DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo — Trento (Italy), Via Sommarive 14
http://Aww.dit.unitn.it

IMPROVING THE ENCODING OF
LTL MODEL CHECKING INTO SAT

Alessandro Cimatti, Marco Pistore,
Marco Roveri and Roberto Sebastiani

2002

Technical Report # DIT-02-0046

Also: In Proc. "3rd International Workshop on Verification, Model
Checking, and Abstract Interpretation, VM CAI'02". Venice, Italy, 2002.
LNCS, N.2294 © Springer Verlag.

Improving the Encoding of
LTL Model Checking into SAT*

Alessandro Cimatti', Marco Pistore!, Marco Roveri!, and Roberto Sebastiani'?

! ITC-IRST, Trento, Italy
{cimatti,pistore,roveri}@irst.itc.it
2 Dept. of Information and Communication Technology — University of Trento, Italy
rseba@science.unitn.it

Abstract. Bounded Model Checking (BMC) is a technique for encod-
ing an LTL model checking problem into a problem of propositional
satisfiability. Since the seminal paper by Biere et al. [2], the research
on BMC has been primarily directed at achieving higher efficiency for
solving reachability properties. In this paper, we tackle the problem of
improving BMC encodings for the full class of LTL properties. We start
noticing some properties of the encoding of [2], and we exploit them to
define improvements that make the resulting boolean formulas smaller
or simpler to solve.

1 Motivations and goals

Model Checking [8,7] is a powerful technique for verifying systems and detecting
errors at early stages of the design process, which is obtaining wide acceptance in
industrial settings. In Model Checking, the specification is expressed in temporal
logic —either Computation Tree Logic (CTL) or Linear temporal Logic (LTL)—
and the system is modeled as a finite state machine (FSM). A traversal algorithm
verifies exhaustively whether the FSM satisfies the property or not. Symbolic
Model Checking uses Ordered Boolean Decision Diagrams (BDDs) [4] to encode
the FSM [5,11].

Recently a new approach for Symbolic Model Checking has been proposed,
called Bounded Model Checking (BMC), which is based on SAT techniques [2].
Given a FSM M and an LTL specification f, the idea is to look for counter-
examples of maximum length £, and to generate a boolean formula which is
satisfiable if and only if such counter-example exists. The boolean formula is
then given as input to a SAT solver. If the formula is satisfiable, the satisfying
assignment returned is converted into a counter-example execution path.

* The fourth author is sponsored under the MURST COFIN99 project “Model check-
ing and satisfiability: development of novel decision procedures and comparative
evaluation and experimental analysis in significant application areas — Moses”, pro-
tocol number 9909261583. The first, second and fourth authors are sponsored by the
CALCULEMUS! THP-RTN EC project, contract code HPRN-CT-2000-00102, and
have thus benefited of the financial contribution of the Commission through the
THP program.

Since then, the research on bounded model checking has mainly focused
on using effective data structures to encode boolean expression [1,16] or on
customizing SAT procedures for BMC problems [14]. Moreover, most work have
restricted to the very particular subproblem of reachability [3,1,14,9]. For the
general case, no alternative encoding than that in [2] has been proposed so far.

In this paper, we analyze the encoding of [2], we reveal and prove some basic
properties of the encoding, and we use these properties to define some improve-
ments which make the resulting boolean formula smaller or simpler to solve.
Some of these improvements are currently implemented in the NUSMYV sym-
bolic model checker [6] (NUSMYV is available at http://nusmv.irst.itc.it).

2 The basic encoding

We briefly recall some basic notions and a description of the BMC encoding, as
proposed in [2]. We omit any formal description of the semantics of LTL and of
LTL model checking, which can be found there.

We consider LTL formulas in negative normal form, which are defined as
follows: a propositional literal is a LTL formula; if A and g are LTL formulas,
then hAg, hV g, Xg, Gg, Fg, hUg and hRg are LTL formulas, X, G, F, U and
R being the standard “next”, “globally”, “eventually”, “until” and “releases”
temporal operators respectively. We denote by depth(f) the maximum level of
nesting of temporal operators in f. A Kripke Structure M is a tuple (S, I,T, L)
with a finite set of states S, a set of initial states I C S, a transition relation
T C S x S and a labeling function £ : S — P(A), A being the set of atomic
propositions.

