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Introduction.

The aim of the present work is to discuss some aspects about a problem of
epidemiological modeling, the evolution of a childhood infectious disease in a
human population subject to immigration and in which age-strucure is taken
into account.
The first attempt to put age-sructure in an epidemiological model dates back to
McKendrick (1926). Since then many authors put age-structure in their mod-
els, having recognized that it is then possible to gain a better insight into the
contact patterns between individuals in the population. Such models are usu-
ally compartmental, that is population is subdivided into classes of individuals
relevant from the epidemilogical point of view; this is done in the SIR model,
where individuals are classified as susceptibles or infectives or removed. Since
the 70s age-structured SIR models were used to develop vaccination policies
against diseases like measles, rubella and others in order to achieve eradication.
In 1975 Dietz presented the following SIR age-structured model:















(

∂
∂t

+ ∂
∂a

)

X = −(λ(t) + µ)X
(

∂
∂t

+ ∂
∂a

)

Y = λ(t)X − (µ+ γ)Y , +∞ > a > 0 , t > 0
(

∂
∂t

+ ∂
∂a

)

Z = γY − µZ

(1)

and:

λ(t) = β

∫ +∞

0

Y (a, t) da (2)

with initial and boundary conditions:

X(a, 0) = X0(a) , Y (a, 0) = Y0(a) , Z(a, 0) = Z0(a)

X(0, t) = µN , Y (0, t) = 0 , Z(0, t) = 0
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where X(a, t), Y (a, t), Z(a, t) are respectively the density of the susceptibles,
the infectives and removeds aged a at time t, N is the total (and constant) pop-
ulation size, µ is the birth and death rate, λ(t) is the force of infection, here
supposed proportional to total amount of infectives in the population, and γ is
the removal rate (the force of infection λ(t) is the per capita rate of acquisition
of infection, that is λ(t)∆t is the probability that a susceptible individual will
become infected in the small time interval (t, t+ ∆t) ).
A similar model was developed by Hoppensteadt(1975); and not age-structured
models but with the same (2) force of infection were developed by Bayley(1975),
Waltman(1974). But assuming (2) as force of infection means to suppose that
individuals interact homogeneously, age or social habits related differences are
not taken into account; interactions between children at school are more likely to
affect the transmission process of diseases like measles than child-adult or adult-
adult interactions. This was indeed noticed from Anderson and May(1982d),
Grenfell and Anderson(1985). A different functional form for the force of in-
fection, taking into account the ages of both the infector and the infected, was
proposed by Schenzle(1984), Anderson and May(1985a). In their works they
put the functional form:

λ(a, t) =

∫ ω

0

β(a, a′)Y (a′, t) da′ (3)

where β(a, a′) is a contact coefficient describing the interaction between sus-
ceptibles aged a and infectives aged a′ (then λ(a, t) ∆a∆t is the probability that
a susceptible of age in the small interval (a, a + ∆a) becomes infective during
the small time interval (t, t + ∆t) ) and ω is the maximal age of individuals.
Greenhalgh(1988b) and Inaba(1990) studied SIR age-structured models in case
the transmission rate is like in (3). In their works they performed an accurate
investigation of properties of the equilibria and obtained threshold results. In-
deed they caracterized the dualism extinction/endemicity of the disease in terms
of the spectral radius of a linear operator T : if r(T ) < 1 then there is only the
disease free equilibrium, if r(T ) > 1 then there exists a positive equilibrium
(that may be unique under suitable assumptions).
When studing epidemiological models, an important feature to be considered is
the underlying demography: is the population stable or growing or experienc-
ing decay, has a young or an old age profile, are all facts that affect the disease
transmission. A demographical assumption nowadays commonly made in doing
models for an infectious disease in western world is that of ”stable population
with immigration” (SPI for short), as defined in Manfredi and Valentini(2000).
There, focusing on the actual italian situation, they analyze the behaviour of
solutions of a system of Lotka-VonFoerster population equations in which a
constant immigration inflow has been inserted with the aim of forecasting the
demographical situation of a population which is experiencing fertility below
replacement (BRF for short) and immigration. They lay stress on the sta-
tionarity gained by such population on the long term; this is indeed the more
relevant forecast of SPI model, that is a population subject to BRF and to a
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constant immigration stream, as age profile, will become stationary and reach
an equilibrium age profile. Below replacement fertility and immigration is a
situation now shared by almost all western countries; hence to add demograph-
ical realism in their models and avoiding at the same time to set unnecessry
complications in the problem, some epidemiological modelers as for example
Iannelli-Manfredi(2006) are beginnig to build models whose underlying demog-
raphy is that furnished by the SPI model. A SIS and a SIR model without
age-structure and with immigration, a fraction of which is infective, were an-
alyzed from Brauer and Van der Driessche(2001). They showed that under a
constant immigration flow on infectives, there is only a positive endemic equi-
librium, the disease free equilibrium is lost. And the threshold result is now
substituted by a threshold-like result, that is the limiting behaviour evinced
from the endemic equilibrium as the infective fraction immigrant approaches
zero.
The SIR model considered in this thesis is conceived for analyzing the spread
of an infectious disease in an age-structured population, with the infective-
susceptible interaction being as that given by the (3) contact rate; and with the
SPI assumption as the demographical background.
In chapter one some basic definitions and the system of PDEs governing the
spread of the infection are given. In chapter two, by resorting to semigroup
theory, is proved a result about existence and uniqueness of the solution of the
system of PDEs. In chapter three the steady states of the system are studied:
following the analysis done by [10] and resorting to the teory of positive mono-
tone operators on a cone in a Banach space, we prove existence and uniqueness
for the steady state on a subset of L1

+(0, ω), the cone of the positive functions
of L1(0, ω); then, by mean of the Sawashima theorem (a generalization of the
Krein-Rutman theorem), a threshold-like result is proved. Then follows discus-
sion about the posibility of obtaining a uniqueness result without resorting to
the theory of monotone operators in case of using as a contact coefficient a 2×2
WAIFW matrix.
In chapter four we firstly rewrite force of infection by subdividing the life span
into a finite number of discrete age classes and using a suitable WAIFW matrix
as contact coefficient; then we numerically solve the equations of the system
of PDEs describing the model by mean of a discretization scheme along the
characteristics. The algorithm is then used to perform some simulations aimed
at having a glance in the transient phase between the initial time and the long
term situation, with initial conditions given by actual italian age profile and
under various assumptions on the immigrants (data about immigrants are less
observable); and to compare these results with the simulations with the sta-
tionary population as initial condition, that is with the forecasts of the SPI
model.
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Chapter 1

The setting of the problem.

In SIR compartmental models what is firstly done is to classify individuals of
the population, as regard as to the disease, as members of one of three classes:

the susceptible class, which consists of those individuals who are not sick, but
can contract the infection by mean of a suitable contact with infective individ-
uals;
the infective class, which consists of those individuals who have contracted the
infection and can transmit it to others;
the removed class, which consists of those individuals who are immune from the
disease because they contracted it and then they healed or by vaccination.
The number of individuals of the population without outer influences is not con-
stant over time: individuals are born, they can generate new individuals and
then they die before reach a maximal age. But we assume that the population
can vary also by mean of a stream of individuals coming from the outside. We
name these individuals ”immigrants”; individuals natives of the population un-
der examination, we name ”natives”.
We do the following fudamental demographical assumption: native population
is in demographic decay but is kept in an equilibrium condition by mean of the
immigration stream, and that this stream is constant as number of individuals
coming in the time unit and as age profile. Hence we study the spread process
of the disease in the SPI demographical context. Furthemore, we assume that
immigrants acquire the same demographic parameters of the native population
(mortality and fertility rates) after their arrival: immigrants suddenly becomes
natives;
that a fraction of the immigrants is infective;
that there is no vertical transmission of the disease, that is newborn people are
healty
that the disease doesn’t affects the mortality rate;
that age affects the transmission rate of the disease.
We write:

9
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• X(a, t), the density of susceptible individuals of age a at time t;

• Y (a, t), the density of infective individuals of age a at time t;

• Z(a, t), the density of removed individuals of age a at time t;

• IX (a), the stream of susceptible immigrants that enter the population in
the time unit;

• IY (a), the stream of infective immigrants that enter the population in the
time unit;

• IZ(a), the stream of susceptible immigrants that enter the population in
the time unit.

