe spatial clusters of pairs of firms. Although the 
approach could be straightforwardly generalized to an arbitrary number of, say, g (g>2) industries, 
in this paper we will deliberately restrict ourselves to the bivariate case for the sake of illustrating 
the methodology. The method is based on a bivariate functional of distance t (that we will refer to as 

( )tKij ) which characterizes the joint spatial pattern of points or, more precisely, the spatial 
relationships between two typologies of points located in the same study area: for instance firms 
belonging to two different industrial sectors, say Type i and Type j. The bivariate K function is 
defined as follows: 

 
( ) { }point  Typearbitray an  from  distance aat  falling  Type of points of #1 jtiEtK jij ≤= −λ        [1] 
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with {}⋅E  indicating the expectation operator and the parameter λ j  representing the intensity of  
Type j point process, that is the number of Type j points per unitary area. Obviously, in the presence 
of a multivariate point process we have g typologies of events and, consequently, 2g  bivariate K 
functions  that is : ( )tK11 , ( )tK12 , …, ( )tK g1 , ( )tK21 , ( )tK22 , …, ( )tK g2 , …, ( )tKgg . In the 
remainder we will clearly distinguish between univariate and bivariate K functions by calling auto–
functions K those for which ji =  and cross–functions K those for which ji ≠ . Conversely, when 

ji = , iii KK =  is the more traditional univariate auto–function K used in the economic analysis by 
e. g. Quah and Simpson (2003), Marcon and Puesh (2003a) and Duranton and Overman (2005). 

In Equation [1], the term ( )tKijjλ  represents the expected number of Type j points falling 
within a circle of radium t centred on an arbitrary Type i point.  Symmetrically we interpret the 
bivariate function ( )tK ji  in such a way that ( )tK jiiλ  represents the expected number of Type i 
points falling within a circle of radium t centred on an arbitrary Type j point. Similarly to the case 
of univariate K function, also the bivariate K function is built under the assumption of isotropy (see 
Arbia, 2006) that is the case when no directional bias occurs in the neighbourhood of each point. 

In a bivariate point map constituted by, say, ni points of Type i and n j  points of Type j within 
an area A, we can define a class of estimators of the cross–functions K by close analogy to those 
suggested in the univariate case (Ripley, 1977; Diggle, 1983). 

To start with, let us consider the indicator function:  
 

Ilk t( )=
1 if dlk ≤ t
0 if dlk > t

⎧ 
⎨ 
⎩ 

 

 
where dlk  represents the distance between the l–th Type i point and the k–th Type j point. If no 
border effects are present, then the non–parametric estimator of the cross–function ( )tKij  can be 
expressed as: 

 

( ) ( ) ( )∑∑
= =

−
=

1 2

1 1

1ˆˆˆ
n

l

n

k
lkjiij tIAtK λλ  

where A is the total surface of the area, 
A
ni

i =λ̂  and 
A
n j

j =λ̂ .  

Analogously, by inverting the role between Type i and Type j points, the corresponding non–
parametric estimator for the cross–function ( )tK ji  is given by: 

 

( ) ( ) ( ) ( )∑∑
= =

−−
=

2 1

1 1

11ˆˆˆ
n

l

n

k
lklkjiji tJtAtK νλλ  

 
with ( )tlkν  and ( )tJlk  analogous to the ( )tIlk  functions in the previous expression.  

If the generating random field is stationary and isotropic (Arbia, 2006), then  ( )tKij  should be 
equal to ( )tK ji . However, due to possible border effects6 and to the asymmetry of the related 

corrections, ˆ K ij t( ) and  ˆ K ji t( ) will be not exactly equal although strongly correlated. A more 

                                                 
6 On “border effects” and corrections for them see e. g. Ripley (1981). Explicit expressions of the correction factors in 
the case of irregular study areas are derived in Goreaud and Pélissier (1999). 
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efficient (although not absolutely efficient) estimator is thus the one proposed by Lotwick and 
Silverman (1982) given by: 

 

( ) ( ) ( )
ji

jiiijj
ij

tKtK
tK

λλ
λλ
ˆˆ

ˆˆˆˆ
*

+

+
= .           [2] 

 
Likewise Ripley’s univariate K function, also in the case of the multivariate functions we can 

introduce the L transformation proposed by Besag (1977) which is characterized by a more stable 
variance. In the bivariate case the ( )tLij

ˆ  functions assume the expressions: 
 
ˆ L ij t( )= ˆ K ij t( ) π                                   [3] 

 
and 

 
ˆ L ji t( )= ˆ K ji t( ) π                                  [4] 

 
where the functions are linearized dividing by π  and the square root stabilizes the variance. 

Similarly to Equation [2] we can consider the Lotwick–Silverman transformation 
 

Lij
* t( )=

ˆ λ j ˆ L ij t( )+ ˆ λ i ˆ L ji t( )
ˆ λ i + ˆ λ j

 = K*
ji t( ) π                                [5] 

 
which produces more efficient estimators of the L function. 
 