Given M, an LTL formula f and an integer k > 0, the existential bounded
model checking problem M |=; Ef, meaning “there exist an execution path of M
of length k satisfying the temporal property f”, is equivalent to the satisfiability
problem of a boolean formula [[M, f]], defined as follows:

(M, flle == [M]e A [[f1k (1)
where
k—1
[[M]]), == I(s0) A /\ T(si, 8i41), (2)
k
[l = GLe A IV V Gk AR, (3)
=0

1Ly, :=T(sk, 1), L == \/}—y 1Lk, [[f]]i and ([[f]]i are described in Table 1.
(If f is boolean, we denote by f; the value of f at step i.) Intuitively,

— [[M, f]];, represents the paths of length k which are compatible with the
initial conditions and the transition relation, and satisfy f;

[T LA I
p Di Pi
P |7P Pi
h A g[TRl A [lolli [RTT A ([loll;
v g[[[AIl;, V_[lallk {RJ V(o
<o | G if i<k i <F
9 1L otherwise. lglle otherwise.
Gg 1 i /\;" min(i,l) l[[g]]k
Fg Vi loli Vi mininy lugnk
hUg [V, (gl A N2 [RR) V= Cellalli A ALZS dllBlIR) v
Vi }(z[g] A NS R AN BT
nRg [Vi_, (I AN [lallR) /\z_mm(l o dlgl v
Vi (o [h]fA/\f“ gll) v
Vi (L A/\Mzm AN dlal)

Table 1. Recursive definition of [[f]];, and ;[[f]]%.

[M]],, represents the paths which are compatible with the initial conditions
and the transition relation;

[[f]] represents the paths which satisfy f;

1Ly, represents the transition from step k& to step I, which induces a loop;
Ly, represents the disjunction of every transitions from step k to a step [;
[[f1]% represents the paths which satisfy f, if there is no loop from step k
to any step I < k;

1[[f1]9 represents the paths which satisfy f, if there is a loop from step k to
step [.

Of course, the method is not complete, in the sense that, if [[M, f]], is
unsatisfiable (that is, M £ Ef) then nothing can be said about the existence
of paths of length > k. ! Of course, there is a maximum value of k, called
the diameter of the problem, after which we can conclude there is no solution.
Unfortunately, such value is typically very big and very hard to compute [3].
Thus, the typical technique is to generate and solve [[M, f]], for increasing
values of £k = 0,1,2,3,..., until either a satisfying path is found, or a given
timeout is reached.

Notice that, a path of length k satisfying an LTL formula f (i.e. such that
M [, Ef) corresponds to a counter-example for the universal model checking
problem M | A-f, meaning “for all computation path the LTL property —f is
satisfied”.

! This should not be a surprise, as LTL model checking is PSPACE-complete, while
SAT is NP-complete.

3 Problems with the basic encoding

In this paper we assume that all the boolean formulas are represented by binary
directed acyclic graphs (DAGs) so that all common subformulas are shared. 2
These formulas keep reasonably small, but are not canonical, in the sense that
the DAG representation of logically equivalent formulas is not unique. The DAG
representing [[M, f]], is CNF-ized by means of a labeling CNF conversion (see.
e.g., [12,10]). Remarkably, this conversion avoids the exponential explosion in
size, but forces the introduction of new boolean variables. Moreover, the resulting
formula is not logically equivalent to the previous one, but it is only equally
satisfiable.

A key problem with the encoding described in Section 2 is that in many
cases it produces redundant formulas. For instance, if we consider the standard
reachability problem s.t. f = Fg with g boolean and we apply straightforwardly
(3) and the encodings of Table 1, we have:

k k k

k
Fglly= [V Lea Vg vV LA\ g5)] - (4)

=0 7j=0 =0 7=0

The DAG structure allows for sharing the V?:o g; and Ly terms, but it cannot
simplify (4) any further. On the other hand, we will see later that in this case
[Fgll, = \/f:0 gj, that is, all the ;L; terms can be dropped.

In general, there are often simplifications which can be done, e.g., by simply
applying DeMorgan’s rules and/or the associativity of conjuncts and disjuncts,
or by recognizing properties due to the semantics of subformulas. In this paper
we identified some of these simplifications, thus allowing for their application in
the encoding algorithm. The identified simplifications aim to speed up the SAT
solver in answering the submitted problem.