Then we write ω as the maximum life length of individuals;
I(a) = IX (a) + IY (a) + IZ(a) as the total immigration stream in the time unit;

µ ∈ L1
loc

(

[0, ω)
)

as the mortality rate, which satisfies µ(a) ≥ 0 for a.e. a ∈ (0, ω) ,
∫ ω

0
µ(s)ds = +∞ and e−

R

a

0
µ(s)ds is the fraction of individuals who are still

living at age a;
γ as the recovery rate (hence 1/γ is the average time length of the disease).
Under these assumptions the system of partiale differential equations which
governs the disease’s diffusion is:















(

∂
∂t

+ ∂
∂a

)

X = −(λ(a, t) + µ(a))X + IX (a)
(

∂
∂t

+ ∂
∂a

)

Y = λ(a, t)X − (µ(a) + γ)Y + IY (a) ω > a > 0 , t > 0
(

∂
∂t

+ ∂
∂a

)

Z = γY − µ(a)Z + IZ(a)
(1.1)

where λ(a, t) is the force of infection:

λ(a, t) =

∫ ω

0

β(a, s)Y (s, t) ds . (1.2)

as introduced from Schenzle(1984), Anderson and May(1985a); λ(a, t) is the
rate with whom susceptible individuals of age a fall ill becoming infective, so
λ(a, t)X(a, t)da dt is the number of susceptible individuals whose age is in the
interval (a, a+ da), that pass in the infective class in a time in (t, t+ dt);
β(·, ·) ∈ L∞

(

(0, ω) × (0, ω)
)

, β(a, b) represents a contact coefficient between
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individuals of age a and individuals of age b.
To make the problem handable with analytical tools it is then necessary to give
boundary conditions:

X(0, t) , Y (0, t) , Z(0, t) t ≥ 0 (1.1a)

and initial conditions:

X(a, 0) , Y (a, 0) , Z(a, 0) a ≥ 0 (1.1b)

(1.1a)’s give respectively the susceptible, infective and removed newborns
at time t. Let us remember that we did the hypothesis: the population is in
demographic decay but is substained by a constant immigration stream. If we
call n(a, t) the density of individuals of age a at time t, for n(a, t) is valid the
McKendrick-Von Foerster non-homogeneous equation (which it obtains by sum-
ming up the three equations and the pertinent boundary and initial conditions
in (1.1) ):















(

∂
∂t

+ ∂
∂a

)

n = −µ(a)n+ I(a) a, t > 0

n(0, t) = B(t) =
∫ ω

0 β(a)n(a, t)da t ≥ 0

n(a, 0) = n0(a) a ≥ 0

(1.3)

which has solution given by:

n(a, t) =







n0(a− t) Π(a)
Π(a−t) +

∫ t

0 I(s)
Π(a)

Π(s+a−t)ds 0 < t < a < ω

B(t− a)Π(a) +
∫ a

0
I(s)Π(a)

Π(s) ds 0 < a < t
(1.4)

As in [8], we write β(a) for the age specific fertility, that gives the number
of newborn generated from a single inividual whose age is in (a, a + da); and
Π(a) = e−

R

a

0
µ(s)ds is the survival function. The equilibrium solution of (1.3) is

given by the solution of the ordinary differential equation:

{ d
da
n(a) = −µ(a)n(a) + I(a) a > 0

n(0) =
∫ ω

0
β(a)n(a)da

(1.5)

and then:

n(a) = n(0)Π(a) +

∫ ω

0

I(s)
Π(a)

Π(s)
ds , 0 ≤ a ≤ ω (1.6)
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with n(0) given by:

n(0) =
1

1 −R

∫ ω

0

β(a)Π(a)

∫ a

0

I(s)

Π(s)
ds da (1.7)

where R =
∫ ω

0 β(a)Π(a) da is the net reproduction rate ([8]) , and it rep-
resents the average number of newborn individuals produced by an individual
during his reproductive life. It is possible to show in the population model
with age structure and without immigration of McKendrick-Von Foerster, that
population decay is equivalent to R < 1; and in the model with immigration
it has been shown ([5]) that, if the native population is assumed decaing, the
equilibrium solution (1.6) of equation (1.3) is globally asymptotically stable.
Then it makes sense to consider as initial and boundary data of system (1.1)
respectively the equilibrium solution of equation (1.3) of McKendrick-Von Fo-
erster and the constant number of newborn individuals which we have in such
equilibrium situation, given by (1.7); that is to say, let us consider the evolution
of the disease in the population stabilized by the immigration stream. Then the
system with boundary and initial conditions to study is:











































(

∂
∂t

+ ∂
∂a

)

X = −(λ(a, t) + µ(a))X + IX (a)
(

∂
∂t

+ ∂
∂a

)

Y = λ(a, t)X − (µ(a) + γ)Y + IY (a) 0 < a < ω , t > 0
(

∂
∂t

+ ∂
∂a

)

Z = γY − µ(a)Z + IZ(a)

X(0, t) = n(0) , Y (0, t) = 0 , Z(0, t) = 0 t ≥ 0

X(a, 0) = X0(a) , Y (a, 0) = Y0(a) , Z(a, 0) = Z0(a) a ≥ 0
(1.8)

with X0(·) , Y0(·) , Z0(·) such that n(a) = X0(a)+Y0(a)+Z0(a) 0 ≤ a ≤ ω.



Chapter 2

Existence and uniqueness of

solutions.

To establish existence and uniqueness of the solution of system (1.8) in a suitable
functional class, let us normalize the variables X,Y, Z:

x(a, t) =
X(a, t)

n(a)
, y(a, t) =

Y (a, t)

n(a)
, z(a, t) =

Z(a, t)

n(a)

and the variables pertinent to the migratory stream:

ix(a) =
IX (a)

n(a)
, iy(a) =

IY (a)

n(a)
, iz(a) =

IZ(a)

n(a)

that is we consider the susceptible, infective and removed fractions of age
a at time t and the analogous fractions of susceptibles, infective and removed
immigrants who arrive in the unit of time, over the total native population of
age a.
By assumption, our analysis starts with initial condition given by the demo-
graphic equilibrium of system (1.3), so we have:

n(a, t) = n(a) = X(a, t) + Y (a, t) + Z(a, t) 0 ≤ a ≤ ω , t ≥ 0

and hence:

1 = x(a, t) + y(a, t) + z(a, t) 0 ≤ a ≤ ω t ≤ 0 (2.1)

Then we rewrite system (1.8) in this way:
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(

∂
∂t

+ ∂
∂a

)

x = −(λ(a, t) + i(a))x+ ix(a)
(

∂
∂t

+ ∂
∂a

)

y = λ(a, t)x− (γ + i(a))y + iy(a) 0 < a < ω , t > 0
(

∂
∂t

+ ∂
∂a

)

z = γy − i(a)z + iz(a)

x(0, t) = 1 , y(0, t) = 0 , z(0, t) = 0 t ≥ 0

x(a, 0) = x0(a) , y(a, 0) = y0(a) , z(a, 0) = z0(a) a ≥ 0
(2.2)

(the condition x(0,t)=1 means that there is no vertical transmission of the
disease: the newborns are all susceptibles) where i(a) = ix(a) + iy(a) + iz(a)
and:

λ(a, t) =

∫ ω

0

β(a, s)n(s)y(s, t) ds .