 
3. The basic hypotheses of the model: spatial independence or random labelling? 

 
In this section we wish to introduce various alternatives offered in the spatial statistical 

literature to specify the null hypothesis of absence of regularities in the location of pairs of points in 
space. These will represents our counterfactuals in the subsequent empirical analysis reported in 
Section 4.2. In order to correctly interpret the estimates provided by ( )tKij

*  and ( )tLij
*  to test the null 

hypothesis of absence of spatial interaction, traditionally the empirical estimates are compared with 
simulated envelops. The reference framework for such tests is provided by Barnard (1963) and 
adapted by Ripley (1979) to the case of univariate spatial clusters. In the case of bivariate patterns 
the specification of the null hypothesis is more complicated. In fact we can have two possible 
definitions depending on the nature of the case examined: a null of independence and a null of 
random labelling (Diggle, 1983; Dixon, 2002). The choice between the two alternatives can 
strongly affect the final results and can lead to wrong conclusions. However this distinction is often 
ignored in the literature where the univariate procedures are sometimes uncritically applied (among 
the few exceptions see Diggle, 1983 and, more recently Dixon, 2002 and Goreaud & Pélissier, 
2003). The two cases will now be discussed in some details.  

 
3.1 The null hypothesis of independence 
 

According to a first specification of the null hypothesis the two typologies of points on the map 
can be conceived as two populations and the resulting spatial pattern can be interpreted a priori as 
the outcome of two distinct point random fields. In this situation the absence of interaction between 
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the two components corresponds to the lack of interaction between the two generating fields. In 
other words, the location of points generated by the field related to Typology i is independent of the 
location of points generated by the field related to Typology j (Lotwick and  Silverman, 1982). 
Under this hypothesis, therefore, Kij t( )= πt 2 . We will refer to this first null hypothesis as to the 

“hypothesis of independence” and we will indicate it with the symbol 1
0H . 

If within the circle of radius t centred on an arbitrary Type i point we record the presence of 
more Type j points than we expect under 1

0H , then Kij t( )> πt 2  which represents the surface of a 
circle of radius t. Such a result indicates a positive dependence between the two components and, 
hence, the presence of agglomeration between the two generating fields. In contrast, if within the 
circle of radius t centred on an arbitrary Type i point we record the presence of less Type j points 
than expected under 1

0H , then Kij t( )< πt 2 , thus indicating repulsion (or inhibition) rather than 
agglomeration. The confidence band to run formal hypothesis testing procedures at the various 
distances can be built through Monte Carlo simulation (Besag and Diggle, 1977. See also Ripley, 
1977; Goreaud & Pélissier, 2003 for details). 

 
3.2 The null hypothesis of random labelling 
 

According to a second specification of the null hypothesis each of the two components  depends 
on some factor that “a posteriori” produces a differentiation between the two typologies of points. 
In the case of economic data, such factors can be identified in a set of explanatory variables 
encouraging location of industries at a certain point in space and producing a different pattern in the 
two typologies of points. For instance they might refer to a differentiated system of taxes and 
incentives encouraging location of Type i point while discouraging location of Type j points. We 
will refer to this second hypothesis as to the “random labelling” and we will indicate it with the 
symbol 2

0H . The general reference framework in this second instance is that of the so–called 
marked point processes (see, e. g., Diggle, 1983) that is point processes where not only the location 
of each object is reported, but also an extra characteristics that differentiates between them (e. g. 
small and large firms, presence or absence of an innovation etc.) 

Let the spatial structure of the indistinct generating process for the two typologies of points be 
synthesized by the univariate K auto–function (Ripley, 1977): 

 
( ) { }map ain point each  around   radious of circle a within points # tEtK =λ  

 

where 
A
n

=λ  represents the density and 21 nnn += . 

Under 2
0H , the ratio p j =

n j

n
 represents the probability to belong to typology j. Then we have 

that ( ) ( ) ( )tKtKtKp ijjjj λλλ ==  so that ( ) ( )tKtKij = . If within the circle of radius t centred on an 

arbitrary Type i point there are more Type j points than expected under 2
0H , then ( ) ( )tKtKij > . 

This result indicates that at distance t  the two components tend to be positively dependent, thus 
revealing the presence of agglomeration. On the contrary, if within the circle of radius t centred on 
an arbitrary Type i point there less Type j points than expected under 2

0H , then ( ) ( )tKtKij <  which 
indicates the presence of a negative dependence between the two components or inhibition. Again 
the confidence bands can be generated via Monte Carlo simulation. 