4 Optimizations to the encoding

Analyzing (1), (2), (3) and the inductive definitions of [[f]]¢ and ,[[f]]} in
Table 1, we notice some properties which allow for introducing significant im-
provements in the size of the encodings. In the following we denote by f E g
propositional model entailment.

4.1 Removing the “-L;” component

Property 1. For all LTL formulas f and for all 4,7, ks.t.0<i<kand 0 <[<k,

[Nk = A1k (5)

% Noteworthy cases of efficient implementation of DAGs are Reduced Boolean Circuits
(RBCs) [1] and Boolean Expression Diagrams (BEDs) [16].

Proof. The result comes from the inductive definitions of [[f]]i and [[f]]} in
Table 1, by induction on the structure of f. We recall that, in propositional

IOgiC, if f1 |= 91 and f2 |= g2, then f1 N f2 '= a1 N\ g2 and f1 \% f2 |= a1V g, and
h |= hlg1/fi]t, where h[g1/f1]T is obtained by substituting positive occurrences
of fi with g1 in h.

I f € {p,-p}, then [[f]li = AL

We assume by inductive hypothesis that [[A]]} E [[]]; and [[g]]i E [[9]]i-
Thus:

~ R A Tl b A gl and (R V (gl b ATV olgll

~ [Xalli ([{Xgl} and [Galli - ([[Gall}, as L = f for every /.

~ ol = Fli. [AUG = U, [WRgli E i[Rgl, as
they are all in the form “ [[f]l; = [[flli[h/ /h,g/ 1]t V F*”, where
[fNilh/ /h,g/ 1g]t is the formula obtained by substituting the positive
F)CCt[l[lj;rﬁnces of [[A]]3’s and [[g]]}’s with the respective ;[[h]]}’s and [[g]]}’s
in %

O

Property 2. The boolean expression [[f]], defined in (3) is logically equivalent

to
k

(L9 v\ G A LD (6)

=0
Proof. Tf uis a model for (=Li A [[fI9)V V1o (1Lk A ([[f112), then it is trivially
a model also for ([[f11% V Vi_o(1Li A ([[f]12)). Vice-versa, if u is a model for

(INOVVI_o Lk A ([[£1]2)), then either it is a model for \/}_o((Lx A ([[f]]2) or
it is not. In the first case, y is also a model for (3). In the second case, u = [[f]]%
and, for every I, p & (1Lk A ([[f]]%). From Property 1 for every I p = ([[f]]%,
thus p & (Li. Therefore, p = Ly, and thus it is a model for (3).

O

Thus, in (3) the “~L;” component is redundant and can be dropped.

4.2 Encodings ad hoc when depth(f) <1

In this section we borrow from [13] some ideas from their encodings of CTL
specifications of the form {AXg, AGg, AFg, A[hUg], A[hRg]}, with h and g
boolean, which we generalize to every LTL formula f s.t. depth(f) <1.3

Property 3. If [[f]]? does not vary with I (we denote it by [[f]]%), then we
have:

[k = (IR Y (Ze A LIFIR)- (7)

3 Notice that our encodings are dual w.r.t. those defined in [13] as here f is the negation
of the specification.

Proof. From (6), we have:

I

[NV VE o (L A L7112
(A0 V (Vo Lk A L[IF11D)
A9 v (L A L9

O

Property 4. If ;[[f]]% does not vary with [, and if there exists a formula F} such
that [[f]]9 can be rewritten as ;[[f]]? = ([f]]} V F}), then we have:

M = IRV (e AFY). (8)

Proof. Starting from (7), we can factorize the common term [[f]]9:

(N = ARV Le A ARV ER))
(AR V(L A TRV (L A F)
(1R V (L A F).

O
As a particular case, if ([[f]]% = [[f]]%, then Fy = L and thus [[f]], = [[f]]%-

Property 5. If depth(f) < 1, then ([[f]]% = .[[f]]% does not vary with . Thus,
by Property 3 we have:

(M = WAV (Ze A LUR)- (9)

Proof. The result comes from Table 1 by induction on the structure of f.

— If f € {p,—p}, then ,[[f]]¢ does not vary with [, for every i.
— If 4[[h]]}, and ;[[g]]; do not vary with I, then neither do [[A]]; A i[[g]]}, and
([R]]k v llglly, for every i.

If h and g are boolean, then ;[[g]] and [[h]]i do not vary with I, for every i.
Thus:

— If i =0, then ¢ < k except when k = 0, in which case | =i = k = 0. Thus,
1[[Xg]]% does not vary with I.