In the first two equations of (2.2) the z(·, ·) variable doesn’t appear, then by

mean of (2.1), it suffices to consider the system:



























(

∂
∂t

+ ∂
∂a

)

x = −(λ(a, t) + i(a))x+ ix(a)
(

∂
∂t

+ ∂
∂a

)

y = λ(a, t)x− (γ + i(a))y + iy(a) 0 < a < ω , t > 0

x(0, t) = 1 , y(0, t) = 0 t ≥ 0

x(a, 0) = x0(a) , y(a, 0) = y0(a) a ≥ 0
(2.3)

Let us now write system (2.3) as an abstract Cauchy problem. To make the
problem treatable with the aid of semigroup theory, let us set x̃(a, t) = 1−x(a, t).
The system 2.3 then become:



























(

∂
∂t

+ ∂
∂a

)

x̃ = (λ(a, t) + i(a))(1 − x̃) − ix(a)
(

∂
∂t

+ ∂
∂a

)

y = λ(a, t)(1 − x̃) − (γ + i(a))y + iy(a) 0 < a < ω , t > 0

x̃(0, t) = 0 , y(0, t) = 0 t ≥ 0

x̃(a, 0) = x̃0(a) , y(a, 0) = y0(a) a ≥ 0
(2.4)

Let us suppose ix, iy, iz ∈ L∞(0, ω); let us set X = L1
(

(0, ω); R2
)

and let
A : D(A) ⊆ X −→ X be the linear operator defined by:
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A

(

u1

u2

)

(a) =

(

− d
da
u1(a) − i(a)u1(a)

− d
da
u2(a) − (γ + i(a))u2(a)

)

with domain:

D(A) = {u ∈ X : u1, u2 ∈ AC([0, ω]), u1(0) = u2(0) = 0} .

Let G : X −→ X be the nonlinear operator defined by:

G

(

u1

u2

)

(a) =

(

(Fu2)(a) · (1 − u1(a)) + iy(a) + iz(a)

(Fu2)(a) · (1 − u1(a)) + iy(a)

)

where F : L1(0, ω) −→ L1(0, ω) is the linear operator defined by:

(Fv)(a) =

∫ ω

0

β(a, s)n(s)v(s)ds , v ∈ L1(0, ω).

Then we can write (2.4) as the abstract Cauchy problem:











d
dt
u(t) = Au(t) +Gu(t) , t > 0

u(0) = u0 ∈ X , u0 =

(

x̃0

y0

)

.
(2.5)

A is the infinitesimal generator of the strongly continuous semigroup {T (t)}t≥0

on X given by:

T (t)

(

u1

u2

)

(a) =



























(

e−
R

t

0
i(a−t+τ)dτ u1(a− t)

e−γ t−
R

t

0
i(a−t+τ)dτ u2(a− t)

)

ω > a > t

(

0
0

)

a < t

with u =

(

u1

u2

)

∈ X . (We can write T (t) in a more compact way as:

T (t) =

(

e−
R

t

0
Tr(t−τ)i(·)dτ Tr(t)

e−γ t−
R

t

0
Tr(t−τ)i(·)dτ Tr(t)

)
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with {Tr(t)}t≥0 the right-translation semigroup on L1(0, ω) given by:

(

Tr(t)f
)

(a) =

{

f(a− t) a− t > 0 , a < ω

0 a− t ≤ 0
, f ∈ L1(0, ω) ).

The nonlinear operator G is Frechet differentiable on X, with derivative given
by:

(G′(u)ϕ) (a) =

(

−(Fu2)(a) · ϕ1(a) + (Fϕ2)(a) · (1 − u1(a))

”

)

u, ϕ ∈ X , a ∈ (0, ω). Hence it is continuously Frechet differentiable on X ;
then:

1. for each u0 ∈ X there exists a maximal interval of existence [ 0, t0) and
a unique continuous function t −→ u(t;u0) from [ 0, t0) to X that is mild
solution of (2.5) defined by:

u(t;u0) = T (t)u0 +

∫ ω

0

T (t− s)G(u(s;u0)) ds 0 ≤ t < t0 (2.6)

and either t0 = +∞ or lim sup
t→t0

−

‖u(t;u0)‖X = +∞ (blow-up);

2. if u0 ∈ D(A) then u(t;u0) ∈ D(A) ∀ 0 ≤ t < t0 and the function (2.6)
is continuosly differentiable and satisfies (2.5) on [0, t0). ([20],teor. 4.16,
pag.194).

We now show that blow-up doesn’t happen, that is t0 = +∞; to do this let
us assume x0 ∈ L∞(0, ω) (and it is reasonable to do it).

Lemma 1 Let u(t;u0) =

(

x̃(t)
y(t)

)

be the mild solution of (2.5). Then:

(i) u(t;u0) ∈ [0, 1] × [0, 1] a.e. on (0, ω), ∀ t ≥ ω if x̃0 ≤ 1 , y0 ≥ 0 a.e. on

(0, ω);

(ii) u(t;u0) ∈ [0, 1]× [0, 1] a.e. on (0, ω), ∀ t ≥ 0 if x̃0 , y0 ∈ [0, 1] a.e. on

(0, ω).
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Proof. From (2.3) by integration along characteristic curves we obtain:

x(a, t) =

{

x0(a− t) e−
R

t

0
λ̄(τ+a−t,τ)dτ +

∫ t

0 ix(τ + a− t)e−
R

t

τ
λ̄(τ ′+a−t,τ ′)dτ ′

dτ a > t

e−
R

a

0
λ̄(τ,τ+t−a)dτ +

∫ a

0 ix(τ)e
−

R

a

τ
λ̄(τ ′,τ ′+t−a)dτ ′

dτ a < t

with λ̄(a, t) = λ(a, t) + i(a). If a > t then from 0 ≤ ix(a) ≤ i(a) ≤ λ̄(a, t)
we have:

x0(a− t) e−
R

t

0
λ̄(τ+a−t,τ)dτ +

∫ t

0

ix(τ + a− t)e−
R

t

τ
λ̄(τ ′+a−t,τ ′)dτ ′

dτ ≤

≤ x0(a− t) e−
R

t

0
λ̄(τ+a−t,τ)dτ +

∫ t

0

λ̄(τ + a− t, τ)e−
R

t

τ
λ̄(τ ′+a−t,τ ′)dτ ′

dτ =

= x0(a− t) e−
R

t

0
λ̄(τ+a−t,τ)dτ + 1 − e−

R

t

0
λ̄(τ+a−t,τ)dτ =

= 1 −
(

1 − x0(a− t)
)

e−
R

t

0
λ̄(τ+a−t,τ)dτ ≤ 1 ;

and in the same way if a < t. Then x̃(a, t) ≤ 1 a.e. on (0, ω), for all t ≥ 0 if

x̃0(a) = 1 − x0(a) ≤ 1 a.e. on (0, ω); and if 0 ≤ x̃0(a) ≤ 1 a.e. on (0, ω), then

0 ≤ x̃(a, t) ≤ 1 a.e. on (0, ω), for all t ≥ 0 .