When 2
0H  holds true, we have that all the bivariate K functions (both the two auto–functions 

and the two cross–functions) are equal to the univariate K function of the map where there is no 
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distinction between the two components so that ( ) ( ) ( ) ( ) ( )tKtKtKtKtK jjiijiij ==== . 
Operationally the departures from the null of random labelling could be evaluated by computing the 
pairwise differences between the various K functionals and by comparing them with the simulated 
confidence bands (see Diggle and Chetwynd, 1991; Gatrell et al., 1996; Kulldorff, 1998; Dixon, 
2002; Haining, 2003). 

It is important to observe that the two alternatives for the null hypothesis considered in this 
section describe in statistical terms the usual distinction made in quantitative geography between 
two otherwise undistinguishable effects of spatial interaction between agents and spatial reaction of 
them to common factors (Cliff and Ord, 1981). Both effects give rise to observed regularities in 
space. They also mirror from a certain viewangle the distinction made by some authors in the 
economic literature between joint–localization and co–localization (see e. .g. Duranton and 
Overman, 2005). 

 
 

4. Characterizing the spatial distribution of innovations in Italy 1995–1999  
 

4.1 Descriptive analysis 
 

The empirical analysis focuses on the use of the EPO dataset containing all patent applications 
made at European Patent Office (established by Monaco’s Convention) starting from 1978. In 
particular we use the version elaborated at CESPRI, Bocconi University, Milan. The dataset 
provides us with information about petitioners, inventors, request date, International Patent 
Classification code (distinguishing the  various industrial sectors), and citations among patents. The 
use of the inventors’ residence allows us to localize exactly each patent (Arbia et al., 2006). In our 
database we omitted Sicily, Sardinia and the other Italian islands because of the lack of spatial 
continuity with the main land which could produce serious biases in our procedures based on 
Euclidean distances. The resulting dataset consists of 44,078 inventors, but only 25,312 patents due 
to the presence of multi–inventors patents. To avoid any subjectivity in the assignment of a unique 
location to each patent, we considered only patents with one single inventor amounting to 14,632 in 
our database and we left to future further refinements the problems related to the spatial assignment 
of patents with multiple inventors. The patents are classified within six industrial sectors, namely: 
Electricity Electronics (S1), Instruments (S2), Chemical Pharmaceutical (S3), Process Engineering 
(S4), Mechanical Engineering Machinery (S5) and Consumer Goods Civil Engineering (S6). In our 
database we also avail temporal information related to two different moments of time of the 
registration of each patent: (i) the publication date and (ii) the priority date, that is the date of the 
earliest filling of an application made in one of the patent offices adhering to the convention. The 
choice of one date or the other is crucial because the time lag between the priority date and the 
publication date may range from 1.5 years to 2.5 years. We chose the latter because it is the date 
that gets closer to the actual timing of the patented invention. 

In the modelling phase, we restrict our attention to the most recent years and so we employed 
only data based on the aggregation of the last five years (from January 1995 to December 1999). 
The dynamic is totally absent in the present analysis and it is our intention to extend the analysis in 
a future study to a space–time context by exploiting the statistical literature on “space–time” K–
functions introduced by Diggle (1993) and Diggle et al. (1995).   

Figure 1 reports the yearly time series of the 44,078 inventors submitting for patents at EPO 
(1a) and those that are mono–inventors in which case the spatial location of inventors and patents 
are the same (1b). The selected period 1995–1999 coincides with an evident period of increase in 
the volume of inventors.  
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b) 

Figure 1: (a) Inventors with at least 1 invention and (b) mono–inventors in the period 1990–1999.  Source: European Patent Office data processed at 
CESPRI, Bocconi University, Milan and at the Department of Economics, University of Trento. 

 
With reference to the same dataset Table 1 reports the sectoral distribution of patents with just 

one inventor in the period 1995–1999. By distinguishing each patent in terms of its specific 
industrial sector we can interpret our data as a single realization of a multivariate spatial point 
process. The map reported in Figure 2 displays the overall spatial distribution of the 8279 cases. 

 
Sectors Number of patents (1995–1999)  

Electricity Electronics = S1 951 
Instruments = S2 831 
Chemical Pharmaceutical =  S3 675 
Process Engineering = S4 1302 
Mechanical Engineering Machinery = S5 2830 
Consumer goods Civil Engineering = S6 1690 

Total 8279 
Table 1: Frequency distribution of the number patents with only one inventor distinguished by industrial sector in the periods 1995–1999. Source: 
European Patent Office data processed at CESPRI, Bocconi University, Milan and at the Department of Economics, University of Trento.  
 

 
Figure 2: Location of  8279 patents in Italy in 1995–1999. Source: European Patent Office data processed at CESPRI, Bocconi University, Milan and 
at Department of Economics, University of Trento. 
 