— min(0,1) = 0, thus ;[[Gg]]} i[[Fg]]% do not vary with [.

— as i =0, the terms V;;} ... are null. Thus, ,[[hUg]]9 and [[ARg]]} do not
vary with [.

O

Thus, when depth(f) <1, [[f]], can be rewritten into the much simpler expres-
sion (9) or even into (8) if [[f]]2 = [[f1% Vv F} for some Fj.

1F [[| [£1I | [[£Tx |

g 9o 90 g0
x gi1if k>0 giif k>0 g1 if k>0

9 | 1 otherwise. go otherwise. oLo A go otherwise.
Gg |L N Li ANj—o 9i

13 3 13
Fg V;;::O 9j Vli:O g V;‘c:() 9
=T =1 =T

hUyg V;’czo (g A /\2:0 hn) V;;:o (95 A NZo hn) V;c:o (g5 A /\Z;:o hn)
hRg|\/i_, (hi AN Zo 9n) /\u];:o 9 vV Vizo (hi AN o 9n) V

Table 2. [[f]li, «[[f]li and [[fllx, f € {9,Xg,Gg,Fg,hUg,hRg}, h, g boolean.

Ezample 1. Consider the LTL model checking problem M = A((hUg) — Gp),
and its corresponding BMC problem M |= Ef, f being ((hUg)AF-p), h, g and

p being boolean. We have [[f]1§ = [/ = V= (95 A AjZo hn) A Vico =0,
F* = L, thus from (8), [If]], = [[F1}- .

This is not a formula of the kind addressed by [13]. However, if we restrict to
f € {9,Xg,Gg,Fg,hUg, hRg} with h, g boolean, then we can apply (9) and
obtain the same results as in [13], as shown in Table 2.

As final remark we can notice that, when depth(f) > 1 it is in general the
case that [[f]]} is not a subformula of [[f]]i. This property can be exploited
to simplify the work of the SAT solver as it will be shown in Section 5.

4.3 Handling Fairness constraints: f = GFg, g boolean

We consider here the encoding of fairness constraints, that is, LTL formulas
in the form “GFg”, g being a boolean formula. From Table 1 we have that
[[GFg]]i, = L and that

k k
lIGFg=A V 9 (10)

=0 j=min(i,l)

We subdivide the external conjunction in two parts: for ¢ < [, —outside the
loop— and for ¢ > [—inside the loop. Inside the first conjunct, we further
subdivide the disjunction in two parts: for ¢ < I, —outside the loop— and for
i > | —inside the loop (11). The underlined term \/f:l g; in both conjuncts
of (11) does not vary with i, thus we can take it out from their respective
conjunctions:

-1 fi1- ko k

-1 k
MGFa =A[VevVe] A~ ANV (11)
=l

i=0 \j=i i=l j=I

(12)

Intuitively, ;[[GFg]]$ holds if and only if g; holds in at least one of the internal
states of the loop. From (3) and (12) we have thus:

k

k
IAGF Aflle=\ | LA AV 9 A AR (13)

=0 r j=l

which represents the case of bounded model checking M | Ef under the set of
fairness constraints { GFg(")},. Intuitively, (13) means “there is a loop in which
f holds s.t., for each ¢g(), there is a state sj in the loop in which g™ holds”.
Again, if ;[[f]] does not depend on [, it can be extracted from the disjunction:

k k
IAGFg A fl = ANV | LA AV o™) (14)
T =0

T j:l

Notice that, if we have only one fairness constraint GFg, we can rewrite (13) as:

k k
(GFgA fll =\ | Vg A iLe AR

1=0 \j=I
= \/ \/ (9 A oLk A [IF11R))
1=0 j=I
ko
=V V (g~ iZi A l119)
J=01=0

k J
=V (w AN (i A z[[f]]%)) : (15)
Jj=0 =0

Intuitively, (15) means “there is a state s; in which g holds, s.t. there is a loop
containing s; in which f holds”. This means lifting to the top of the formula
the boolean constraint g; —which typically come straightforwardly from primary
inputs.

Fig.1. [[AUg]]? = ([[AUg]l%, g, h boolean. Left: as in (16). Right: as in (17).