Let us now show that if y0 ≥ 0 a.e. on (0, ω), then y(t) ≥ 0 a.e. on (0, ω),
for all t ≥ 0. To establish this, let us write the second equation in (2.3) as the
abstract Cauchy problem:

{

d
dt
y(t) = By(t) +

(

Fy(t)
)

(1 − x̃(t)) + iy , t > 0

y(0) = y0
(2.7)

with B : L1(0, ω) −→ L1(0, ω) the linear operator defined by:

(Bf)(a) = −
d f

da
(a) −

(

γ + i(a)
)

f(a) , 0 < a < ω

with domain:

D(B) = {f ∈ L1(0, ω) : f ∈ AC([0, ω]) , f(0) = 0}

B is the generator of the positive strongly continuous semigroup of linear
operators {S(t)}t≥0 given by:
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S(t) = e−γ t−
R

t

0
Tr(t−τ)i(·)dτTr(t) .

Then by the variation of parameters formula, y(t) is given by:

y(t) = S(t)y0 +

∫ t

0

S(t− s)
(

(Fy(s))(1 − x̃(s)
)

+ iy
)

ds.

Given T > 0, consider the space YT = C
(

[0, T ];L1(0, ω)
)

which is Banach
with

the norm ‖ϕ‖YT
= sup0≤t≤T ‖ϕ(t)‖1; consider the closed subsets:

WT =
{

u(·) ∈ YT : u(0) = y0
}

, YT,+ =
{

u(·) ∈ YT : u(t) ∈ L1
+(0, ω) ∀t ∈ [0, T ]

}

and the positive operator:

V : YT −→ YT : (V ϕ)(t) = S(t)ϕ(0) +

∫ t

0

S(t− s)
(

(Fϕ(s))(1 − x̃(s)
)

+ iy
)

ds.

We have V
(

WT ∩YT,+
)

⊆WT ∩YT,+ and V has in WT ∩YT,+ 1! fixed point
y(·) which is the mild solution of (2.7). Thus if we define the sequence:

{

y1(t) = S(t)y0

yn+1(t) = (V yn)(t) , n ≥ 1

with y0 ∈ L1
+(0, ω), we have {yn} ⊂WT ∩ YT,+ and y = limn→+∞ yn in YT

for

all T > 0. Then y(t) ≥ 0 a.e. on (0, ω), for all t ≥ 0.

To show that eventually u(t;u0) ∈ [0, 1] × [0, 1], let us define v(t) = x̃(t) − y(t)
and consider the abstract Cauchy problem:

{

d
dt
v(t) = Cy(t) + γy(t) + iz , t > 0

v(0) = x̃0 − y0
(2.8)

with C : L1(0, ω) −→ L1(0, ω) the linear operator defined by:

(Cf)(a) = −
d f

da
(a) − i(a)f(a) , 0 < a < ω , D(C) = D(B).

C is the generator of the positive strongly continuous semigroup of linear
operators {U(t)}t≥0 given by:
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U(t) = e−
R

t

0
Tr(t−τ)i(·)dτTr(t) .

So we have:

v(t) = U(t)v(0) +

∫ t

0

U(t− s)
(

γy(s) + iz
)

ds ≥ U(t)v(0) , ∀ t ≥ 0

and then:

v(t)(a) ≥ U(t)v(0)(a) =

{

e−
R

t

0
i(τ+a−t)dτ

(

x̃0(a− t) − y0(a− t)
)

, a > t

0 t > a
(2.9)

From (2.9) it follows 0 ≤ x̃(t) − y(t) for all t ≥ ω; then if x̃0 ≤ 1, 0 ≤ y0
a.e. on (0, ω), from x̃(t) ≤ 1, y(t) ≥ 0 a.e. on (0, ω) for all t ≥ 0, it follows
0 ≤ y(t) ≤ x̃(t) ≤ 1 a.e. on (0, ω) for all t ≥ ω. This establishes (i).

If furthermore x̃0 , y0 ∈ [0, 1] a.e. on (0, ω) we get for 0 ≤ t < a < ω :

0 ≤ x̃0(a− t) − y0(a− t) = 1−
(

x0(a− t) + y0(a− t)
)

≤ 1

and hence from (2.9) we obtain x̃(t)(a)− y(t)(a) ≥ 0 a.e. on (0, ω) for all
t ≥ 0 and then 1 ≥ x̃(t)(a) ≥ y(t)(a) ≥ 0 a.e. on (0, ω) for all t ≥ 0. And this

establishes (ii).
q.e.d.

If we now define:

D =

{(

u1

u2

)

∈ X : u1(a) ≤ 1 , u2(a) ≥ 0 for a. e. a ∈ (0, ω)

}

then from the lemma it follows:

Proposition 1 There exists one and only one classical solution of (2.3) for
every initial data u0 ∈ D ∩ D(A); this solution is maximal and defined for all
t ≥ 0.
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Chapter 3

Steady states.

A problem which makes sense to face in tring to understand the evolution of
the infection in the population, is the analysis of the equilibrium solutions of
system (2.3). Are there reasonable conditions under whose we have existence
and uniqueness of such solution?
The question of uniqueness for this kind of problems is often studied in the set-
ting of of the teory of positive monotone operators in partially ordered Banach
spaces. Let us remark some basic theory.
Let X be a real Banach space. A subset C of X is called a cone if C is closed,
convex, invariant under multiplication by elements of R+ = [0,+∞) and if
C ∩ (−C) = {0}. Each cone induces a partial ordering in X by definig u ≥ v
if and only if u − v ∈ C. This ordering is antisymmetric, reflexive, transitive,
compatible with the linear structure, that is α ∈ R+ and u ≥ 0 imply αu ≥ 0
and for every w ∈ X , u ≥ v implies u + w ≥ v + w; and compatible with
the topology, that is if {un}n∈N ⊂ X is such that un ≥ 0, un −→

n
u then

u ≥ 0. On the other hand, let X be a real Banach space with an ordering ≤
which is compatible with the linear structure and the topology. Then the set

C = {u ∈ X : u ≥ 0} is a cone on X. We shall write u > 0 if u ∈ C \ {0} =
·

C ,

and hence u > v if u − v ∈
·

C (here
·

C does not mean ”the set of the inner
points of C”) and [u,v]= {w ∈ X : u ≤ w ≤ v} = (u+ C) ∩ (v − C) ∀ u, v ∈ X
s.t. u ≤ v (order interval). Let X1, X2 be ordered Banach spaces with positive
cones C1, C2. A linear operator T : X1 −→ X2 is called positive if T 6= 0 and

T (C1) ⊆ C2; it is called strictly positive if T (
·

C1) ⊆
·

C2; it is called strongly

positive if T (
·

C1) ⊆ Int(C2) (where we now suppose Int(C2) 6= ∅).
A nonlinear mapping A : D(A) ⊆ X1 −→ X2 is called increasing if, for all
u, v ∈ D(A) with u < v, we have Au ≤ Av; it is called strictly increasing if

Au < Av; it is called e-increasing if there exists an e ∈
·

C2 such that for every
u, v ∈ D(A) with u < v there exist constants α = α(u, v), β = β(u, v) > 0 with
α e ≤ Av −Au ≤ β e; and, supposing that Int(C2) 6= ∅, it is called strongly in-
creasing if for every u, v ∈ D(A) we have that u < v implies Av−Au ∈ Int(C2).

21
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3.1 Formulation of the problem.