The map reveals a clear agglomeration pattern of the points within some innovative regions, 
namely Milan’s area in the center–north and the north–eastern part of the country. Indeed, the 
whole northern regions are very innovative and contain more than 66% of the total number of 
patents. Conversely the central part of Italy contains only about the 30%, of the patents with a 
remarkable concentration around Rome and Florence, and only 4% of the patents are located in the 
southern regions. These empirical findings are not surprising considering the well–known industrial 
gap existing between Italian regions and, specifically the dualism between the north and the south 
of the country. Also, the recent literature on knowledge spillovers and specifically the research that 
concentrated on patent citation (Jaffe et al, 1993; Breschi and Lissoni, 2001; 2006; Driffield, 2006) 
provides persuasive explanation for the observed geographical pattern. The same kind of 
information is contained in the graphs reported in Figure 3 displaying the frequency distribution of 
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inventors (Figure 3a) and the ratio of the number of investors to the number of individuals aged 15 
to 65 in 1999 (Figure 3b). 

 

 
a) 

 
b) 

Figure 3: Regional distribution of patents in Italy in the period 1995–1999 (a) number of patents (b) patents per 1,000 inhabitants Source: Istat and 
European Patent Office data elaborated at CESPRI, Bocconi University, Milan and at Department of Economics, University of Trento. 

 
In particular Figure 3b shows that the higher concentration observed in the north cannot be due 

to population concentration and reveals a genuine prevalence of inventors in that area. 
It is helpful to disaggregate the previous map into as many point processes as the number of 

industrial sectors, each one characterised by a different intensity. To help visualizing this aspect 
Figure 4 reports the point map for each sector. The same feature of higher concentration in the north 
appears evident for all 6 sectors considered. Indeed, the observed geographical patterns are very 
similar for the six sectors with evident concentrations around the main industrial northern towns 
(Milan and Turin). Some minor, but still evident, concentrations can be observed around Bologna 
and Venice for patents of the Process Engineering, Mechanical Engineering Machinery and 
Consumer goods Civil Engineering sectors and on the east coast between Rimini and Ancona for 
the patents of the sector Consumer goods Civil Engineering (see Figure 4f) 

 

 
a) Electricity Electronic 

 
b) Instruments 

 
c) Chemical Pharmaceutical 

 
d) Process Engineering  

e) Mechanical Engineering Machinery  
f) Consumer goods Civil Engineering 

Figure 4: Location of  8279 patents in Italy in 1995–1999 distinguished by sector. Source: European Patent Office data elaborated at CESPRI, 
Bocconi University, Milan and at Department of Economics, University of Trento.  

 
4.2 Modelling the joint location of patents 

 
In this section we will first of all illustrate with a certain detail the method used for estimating 

the bivariate K functions. For the purpose of illustrating the estimation method we will concentrate 
on the spatial interaction between patents of the Electricity Electronics sector and those of the 
Instruments sector. For all other pairs of sectors we will only report the results of the estimation 
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procedures. In order to perform an exploratory analysis of the spatial patterns of points, we initially 
converted the maps displayed in Figure 4 into spatial densities by using a non–parametric kernel 
estimator. Figure 5 shows, for the two sectors of Electricity Electronics and Instruments, the kernel 
density estimation of the random process, say ( )sλ , s representing the vector of coordinates of the 
points, s∈ℜ2. For the estimation we considered the following quadratic kernel (see Hastie and 
Tibshirani, 1990; Fan and Gijbels, 1996): 

 

( ) ∑
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where τ  represents the bandwidth (that is the parameter controlling the smoothness of the surface), 
dl  is the distance between point s and the event located at point  sl  and the summation refers to all 
distances d j  < τ. 

Interesting insights in terms of exploring the relationships between the two sectors are obtained 
by superimposing the two maps of points reported in Figures 4a and 4b. In order to do this we 
exploited the following kernel estimator: 
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where both ( )si;τ̂λ  and ( )s21;

ˆ
+τλ  where computed through expression [3]. We will refer to this 

kernel estimation as to a dual kernel. 
 

  
(a) Electricity Electronics (b) Instruments 

Figure 5: Kernel estimation of the spatial density of the two point process .The bandwidth parameter is set to τ = 50 km. 
 

  
(a) Electricity Electronics (b) Instruments 

Figure 6: Dual kernel estimation of the spatial density. The bandwidth parameter is τ = 35 km. 
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Figures 6(a) and 6(b) display the output of the estimation procedure obtained for the joint 
distribution of the Electricity Electronics and Instruments sectors. In particular in Figure 6a we 
display with a different shading the dual measures ranging from 0 (when there are only patents of 
sector Instruments) to the value of 1 (in the cases where there are only patents of the Electricity 
Electronics sector). A darker shading in Figure 6a reveals the prevalence of patents of the 
Electricity Electronics sector whereas Figure 6b displays the complementary information for the 
Instruments sector. In both graphs intermediate values in the scale allows us to identify areas where 
both sectors are present. Similar graphs were derived for all other pairs of sectors, but they are not 
reported here since they do not add particular insights. 