4.4 “Tableau-style” encodings for f = hUg and f = hRg

Consider f = hUg, h and g being generic LTL formulas. From Table 1, for ¢ = 0
we have that

(16)

M) ---))

we notice that each [[A]]} is a common conjunct from the i + 2-th conjunction
onward. Thus, factorizing iteratively the [[A]]}’s, we obtain:

(Magv
RN
hll; A qllz Vv
RUg]J; = k k 17
-l (A v 07
)))))
Analogous transformations can be done for [[AUg]]i, ;[[AUg]]% and [[hUg]J:.
A comparison of the (DAG of the) encodings in (16) and (17), with A and
g boolean, is represented in Figure 1. The second encoding requires about 2 - &k
new nodes, while the first, even with the best factorization, requires about 3 - k
nodes.

Intuitively, the encoding (17) can be seen as a straightforward application of
the recursive expansion:

hUg = gV (h A X(hUy)), (18)

which is the basis of the tableau encoding of LTL formulas into automata [15]. For
this reason, we call this kind of encodings “tableau-style”. Analogous encodings
can be produced for [[hRg]]; and ;[[hRg]]}.

The tableau-style encodings are logically equivalent to those of Table 1,
thus properties 1 and 2 still hold and, if depth(f) < 1, then we still have that
APUg]I = [[hUg])} and .[[FRg]I} = Aj_o 9,V [[WRg]]}. As a consequence, the
optimizations described in Sections 4.1 and 4.2 apply to tableau-style encodings
as well.

5 Adding implicit constraints

Property 1 suggests a further optimization to apply to (3) to speed up the work
of the SAT solver. In Section 4.2 we noticed that if depth(f) > 1, then [[f]]} is
not necessarily a subformula of ;[[f]]¢. Thus, when the SAT solver has assigned
(the labeling variable of) [[f]]¢ to true, in general it may need extra search to
infer that the ;[[f]]i’s are true; vice-versa, when it has assigned one [[f]]i to
false, it may need extra search to infer that [[f]]¢ is false.

Thus, the idea is to add a series of constraints to the resulting DAG of
[[M, fl];, to speed up the search. If g is a subformula of f s.t. depth(f) >
depth(g) > 1, then for every i and I such that [[g]]} and ,[[g]]i occur in the
DAG of [[M, f]];, the subformula:

= [l v allalli (19)

is added to the DAG of [[M, f]],.

As both [[g]]i and [[g]]¢ already occur in the DAG, the subformula (19)
is simply a binary clause in the labeling variables of [[g]]} and ;[[g]]i. Thus,
when the SAT solver has assigned (the labeling variable of) [[g]]¢ to true, then it
assigns to true also all the ;[[g]]}’s by simple unit propagation, and vice-versa. If
depth(f) = depth(g) > 1, then only the ;[[g]])’s occur in the DAG of [[M, f]l,
thus only the constraints in = [[g]]% V ;[[g]]% are added, for all I. On the whole,
this corresponds to add to the DAG of [[M, f]], the formula

k k k
A ACTRYda) A A AN G ok v dlall)
ggf: =0 ng: i=01[1=0
depth(g) = depth(f) >
depth(f) > 1 depth(g) > 1

(20)
which corresponds to add O(k? - |f|) binary constraints.

6 Exploiting the associativity order

The main reason why we use DAGs to represent propositional formulas is that
they allow for sharing a lot of subformulas, reducing thus the size and num-
ber of extra variables of the resulting CNF-ized formula submitted to the SAT

solver [12,10]. Unfortunately, using DAG representation does not help to rec-
ognize as identical two formulas which differ only modulo associativity of A, V,
like, e.g., (p A (g A7) and (p A g) Ar)). When encoding complex LTL formulas
the problem becomes very relevant, and it requires some care.

Consider for example the case of f = hUg, with h and g boolean, and consider
the j-th disjunct /\Jn_:t h,, in Table 2. If the conjuncts are associated left-to-right:

J: (h1 N (hg N (AN (hj,Q N hjfl))) ..))) (21)
j+1: (A (h2a A (oo A(hj—a A (hj—1 ARj))))--))), (22)

then the DAGs cannot share any sub-formula of the conjunction. If, instead, the
conjuncts are associated right-to-left:

it (o (b ARe)oos Ahj_s) A1) (23)
J+1: (((((hl /\h2)... /\hj_Q)/\hj_l)/\hj) (24)

then the DAGs share the components ((((...(hy A ha)... A h;), as in Figure 1
(left). If we consider instead the example of f = GFg with g boolean (13), in
order to let the DAG share the common disjuncts, the terms G = \/?:l g; must
be associated in the opposite way:

Gl (aV (g1 Ve (ge—2 V (gr—1V gr))--.)))) (25)
Gl (Gi+1 V. (gr—2V (k-1 V gk)) - -.)))- (26)

Thus, using DAGs with more complex LTL formulas, it is very important to
decide each time the best associativity order of the conjuncts to maximize the
sharing of common nodes by DAGs.