We now introduce the problem of determinig and studing the equilibrium so-
lutions of (2.3) and do some assumptions that will make us able to give some
answer.
Equilibrium solutions of (2.3) are solution of the system of ordinary differential
equations:



























d
da
x∗ (a) = −

(

λ∗(a) + i(a)
)

x∗(a) + ix(a)

d
da
y∗ (a) = λ∗(a)x∗(a) −

(

γ + i(a)
)

y∗(a) + iy(a)
0 < a ≤ ω

x∗(0) = 1

y∗(0) = 0
(3.1)

where λ∗(a) =
∫ ω

0 β(a, s)n(s)y∗(s) ds; by solving (3.1) directly we obtain:

x∗(a) = e−
R

a

0
(λ∗(s)+i(s))ds +

∫ a

0

ix(s)e
−

R

a

σ
(λ∗(s)+i(s))dsdσ (3.2)

y∗(a) =

∫ a

0

e−γ(a−σ)−
R

a

σ
i(s)ds (λ∗(σ)x∗(σ) + iy(σ)) dσ (3.2′)

Then we obtain for the force of infection λ∗(·):

λ∗(a) =

∫ ω

0

β(a, ξ)n(ξ)y∗(ξ) dξ =

=

∫ ω

0

β(a, ξ)n(ξ)

∫ ξ

0

e−γ(ξ−σ)−
R

ξ

σ
i(s)ds (λ∗(σ)x∗(σ) + iy(σ)) dσ dξ =

=

∫ ω

0

(λ∗(σ)x∗(σ) + iy(σ))

∫ ω

σ

β(a, ξ)n(ξ)e−γ(ξ−σ)−
R

ξ

σ
i(s)dsdξ dσ =

=

∫ ω

0

(

λ∗(σ)e−
R

σ

0
(λ∗(s)+i(s))ds + λ∗(σ)

∫ σ

0

ix(s)e
−

R

σ

s
(λ∗(τ)+i(τ))dτ ds+

+ iy(σ)
)

φ(a, σ)dσ
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where φ(·, ·) is given by:

φ(a, σ) =

∫ ω

σ

β(a, ξ)n(ξ)e−γ(ξ−σ)−
R

ξ

σ
i(s)dsdξ (3.3)

We now set:

L1
+(0, ω) =

{

f ∈ L1(0, ω) s.t. f ≥ 0 q.o. on (0, ω)
}

, (3.4)

as the cone of the nonnegative functions in the Banach space L1(0, ω), and

define the nonlinear operator Φ : L1
+(0, ω) −→ L1

+(0, ω) by setting:

(Φψ)(a) =

∫ ω

0

(

ψ(σ)e−
R

σ

0
(ψ(s)+i(s))ds + ψ(σ)

∫ σ

0

ix(s)e
−

R

σ

s
(ψ(τ)+i(τ))dτ ds+

+ iy(σ)
)

φ(a, σ)dσ , a ∈ (0, ω)

(3.5)

To each fixed point of Φ in the positive cone (3.4) there corresponds a force
of infection λ∗(·) and hence an equilibrium solution of (2.3) and viceversa. That
is, we transfer the problem of finding equilibruium solutions of (2.3) into that
of finding solutions of a nonlinear operator equation.
To succeed in doing an analysis of the existence and uniqueness of a fixed point
for Φ, we do now some assumptions on the contact coefficient between individ-
uals β(·, ·) ([10]):

Assumption 1 β(·, ·) ∈ L∞
(

(0, ω)× (0, ω)
)

, β(a, s) ≥ 0 for a.e. a, s ∈ (0, ω)
and it is such that:

lim
h→0

∫ ω

0

|β(a+ h, s) − β(a, s)|da = 0

uniformly for s ∈ R ( and β(·, ·) is extended by setting β(a, s) = 0 for
a, s ∈ (−∞, 0) ∪ (ω,+∞) );

Assumption 2 there exists m > 0 , 0 < α < ω such that β(a, s) ≥ m for a.e.
(a, s) ∈ (0, ω) × (ω − α, ω).

Furthermore let us suppose that:

Assumption 3 There exist 0 ≤ a1 < a2 ≤ ω such that iy(a) > 0 ∀a ∈ (a1, a2).

(this means we assume a continuous entry of infective immigrants in the
population).
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3.2 Existence of steady states.

We now show that under these assumptions, we have a positive (endemic) equi-
librium. Let us recall the following definitions of compact and completely con-
tinuous operator:

Definition 1 An operator A : D(A) ⊆ X −→ X is said compact if it maps
bounded sets into relatively compact sets; it is said completely continuous if it
is compact and continuous.

We now show that the operator defined by (3.5) is completely continuous.

Proposition 2 Let assumptions 1-3, be valid then:

(a) there exists D ⊂ L1
+(0, ω) such that Φ(D) ⊆ D , with D closed, bounded

and convex;

(b) Φ is completely continuous.

It then follows that ∃ψ ∈ D such that ψ = Φψ.

Proof. a) Given ψ ∈ L1
+(0, ω) we have:

‖Φψ‖L1 =

∫ ω

0

∫ ω

0

(

ψ(σ)e−
R

σ

0
(ψ(s)+i(s))ds+

+ ψ(σ)

∫ σ

0

ix(s)e
−

R

σ

s
(ψ(τ)+i(τ))dτ ds + iy(σ)

)

φ(a, σ)dσ da =

=

∫ ω

0

(

. . .
)

∫ ω

0

φ(a, σ)da dσ < ω2‖β‖∞‖n‖∞

∫ ω

0

(

. . .
)

dσ <

(

last inequality follows from the definition (3.3) of φ(·, ·):

∫ ω

0

φ(a, σ) da =

∫ ω

0

∫ ω

σ

β(a, s)n(s)e−γ(s−σ)−
R

s

σ
i(τ)dτds da ≤

≤ ω2‖β‖∞‖n‖∞ for a.e. σ ∈ (0, ω)
)

< ω2‖β‖∞‖n‖∞

∫ ω

0

(

ψ(σ)e−
R

σ

0
ψ(s)ds + ψ(σ)

∫ σ

0

ix(s)e
−

R

σ

s
ψ(τ)dτ ds + iy(σ)

)

dσ <

< ω2‖β‖∞‖n‖∞ (1 + ω (‖ix‖∞ + ‖iy‖∞)) for a.e. a ∈ (0, ω), ∀ψ ∈ L1
+(0, ω)
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(

for we have:

∫ ω

0

ψ(σ)e−
R

σ

0
ψ(s)ds dσ = 1 − e−

R

ω

0
ψ(s)ds = 1 − e−‖ψ‖1 < 1 ∀ψ ∈ L1

+(0, ω)

∫ ω

0

ψ(σ)

∫ σ

0

e−
R

σ

s
ψ(τ)dτ ds dσ =

∫ ω

0

∫ ω

s

ψ(σ)e−
R

σ

s
ψ(τ)dτ dσds =

=

∫ ω

0

(

1 − e−
R

ω

s
ψ(τ)dτ

)

ds < ω ∀ψ ∈ L1
+(0, ω)

)

.

Hence if we set:

R = ω2‖β‖∞‖n‖∞ (1 + ω (‖ix‖∞ + ‖iy‖∞))

it obtains:

Φ(L1
+(0, ω)) ⊂ BR(0) ∩ L1

+(0, ω)

(we obviously have Φ(L1
+(0, ω)) ⊂ L1

+(0, ω) too), where

BR(0) =
{

ψ ∈ L1(0, ω) : ‖ψ‖1 < 1
}

is the open ball of L1(0, ω) of radius R and
centered in zero.

(

let us observe that indeed we have Φ(L1
+(0, ω)) ⊂ L∞

+ (0, ω), the cone of

nonnegative functions of L∞(0, ω):

|Φψ(a)| ≤ ‖φ‖∞

∫ ω

0

(

ψ(σ)e−
R

σ

0
ψ(s)ds +

∫ σ

0

ix(s)e
−

R

σ

s
ψ(τ)dτ ds+ iy(σ)

)

dσ ≤

≤ ω‖β‖∞‖n‖∞ (1 + ω (‖ix‖∞ + ‖iy‖∞)) for a.e. a ∈ (0, ω), ∀ψ ∈ L1
+(0, ω)

)

Furthermore if we set:

u0(a) =
(

Φ (0)
)

(a) =

∫ ω

0

iy(σ)φ(a, σ)dσ (3.6)

it obtains:

Φψ ≥ u0 ∀ψ ∈ L1
+(0, ω)
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because of the definition of Φ.
From assumptions 2 and 3 it follows that u0 ∈ L1

+(0, ω) \ {0}, or more, u0 > 0
in (0, ω). In fact:

φ(a, σ) =

∫ ω

σ

β(a, ξ)n(ξ)e−γ(ξ−σ)−
R

ξ

σ
i(s)dsdξ ≥

≥ m

∫ ω

max{σ, ω−α}

n(ξ)e−γ(ξ−σ)−
R

ξ

σ
i(s)dsdξ > 0 for a.e. (a, σ) ∈ (0, ω) × (0, ω)

and hence:

u0(a) =

∫ ω

0

iy(σ)φ(a, σ)dσ ≥

≥m

∫ a2

a1

iy(σ)

∫ ω

max{σ, ω−α}

. . . dξ dσ > 0 for a.e. a ∈ (0, ω).