Concerning the identification of the bivariate map it seems more grounded the hypothesis of 
random labelling with respect to that of independence (see Section 3) in that the labelling of the 
patents to a certain sector occurs in a subsequent moment with respect to the moment of the deposit 
at the EPO. In the remainder of this section we will report the estimation results of the different 
bivariate versions of the K function that can be used to study the joint location of all pairs of sectors. 

To start with, Figure 7 reports the behaviour of the ∗L  function for all pairs of sectors. The 
effect of co–agglomeration is evident for all sectors at all distances in that all graphs lay entirely 
above the diagonal which represents the case of random labelling: thus points are more clustered 
than expected under the null hypothesis of random labelling. In order to investigate more closely 
this effect of co–agglomeration significant insight can be gained by inspecting the behaviour of the 
K cross–functions. In fact, as already said, under the null hypothesis of random labelling we have 
that ( ) ( ) ( ) ( ) ( )tKtKtKtKtK jjiijiij ====  so that all bivariate K functions (both the auto–functions 
and the cross–functions) coincide with the univariate K function obtained by merging together the 
two sectors in one map.  

In order to test formally the null hypothesis we need to explicitly choose a functional measuring 
the departure from the random labelling hypothesis. A first obvious choice is the simple difference 
between the two functionals ˆ K ii(t) − ˆ K jj (t). However, as suggested by Diggle and Chetwynd 
(1991), such a function can only help in evaluating the clustering of objects and it is less useful 
when we want to discern the mutual spatial relationships between the two components. A better 
solution is offered by the differences ˆ K ii(t) − Kij

* (t) and ˆ K jj (t) − K ji
* (t) that are more informative 

with respect to the problem in hand. In fact when ˆ K ii(t) > K*
ij (t)  and  ˆ K jj (t) > K*

ji(t)  both patents 
labelled i and j display a tendency to spatial segregation within mono–type clusters. 

The graphs reported in Figure 8 display the behaviour of the functionals ˆ K ii(t) − Kij
* (t) and 

ˆ K jj (t) − K ji
* (t) respectively, at the various distances for all pairs of sectors. In all figures we also 

report the Monte Carlo confidence bands referred to the null 2
0H  at a significance level 05.0=α . 

The null hypothesis of random labelling is represented by the horizontal lines in the graphs.7 
The visual inspection of Figures 8 suggests in most cases the lack of random labelling, but 

with remarkably differentiated patterns. First of all, dealing with the joint location of the Electricity 
Electronics and Instruments sectors the graphs of the functional )()(ˆ *

1211 tKtK −  in Figure 8(a) is 
                                                 
7 The critical levels to test the null 2

0H  at 5% significance were obtained as follows. First of all we simulate 
1000=simN  maps in which the bivariate vector of the patents is randomized conditionally upon the number of points of 

Sector i ( in ) and of sector j ( jn ) and upon the coordinates x  of the total ijn  points ( ijn = in + jn ). Local robust 

estimators (at each distance t) of the upper and the lower limit of the confidence band for the differences )()(ˆ * tKtK ijii −  

and )()(ˆ * tKtK ijjj −  are then obtained by selecting the 
2
α

simN  and (respectively) the ⎟
⎠
⎞

⎜
⎝
⎛ −

2
1 α

simN  order statistics of the 

1,000 estimates. The choice of simN  = 1000 was dictated by Martens et al. (1997) that suggested as a practical rule  a 
number of simulations such that 5<simNα . The choice of simN =1000 is consistent with Duranton and Overman (2005). 
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always above the K = 0 horizontal line and is above the confidence bands at the 95% confidence  
level thus indicating significant attraction at all distances. In contrast the graph of the function 

)()(ˆ *
1222 tKtK −  displays a behaviour that suggests random labelling at small distances (t < 30 km) 

with the line falling entirely within the confidence bands at 95% confidence level. Conversely, at 
higher distances, the graph falls in the lower part of the confidence bands suggesting repulsion 
between the two sectors. 

As a consequence the location of points referring to the two industrial sectors cannot be 
considered as randomly labelled, rather they display an interesting pattern of attraction–repulsion. 
The patents of the Electricity Electronics sector tend to locate close to patents of the same sector, 
whereas patents of the Instruments sector display (at small distances below 30 kilometres) a 
tendency  to locate in the neighbourhood of patents of Electricity Electronics. Such a gravitational 
effect is dominated by an internal segregation effect (above the mentioned threshold of 30 
kilometres) that prevents the patents of the Instruments sector to constitute patches. In summary 
points of Electricity Electronics tend to cluster on one another while point of Instruments display a 
repulsion on one another and an attraction towards those of Electricity Electronic. The first effect 
thus seems to confirms Marshall–Arrow–Romer theoretical expectations (Marshall, 1890; Arrow, 
1962; Romer, 1996) and Porter’s idea of dynamical externalities generated by specialization (Porter, 
1990), whereas the second effect follows from the dynamic externalities à–la–Jacobs arising from 
industrial diversification (Jacobs, 1969). By commenting jointly Figures 7 and 8 we observe that the 
reciprocal aggregation effect between the Electricity Electronics sector and the Instruments sector 
suggested by the behaviour of the function L12