7 Conclusions and Future Works

In this paper we identified some simplifications of the encoding of bounded model
checking problems into propositional satisfiability problems. These simplifica-
tions aim to reduce the effort of the SAT solvers in this problem. We are currently
integrating the defined optimizations within NUSMYV. Preliminary experiments
on the problems proposed in [2] (not reported here for lack of space) confirm
that these optimizations lead to a reduction on the size of the CNF formulas
submitted to the SAT solver, and to a significant reduction in the time required
by the SAT solver to return an answer.

Future work goes in two main directions. The first one consists in completing
the integration of all the simplifications defined in this paper within NUSMV.
The second direction consists in performing an exhaustive experimental analysis
aimed, from one hand, to show the effectiveness of the devised simplifications,
and from the other hand, to possibly discover new ones. A crucial point to
perform a detailed experimental analysis is the lack of a standard benchmark
suite for evaluating the performances of the encoding algorithms. As part of this
task, we are working on the definition of a benchmark suite for bounded model
checking problems.

References

1.

10.

11.

12.

13.

14.

15.

16.

P. A. Abdullah, P. Bjesse, and N. Een. Symbolic Reachability Analysis based on
SAT-Solvers. In Sizth Int.nl Conf. on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’00), 2000.

A. Biere, A. Cimatti, E. M. Clarke, and Yunshan Zhu. Symbolic Model Checking
without BDDs. In Proc. TACAS’99, pages 193-207, 1999.

A. Biere, E. Clarke, R. Raimi, and Y. Zhu. Verifying safety proeprties of a power
pc microprocessor using symbolic model checking without BDDs. In Proc CAV99,
volume 1633 of LNCS, pages 60-71, Berlin, 1999. Springer.

R. E. Bryant. Symbolic Boolean manipulation with ordered binary-decision dia-
grams. ACM Computing Surveys, 24(3):293-318, September 1992.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Sym-
bolic Model Checking: 10?® States and Beyond. Information and Computation,
98(2):142-170, June 1992.

A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NUSMV : a new symbolic
model checker. International Journal on Software Tools for Technology Transfer
(STTT), 2(4), March 2000.

E. Clarke, O. Grumberg, and D. Long. Model Checking. In Proceedings of the
International Summer School on Deductive Program Destgn, Marktoberdorf, Ger-
many, 1994.

E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8(2):244-263, 1986.

F. Copty, L. Fix, E. Giunchiglia, G. Kamhi, A. Tacchella, and M. Vardi. Benefits
of Bounded Model Checking at an Industrial Setting. In Proc. CAV’2001, LNCS,
Berlin, 2001. Springer.

E. Giunchiglia and R. Sebastiani. Applying the Davis-Putnam procedure to non-
clausal formulas. In Proc. AI*IA’99, number 1792 in Lecture Notes in Artificial
Intelligence. Springer Verlag, 1999.

K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publ., 1993.

D.A. Plaisted and S. Greenbaum. A Structure-preserving Clause Form Translation.
Journal of Symbolic Computation, 2:293-304, 1986.

D. Sheridan and T. Walsh. Clause Forms Generated by Bounded Model Checking.
In Proc. Eighth Workshop on Automated Reasoning: Bridging the Gap between
Theory and Practice, University of York, March 2001.

O. Shtrichmann. Tuning SAT checkers for bounded model checking. In Conference
of Computer Aided Verification, volume 1855 of LNCS, pages 480-494, Berlin,
2000. Springer.

M. Y. Vardi and P. Wolper. Automata-Theoretic Techniques for Modal Logics of
Programs. Journal of Computer and System Sciences, 32:183-221, 1986.

P. F. Williams, A. Biere, E. M. Clarke, and A. Gupta. Combining Decision Di-
agrams and SAT Procedures for Efficient Symbolic Model Checking. In Proc.
CAV’2000, volume 1855 of LNCS, pages 124-138, Berlin, 2000. Springer.