Then if we set:

D =
{

ψ ∈ L1
+(0, ω) : ‖ψ‖1 ≤ R

}

∩
{

ψ ∈ L1
+(0, ω) : ψ ≥ u0

}

(3.7)

we have that D is a bounded, convex and closed subset of L1
+(0, ω) and that

Φ(D) ⊂ D.

b) Φ is continuous; in fact we have:

‖Φψ2 − Φψ1‖L1 ≤

∫ ω

0

∫ ω

0

∣

∣ψ2(σ)e−
R

σ

0
(ψ2+i)dτ − ψ1(σ)e−

R

σ

0
(ψ1+i)dτ

∣

∣φ(a, σ) dσ da+

+

∫ ω

0

∫ ω

0

∣

∣ψ2(σ)

∫ σ

0

ix(s)e
−

R

σ

s
(ψ2+i)dτds−ψ1(σ)

∫ σ

0

ix(s)·

·e−
R

σ

s
(ψ1+i)dτds

∣

∣φ(a, σ) dσ da ≤

≤ C
{

∫ ω

0

∣

∣ψ2(σ)e−
R

σ

0
ψ2dτ − ψ1(σ)e−

R

σ

0
ψ1dτ

∣

∣ dσ+

+

∫ ω

0

∣

∣ψ2(σ)

∫ σ

0

ix(s)e
−

R

σ

s
ψ2dτds− ψ1(σ)

∫ σ

0

ix(s)e
−

R

σ

s
ψ1dτds

∣

∣ dσ
}
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where C = ω ‖φ‖∞. For the first term between the brackets we have:

∫ ω

0

∣

∣ψ2(σ)e−
R

σ

0
ψ2dτ − ψ1(σ)e−

R

σ

0
ψ1dτ

∣

∣ dσ ≤

≤

∫ ω

0

∣

∣ψ2(σ) − ψ1(σ)
∣

∣e−
R

σ

0
ψ2dτ dσ +

∫ ω

0

ψ1(σ)
∣

∣e−
R

σ

0
ψ2dτ − e−

R

σ

0
ψ1dτ

∣

∣ dσ ≤

≤

∫ ω

0

∣

∣ψ2(σ) − ψ1(σ)
∣

∣ dσ +

∫ ω

0

ψ1(σ)

∫ ω

0

∣

∣ψ2(τ) − ψ1(τ)
∣

∣ dτ dσ =

= ‖ψ2 − ψ1‖L1 +

∫ ω

0

∣

∣ψ1(τ) − ψ2(τ)
∣

∣

∫ ω

τ

ψ1(σ) dσ dτ ≤

≤ ‖ψ2 − ψ1‖L1 + ‖ψ1‖L1‖ψ2 − ψ1‖L1 = (1 + ‖ψ1‖L1) ‖ψ2 − ψ1‖L1

∀ ψ1, ψ2 ∈ L1
+(0, ω)

(

in fact we have:

∣

∣e−
R

σ

0
ψ2dτ−e−

R

σ

0
ψ1dτ

∣

∣ = eξ
∣

∣

∣

∫ σ

0

(

ψ2(τ) − ψ1(τ)
)

dτ
∣

∣

∣ ≤

∫ σ

0

∣

∣ψ2(τ) − ψ1(τ)
∣

∣dτ ≤

≤

∫ ω

0

∣

∣ψ2(τ) − ψ1(τ)
∣

∣dτ = ‖ψ2 − ψ1‖1 ∀ ψ1, ψ2 ∈ L1
+(0, ω)

)

and in a like manner we find for the second term:

∫ ω

0

∣

∣ψ2(σ)

∫ σ

0

· · · ds
∣

∣ dσ ≤ ω‖ix‖L∞ (1 + ‖ψ1‖L1) ‖ψ2−ψ1‖L1 ∀ ψ1, ψ2 ∈ L1
+(0, ω)

Then:

‖Φψ2 − Φψ1‖1 ≤ Cω‖ix‖∞ (1 + ‖ψ1‖1) ‖ψ2 − ψ1‖1 ∀ ψ1, ψ2 ∈ L1
+(0, ω)

hence Φ is continuous (or rather, Φ is locally Lipschitz on L1
+(0, ω) and

Lipschitz on D).

Φ is compact ; that is it maps bounded sets into relatively compact sets.
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Let us set Φ = Φ1 + Φ2 + u0 with Φ1,Φ2 : L1
+(0, ω) −→ L1

+(0, ω) defined in
this way:

(Φ1 ψ) (a) =

∫ ω

0

ψ(σ)e−
R

σ

0
(ψ+i)dτ φ(a, σ) dσ

(Φ2 ψ) (a) =

∫ ω

0

ψ(σ)

∫ σ

0

ix(s)e
−

R

σ

s
(ψ+i)dτds φ(a, σ) dσ

∀a ∈ (0, ω)

and with u0 defined as in (3.6). Let us define the linear operator:

T : L1(0, ω) −→ L1(0, ω) | (Tψ)(a) =

∫ ω

0

ψ(σ)φ(a, σ) dσ a ∈ (0, ω)

Remark. We have T = Φ′
1(0) , the Frechet derivative of Φ in the zero of

L1(0, ω).

T is a linear completely continuous operator.
T is continuous because of the boundedness of φ(·, ·). Compactness of T fol-
lows from assumption (1) and from the Riesz-Frechet-Kolmogorov theorem ([4],
teor.4.26, p.116), which we now recall:

Theorem 1 (Riesz-Frechet-Kolmogorov) Let F ⊂ Lp(Rn), F be bounded,
1 ≤ p < +∞; let us suppose that

lim
|h|→0

‖τh f − f‖p = 0 uniformly for f ∈ F , (R-F-K)

where
(

τh f
)

(x) = f(x+ h) , h ∈ Rn
(

that is ∀ ε > 0 ∃ δ > 0 s.t.

‖τhf − f‖p < ε ∀h ∈ Rn with |h| < δ, ∀f ∈ F
)

.

Then F |Ω has compact closure in Lp(Ω), for each Ω ⊂ Rn , Ω measurable and
bounded.

(F |Ω is the restriction on Ω of the functions of F .)