* t( ) in Figure 7, is not the same in both directions and 
it is led by the Electricity Electronic sector. From an economic point of view such a results can be 
easily interpreted by observing that the Instruments sector includes goods whose production 
requires technologies linked to the Electricity Electronics sector. Thus the knowledge flows 
generated by firms of the Electricity Electronic sector produce a benefit to the neighbouring 
industries of the sector of Instruments. In contrast the Electricity Electronics sector includes goods 
whose production does not require technologies linked to the Instruments sector that most likely 
benefits from internally generated knowledge flows. 
From Figure 8(b) to 8(q) we report the pattern displayed by the functionals ˆ K ii(t) − Kij

* (t) and 

ˆ K jj (t) − K ji
* (t)  in all other pairs of sectors. In order to facilitate the interpretation of such a large 

amount of information, we can identify four different typologies of attraction–repulsion displayed 
by the various sectors. A first dominating typology is the one described into details when analysing 
the Electronic Engineering  and Instruments sectors. This pattern is very similar for the pairs of 
sectors considered in Figures 8(a), 8(c), 8(d), 8(e) (all referring to the relationships between the 
Electricity and Electronics sector and the sectors 2, 3, 4 and 5) and 8(f) and, with some differences, 
also by Figures 8(l), 8(m) and 8(n) (all involving the Chemical Pharmaceutical sector with respect 
to Sectors 2, 4, 5 and 6). In this first typology we observe clusters of points of one sector at small 
distances (between 30 and 50 kilometres) co–existing with points of the second sector that are 
internally over–dispersed. At high distances points of the second sector become random labelled. 
Only in the case of Figure 8(m) (depicting the relationships between the sector of Chemical 
Pharmaceutical and Mechanical and Civil Engineering) we observe a tendency to cluster after 100 
kilometres. It is, however, important to remember that at these higher distances the number of 
points on which the estimation is based decreases dramatically and thus the estimates are less 
reliable due to the lack of degrees of freedom. This first typology well describes the stylized facts 
suggested by Duranton and Overman (2005). A second typology of attraction–repulsion is 
displayed by the pairs of sectors considered in Figures 8(g), 8(h) and 8(i) involving the relationships 
between the Instruments sector and the sectors of Process Engineering, Mechanical Engineering 
Machinery and Consumer Goods and Civil Engineering. Here the pattern displayed describes 
clusters on one sector at small distances (less than 20 kilometres) attracting a second sector which is 
also self–clustered. At higher distances we conversely observe segregation. 
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(a) Electricity–Electronics vs. Instruments 

 
(b) Electricity–Electronics vs. Chemical–Pharmaceutical 

 
 
(c) Electricity–Electronics vs. Process Engineering 

 
(d) Electricity–Electronics vs. Mcheanical Engineering 
Machinery  

 
(e) Electricity–Electronics vs. Consumer goods Civil 
Engineering  

 
(f) Instruments vs. Chemical Pharmaceutical 

 
(g) Instruments vs. Process Engineering  

(h) Instruments vs. Mechanical Engineering Machinery 
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(i) Instruments vs. Consumer Goods Civing Engineering 

 
(l) Chemical Pharmaceutical vs. Process Engineering 

 
(m) Chemical Pharmaceutical vs. Mechanical Engineering  
Machinery 

 
(n) Chemical Pharmaceutical vs. Consumer Good Civil 
Engineering 

 
(o) Process engineering vs. Mechanical Engineering Machinery  

(p) Process engineering vs. Consumer goods Civil Engineering 

 
(q) Mechanical engineering Machinery vs. Consumer goods 
Civil Engineering 

 
 

Figure 7: Behaviour of the functional statistics ( ) ( ) 6,...,2,1,  ** =∀= jitKtL ijij π  for all pairs of sectors. In each graph the diagonal represents random 

labelling. All points above the diagonal represent agglomeration, whereas all points below the diagonal represent repulsion. 
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(a) Electricity–Electronics vs. Instruments  

  
(b) Electricity–Electronics vs. Chemical–Pharmaceutical  

  
(c) Electricity–Electronics vs. Process Engineering  
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(d) Electricity–Electronics vs. Mechanical Engineering 
Machinery 

 

  
(e) Electricity–Electronics vs. Consumer goods Civil 
Engineering 

 

  
(f) Instruments vs. Chemical Pharmaceutical  
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(g) Instruments vs. Process Engineering  

  
(h) Instruments vs. Mechanical Engineering Machinery  

  
(i) Instruments vs. Consumer Goods Civing Engineering  
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(l) Chemical Pharmaceutical vs. Process Engineering  

  
(m) Chemical Pharmaceutical vs. Mechanical Engineering  
Machinery 

 