Given ψ ∈ L1
+(0, ω), we have:

‖τh (Tψ) − Tψ‖1 ≤

∫ ω

0

ψ(σ)

∫ ω

0

| φ(a+ h, σ) − φ(a, σ) | da dσ

and by assumption 1
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∫ ω

0

|φ(a+ h, σ) − φ(a, σ) | da ≤

≤

∫ ω

0

∫ ω

σ

| β(a+ h, ξ) − β(a, ξ) | n(ξ) e−γ(ξ−σ)−
R

ξ

σ
i(s)dsdξ da ≤

≤

∫ ω

σ

n(ξ)

∫ ω

0

| β(a+ h, ξ) − β(a, ξ) | da dξ ≤

≤ ω‖n‖∞

(

sup
ξ∈R

∫ ω

0

| β(a+ h, ξ) − β(a, ξ) | da

)

and hence:

‖τh (Tψ) − Tψ‖1 ≤

≤ω‖n‖∞

(

sup
ξ∈R

∫ ω

0

| β(a+ h, ξ) − β(a, ξ) | da

)

∫ ω

0

ψ(σ)dσ =
(3.7)

= ω‖n‖∞‖ψ‖1

(

sup
ξ∈R

∫ ω

0

| β(a+ h, ξ) − β(a, ξ) | da

)

∀ψ ∈ L1
+(0, ω)

If B is a bounded subset of L1
+(0, ω), we can think of it as a subset of L1(R)

by setting f(x)=0 ∀x ∈ R\ (0, ω), ∀f ∈ B. Because of (3.7), condition (R-F-K)
of Riesz-Frechet-Kolmogorov is satisfied from T (B), for each B ⊂ L1(0, ω), B
bounded.

Hence the closure T (B) of T (B) is compact in L1(0, ω) for each B ⊂ L1(0, ω) ,
B bounded; that is, T is a completely continuous operator.

Given ψ ∈ L1
+(0, ω) \ {0} we have:

(Φ1 ψ) (a) =

∫ ω

0

ψ(σ)e−
R

σ

0
(ψ+i)dτ φ(a, σ) dσ =

(

Tϕ
)

(a) a ∈ (0, ω)

where ϕ(a) = ψ(a)e−
R

ω

0
(ψ+i)dτ , ‖ϕ‖1 =

∫ ω

0
ϕ(a) da <

∫ ω

0
ψ(a) da = ‖ψ‖1 .

So, given B bounded subset of L1
+(0, ω) and r > 0 such that B ⊆ Br(0) ∩

L1
+(0, ω), it follows that:

Φ1(B) ⊆ Φ1

(

Br(0) ∩ L1
+(0, ω)

)

⊆ T
(

Br(0) ∩ L1
+(0, ω)

)
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and Φ1(B) ⊆ T
(

Br(0) ∩ L1
+(0, ω)

)

, which is compact because T is com-
pltetely continuous.

Hence Φ1(B) is compact and Φ1 is a compact (nonlinear) operator. In the same
way we can show that Φ2 is compact.

Then from
(

Φ1 + Φ2

)

(B) ⊆ Φ1(B) + Φ2(B) it follows:

(

Φ1 + Φ2

)

(B) ⊆ Φ1(B) + Φ2(B) ⊆ Φ1(B) + Φ2(B) = Φ1(B) + Φ2(B)

which is compact; hence
(

Φ1 + Φ2

)

(B) is compact and Φ1 +Φ2 is a compact
operator and then Φ1 +Φ2 +u0 is a compact operator. Hence Φ = Φ1 +Φ2 +u0

is a completely continuous operator.
q.e.d.

Let us now recall the Schauder’s principle ([21]):

Theorem 2 (Schauder) If a completely continuous operator A : X −→ X act-
ing on a Banach space X, transforms a bounded, convex and closed set B ⊂ X
into itself, then the operator A has at least one fixed point on B.

From the preceding result and the Schauder’s principle it follows:

Theorem 3 Under assumptions 1-3, the nonlinear operator Φ defined by (3.5)
has at least one fixed point on the set

D =
{

ψ ∈ L1
+(0, ω) : ‖ψ‖1 ≤ R

}

∩
{

ψ ∈ L1
+(0, ω) : ψ ≥ u0

}

.

This fixed point is strictly positive (that is it is in L1
+(0, ω)\{0}) and it corre-

sponds to an equilibrium solution of (2.3) given by the (3.2), (3.2′). Hence, under
assumptions 1-3 between which there is a constant inflow of infective immi-
grants, we ever have an equilibrium solution for which we have

∫ ω

0
y∗(s)ds > 0.

If the equilibrium is unique and globally asymptotically stable, this enables us
to assert that the disease persists in the population.
Then, in order to be able in doing previsions about the evolution of the infec-
tion in the population, it raises another question: do we have uniqueness for an
equilibrium solution of (2.3)?

3.3 The question of uniqueness.

A way to face the problem that has shown to be effective ([10]) is to recover
to the concept of monotonicity for sublinear operators as done by Amann in



3.3. THE QUESTION OF UNIQUENESS. 31

[1]. Let X be an ordered Banach space. A mapping A : [v, w] −→ X is called
sublinear with respect to [v, w] if we have:

A
(

v + τ(u− v)
)

−
(

v + τ(Au− v)
)

≥ 0

for every u ∈ [v, w] and every τ ∈ [0, 1].
A is called strictly sublinear if it holds the strict inequality sign for u ∈ (v, w] ≡
[v, w] \ {v} and τ ∈ (0, 1).
A is called e-sublinear if there exists an e ∈ X with e > 0 such that for every
u ∈ (v, w] and every τ ∈ (0, 1), there exists a δ = δ(u, τ) > 0 such that

A
(

v + τ(u− v)
)

−
(

v + τ(Au− v)
)

≥ δ e

Let us recall the following result concernig fixed points of sublinear and
increasing maps ([1]):

Theorem 4 Let X be an ordered Banach space. Let us set [v,∞) =
{

u ∈ X :

u ≥ v
}

and suppose A : [v,∞) −→ X is e-sublinear and e-increasing, and
suppose thre exists a constant γ > 0 such that 0 < Av− v < γ e. Then A has at
most one fixed point in (v,∞) =

{

u ∈ X : u > v
}

Proof. Let u1, u2 ∈ (v,∞) be fixed points of A and we may suppose that
u1 � u2. Hence u1−v � u2−v and consider the set

{

t > 0 : t(u1−v) ≤ u2−v
}

.
We have:

ui − v = Aui − v = Aui −Av +Av − v ≤ (βi + γ)e i = 1, 2

and

ui − v = Aui −Av +Av − v ≥ αi e+Av − v ≥ αie i = 1, 2

hold, from which we obtain:

u1 − v ≤ (β1 + γ)e ≤
β1 + γ

α2
(u2 − v) .

Hence
{

t > 0 : t(u1 − v) ≤ u2 − v
}

6= ∅ and we set

τ = sup
{

t > 0 : t(u1 − v) ≤ u2 − v
}

. We have τ > 0 ; and also τ < 1. For
otherwise there exists t ≥ 1 such that u2−v ≥ t(u1−v) = (t−1)(u1−v)+u1−v ≥
u1 − v but this implies u1 ≤ u2. Then 0 < τ < 1.
From the fact that u2 − v ≥ τ(u1 − v) , A is e-increasing and e-sublinear we
obtain:
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u2 = Au2 ≥ α2e+A(v + τ(u1 − v)) ≥ α2e+ δ1e+ v + τ(Au1 − v) =

=
(

α2 + δ1
)

e+ v + τ(u1 − v) ≥ v +

(

α2 + δ1
β1 + γ

+ τ

)

(u1 − v)

with α2+δ1
β1+γ

> 0 , which contradicts the maximality of τ .

Otherwise, if u1 < u2, we set
τ = sup

{

t > 0 : τ(u2 − v) ≤ u1 − v
}

< 1 and arrive at a contradiction in a
similar way.

q.e.d.

We now show that in fact Φ : [u0,+∞) −→ [u0,+∞) is an e-sublinear
operator and do an assumption under which we will show that Φ is e-increasing.

Proposition 3 There exists e ∈ L1
+(0, ω) \ {0} such that

Φ : [u0,+∞) −→ [u0,+∞) is e-sublinear.