  
(n) Chemical Pharmaceutical vs. Consumer Goods Civing 
Engineering 
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(o) Process engineering vs. Mechanical Engineering Machinery  

  
(p) Process engineering vs. Consumer goods Civil Engineering  

  
 

(q) Mechanical engineering Machinery vs. Consumer goods 
Civil Engineering 

 

Figure 8: Behaviour of the functional statistics )()(ˆ * tKtK ijii −  and )()(ˆ * tKtK ijjj −  (solid line) and of the corresponding 0.025 and 0.975 quantiles 

(dashed lines) estimated on the basis of 1,000 simulated random labelling. Reference to causality is represented by the horizontal line.  
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A third typology is displayed by the pairs of points belonging to the sectors considered in 
Figures 8(o) and 8(q) that is those referring to the relationships between the Process Engineering 
sector on one side and the Mechanical Engineering Machiner  and Consumer goods Civil 
Engineering sectors on the other. Here we notice a tendency to cluster for the points of one sector 
which also produces a strong attraction on the points of the other sector. At high distances (more 
than 150 kilometres) we conversely observe a repulsion in the pattern of the first sector. The effect 
of concentration of points of the first sector is persistent at all distances in the case reported in 
Figure 8(q) referring to patents of the Mechanical engineering Machinery sector vs. those of the 
Consumer goods Civil Engineering sector. 

Finally we have a residual typology where we can classify the exceptions to the typologies 
previously identified. These are represented by the patterns displayed in Figures 8(b) (referring to 
Electricity Electronics vs. Chemical Pharmaceutical) and 8(p) (referring to Process Engineering vs. 
Consumer goods Civil Engineering). In the first instance we observe clusters of one sector at small 
distances co–existing with a second sector that appears to be randomly labelled. In the second 
instance we have clusters of both sectors only at intermediate distances ranging between 120 and 
160 kilometres. 

 
4.3 Controlling for the underlying industrial concentration 
 

The functionals considered in the previous section can help in identifying bivariate clusters of 
firms, but consider the space as homogeneous with all portions of space having a priori the same 
probability of hosting a points. Conversely the economic space is highly heterogeneous. On these 
basis Ellison and Glaeser (1997) suggest that, when looking at the location patterns of firms, the 
null hypothesis should be that of spatial randomness, but only conditional upon both industrial 
concentration and overall agglomeration. Their index satisfies this requirement. Similarly Maurel 
and Sedillot (1999) and Devereux et al. (2004) develop indices with similar properties. Duranton 
and Overman (2005) notice that “unevenness does not necessarily mean an industry is localized“ 
and translate these consideration into the formal requirement that “any informative measure of 
localization must control for industrial concentration” (p. 1078; see also the Introduction and 
Footnote 5). They go further in suggesting that not all points in the space can host a new point and 
requiring that “the set of all existing sites currently used by a manufacturing establishment 
constitutes the set of all possible locations for any point” (p. 1085). In this last section we wish to 
introduce the use of the bivariate K functions to fulfil Ellison-Glaeser requirement and we compare 
for each sector the actual pattern with the pattern generated by all patents considered as a whole. 
More in details we compute the differences between the bivariate K function for each sector on one 
side and the univariate K function computed considering all sectors together. Such a difference can 
help in identifying sectors that are over–concentrated (over–dispersed) not in absolute terms as in 
the traditional univariate K analysis (Marcon and Puesch, 2003a), but conditionally upon the spatial 
pattern displayed by the other firms for the economy as a whole. Of course we are aware that, for 
this analysis to be complete, we should consider the spatial pattern of all firms in the economy, but 
in the empirical analysis reported here we restrict ourselves to only the pattern of patents included 
in the EPO database to have at least some indications. 

The results of this analysis are reported in Figures 9(a) to 9(f). 
The exam of Figures 9 reveals some interesting  features. First of all the patents of the 

Electricity Electronics and Chemical Pharmaceutical sectors display over–concentration with 
respect to the underlying global concentration  of patents at all distances (see Figures 9(a) and 9(c)). 
In particular Electricity Electronics presents high and increasing concentration up to 80 kilometres 
whereas Chemical Pharmaceutical presents the maximum concentration at around 60 kilometres 
and then a decreasing pattern and even randomness after 160 kilometres. Such results parallel those 
of Duranton and Overman (2005) that found localization mostly at small scales (less than 60 
kilometres) and a general tendency for Chemical Pharmaceutical products to over–clustering.  
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(a) Electricity Electronics 

 

 
(b) Instruments 

 

 
 (c) Chemical Pharmaceutical  

 

 
(d) Process Engineering   
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(e) Mechanical Engineering Machinery  

 

 
(f) Consumer goods Civil Engineering 

 

Figure 9: Behaviour of the functional statistics )()(ˆ * tKtK ttit −  and )()(ˆ * tKtK titt −  (solid line) and of the corresponding 0.025 and 0.975 quantiles 
(dashed lines) estimated on the basis of 1,000 simulated random labelling. Reference to causality is represented by the horizontal line. Points above 
the 0.975 quantiles denote significant agglomeration of points of one sector around points of all other sectors. Points below the 0.025 quantiles denote 
significant repulsion of points of one sector from points of all other sectors. 

 
Secondly, the Instruments sector displays over–dispersion with respect to the underlying 

distribution of patents at distances greater than 50 kilometres.  Thirdly, the patents of the Process 
Engineering sector display a more complex pattern with significant over–clustering only in the 
interval between 70 and 140 kilometres. Finally the Mechanical Engineering Machinery and the 
Consumer goods Civil Engineering sectors display random labelling at all distances (remember that 
estimates at high distances are less reliable due to the lack of degrees of freedom). Therefore in 
these two sectors there seems to be no specific tendency to either clustering of repulsion apart from 
those that are characteristic of the economy as a whole. 

 
 
5. Summary and concluding remarks 
 

In this paper we extended the use of Ripley’s K functions (Ripley, 1977) previously considered  
in the economic literature by Arbia and Espa (1996), Quah and Simpson (2003) Marcon and Puesch 
(2003a) and Duranton and Overman (2005) to the analysis of the joint spatial pattern of industries. 

By applying a methodology based on the bivariate cross-functions K to the spatial distribution 
of patents in Italy in the period 1995–1999, we have been able to discern quite distinct geographical 
patterns for the six sectors considered.  

Our main findings are the following: 
• The pattern displayed by the patents of all pairs of the six sectors considered is always of 

agglomeration when analysed in absolute terms looking at the standard bivariate K 
functions. 
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• However, when looking more closely at the pair–wise relationships between the six 
sectors considered, a more differentiated situation emerges. In fact, most of the observed 
joint patterns (precisely 8 of the 15 pairs of sectors considered) display a situation of 
dominance of one sector on the other. This dominance assumes that there is a leading 
sector that is clustered in space at small distances (up to 50 kilometres) and a second 
sector that is dispersed internally and clustered around the leader. In particular this is the 
pattern displayed by the patents of the Electricity Electronics and the Chemical 
Pharmaceutical sectors that act as leaders with respect to the other sectors. 

• Such a specificity of the Electricity Electronics and the Chemical Pharmaceutical 
sectors emerges also when considering the analysis of agglomeration conditional on the 
global concentration of patents in the economy as a whole. In fact, in this case, the 
mentioned sectors are the only two that present over–clustering with respect to the 
general pattern of all patents. In particular we notice a climax at around 80 kilometres 
for the patents of the Electricity Electronics sector and at around 60 kilometres for the 
patents of the Chemical Pharmaceutical sectors. Conversely for the patents belonging to 
the other sectors we record over–dispersion for the Instruments sectors and no 
significant departure from randomness in the remaining sectors. 

The analysis considered here has shown the importance, but also the limits of a static approach 
and the necessity to introduce temporal dynamics in order to reconstruct the whole process of 
individual choices behaviour. Thus an important step forward in the application of the spatial 
econometric techniques discussed here is represented by the introduction of the time dimension. In 
fact the analysis of the static bivariate K functions registers only the situation in one definite period 
of time and provides only a single snapshot of the whole dynamic process. Quite obviously, this 
snapshot can be of help in suggesting the generating mechanism of individual locational choices as 
it is realized in a dynamic context like a single photogram reveals something about the nature of the 
movie it is drawn from. For instance, the individual choice behaviour of firms suggested by Figures 
8 (a) could be interpreted as the process through which in a first moment industries of one sector 
(say Type 1) locate themselves in the space at random and industries of another sector (say Type 2) 
tend to locate around them to exploit technological and physical spill–overs. If new Type 1 
industries locate in the area, they tend to locate away from Type 2 industries creating a buffering 
zone that can be due to physical or economical constraints. This behaviour seems to suggest a 
leading position of Type 1 industries with respect to Type 2. This dynamic, however, describes only 
one of the possible behaviours, and more refined spatial laws of motion could be suggested by the 
analysis of proper dynamic K functions.  

The theoretical basis for considering dynamic spatial patterns in economic analysis are well 
depicted by Quah and Simpson (2003). Dynamic “space–time” K–functions (Diggle, 1993; Diggle 
et al., 1995) can be conceived as functionals depending on both spatial distances and the time lag 
which indicate how many points characterized by a certain label fall within a certain distance of 
other points after a certain period of time. Such an analysis would greatly help the study of the 
concentration of industries and the analysis of diffusion processes which, in turn, are issues of 
tremendous importance when analysing sectoral growth and the rise and fall of regions within one 
country. Since understanding the dynamics of the spatial distribution of firms can also help to 
clarify the complex mechanisms of international trade, the development of this field appears to be 
as one of the most challenging in the future research agenda. 
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