Proof. We have to show that there exists e ∈ L1
+(0, ω) \ {0} such that for

every ψ > u0, for every τ ∈ (0, 1) there exists δ = δ(ψ, τ) > 0 such that

Φ
(

u0 + τ(ψ − u0)
)

−
(

u0 + τ(Φψ − u0)
)

≥ δ e.

Now given ψ > u0, we have:

Φ
(

u0 + τ(ψ − u0)
)

(a) −
(

u0 + τ(Φψ − u0)
)

(a) =

∫ ω

0

[

(

u0(σ) + τ(ψ(σ) − u0(σ))
)

e−
R

σ

0
[u0+τ(ψ−u0)+i]dη +

(

u0(σ) + τ(ψ(σ) − u0(σ))
)

·

∫ σ

0

ix(s)e
−

R

σ

s
[u0+τ(ψ−u0)+i]dηds+ iy(σ) − τψ(σ)e−

R

σ

0
(ψ+i)dη−

− τψ(σ)

∫ σ

0

ix(s)e
−

R

σ

s
(ψ+i)dηds− τiy(σ)

]

φ(a, σ)dσ − (1 − τ)u0(a) =

= (1 − τ)

∫ ω

0

[

u0(σ)e−
R

σ

0
[u0+τ(ψ−u0)+i]dη + u0(σ)

∫ σ

0

ix(s)e
−

R

σ

s
[u0+τ(ψ−u0)+i]dη ds

]

·

· φ(a, σ)dσ+

+τ

∫ ω

0

[

ψ(σ)e−
R

σ

0
(ψ+i)dη

(

e(1−τ)
R

σ

0
(ψ−u0)dη − 1

)

+ ψ(σ)

∫ σ

0

ix(s)e
−

R

σ

s
(ψ+i)dη·

·
(

e(1−τ)
R

σ

0
(ψ−u0)dη − 1

)

ds

]

φ(a, σ) dσ ≥
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for we have e−
R

σ

0
[u0+τ(ψ−u0)+i]dη − e−

R

σ

0
(ψ+i)dη =

= e−
R

σ

0
(ψ+i)dη

(

e(1−τ)
R

σ

0
(ψ−u0)dη − 1

)

≥ 0 ∀σ ∈ (0, ω).

Because of assumption (2) we have:

φ(a, s) =

∫ ω

s

β(a, ξ)n(ξ)e−γ(ξ−s)−
R

ξ

s
i(η)dηdξ ≥

≥ m

∫ ω

max{s,ω−α}

n(ξ)e−γ(ξ−s)−
R

ξ

s
i(η)dηdξ

def
= g(s) > 0

for a.e. (a, s) ∈ (0, ω) × (0, ω) and g(s) > 0 ∀ s ∈ (0, ω).
Therefore:

Φ
(

u0 + τ(ψ − u0)
)

(a) −
(

u0 + τ(Φψ − u0)
)

(a) ≥

≥ (1 − τ)

∫ ω

0

[

u0(σ) . . .

]

g(σ)dσ + τ

∫ ω

0

[

ψ(σ)e−
R

σ

0
(ψ+i)dη . . .

]

g(σ)dσ = δ e(a)

for a.e. a ∈ (0, ω) where e(a) = 1 a ∈ (0, ω) and δ = δ(ψ, τ) is the constant
defined by:

δ(ψ, τ) = (1 − τ)

∫ ω

0

[

u0(σ)e−
R

σ

0
[u0+τ(ψ−u0)+i]dη+

u0(σ)

∫ σ

0

ix(s)e
−

R

σ

s
[u0+τ(ψ−u0)+i]dη ds

]

g(σ)dσ+

+τ

∫ ω

0

[

ψ(σ)e−
R

σ

0
(ψ+i)dη

(

e(1−τ)
R

σ

0
(ψ−u0)dη − 1

)

+ ψ(σ)

∫ σ

0

ix(s)e
−

R

σ

s
(ψ+i)dη·

·
(

e(1−τ)
R

σ

0
(ψ−u0)dη − 1

)

ds

]

g(σ) dσ > 0.

That is, Φ is e-sublinear with respect to [u0,+∞).
q.e.d.

Following Inaba ([10]), we do the assumption on the kernel φ(·, ·):
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Assumption 4 There exists ε1 > 0 such that it holds the following inequality:

−
d φ

ds
(a, s) = β(a, s)n(s) − γφ(a, s) ≥ ε1 for a.e. (a, s) ∈ [0, ω] × [0, ω] (3.8)

Proposition 4 Under assumption 4 we have that the operator Φ is e-increasing.

Proof. Let ψ1, ψ2 ∈ L1
+(0, ω) with ψ1 < ψ2; then we have:

(Φψ1)(a) − (Φψ2)(a) =

∫ ω

0

(

ψ2(σ)e−
R

σ

0
(ψ2+i)dη − ψ1(σ)e−

R

σ

0
(ψ1+i)dη+

+ψ2(σ)

∫ σ

0

ix(s)e
−

R

σ

s
(ψ2+i)dηds− ψ1(σ)

∫ σ

0

ix(s)e
−

R

σ

s
(ψ1+i)dηds

)

φ(a, σ)dσ =

=

∫ ω

0

(

ψ2(σ)e−
R

σ

0
ψ2(η)dη − ψ1(σ)e−

R

σ

0
ψ1(η)dη

)

e−
R

σ

0
i(η)dηφ(a, σ)dσ+

+

∫ ω

0

ix(s)

∫ ω

s

(

ψ2(σ)e−
R

σ

s
ψ2(η)dη − ψ1(σ)e−

R

σ

s
ψ1(η)dη

)

e−
R

σ

s
i(η)dηφ(a, σ)dσ ds =

= −

∫ ω

0

d

dσ

(

e−
R

σ

0
ψ2(η)dη − e−

R

σ

0
ψ1(η)dη

)

φ̃(a, σ) dσ−

−

∫ ω

0

ix(s)

∫ ω

s

d

dσ

(

e−
R

σ

s
ψ2(η)dη − e−

R

σ

s
ψ1(η)dη

)

φ̃s(a, σ)dσ ds

where we have set:

φ̃(a, σ) = e−
R

σ

0
i(η)dη φ(a, σ) = e−

R

σ

0
i(η)dη

∫ ω

σ

β(a, ξ)n(ξ)e−γ(ξ−σ)−
R

ξ

σ
i(η)dηdξ =

=

∫ ω

σ

β(a, ξ)n(ξ)e−γ(ξ−σ)−
R

ξ

0
i(η)dηdξ

φ̃s(a, σ) = e−
R

σ

s
i(η)dη φ(a, σ) =

∫ ω

σ

β(a, ξ)n(ξ)e−γ(ξ−σ)−
R

ξ

s
i(η)dηdξ

Hence we have:
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(Φψ1)(a) − (Φψ2)(a) = −

(

e−
R

σ

0
ψ2(η)dη − e−

R

σ

0
ψ1(η)dη

)

φ̃(a, σ)

∣

∣

∣

∣

ω

0

+

+

∫ ω

0

(

e−
R

σ

0
ψ2(η)dη − e−

R

σ

0
ψ1(η)dη

)

d φ̃

dσ
(a, σ) dσ+

+

∫ ω

0

ix(s)

{(

(e−
R

σ

0
ψ2(η)dη − e−

R

σ

0
ψ1(η)dη

)

φ̃s(a, σ)

∣

∣

∣

∣

ω

s

+

+

∫ ω

s

(

e−
R

σ

s
ψ2(η)dη − e−

R

σ

s
ψ1(η)dη

)

d φ̃s
dσ

(a, σ)dσ

}

ds =

=

∫ ω

0

(

e−
R

σ

0
ψ2(η)dη − e−

R

σ

0
ψ1(η)dη

)

d φ̃

dσ
(a, σ) dσ+

+

∫ ω

0

ix(s)

∫ ω

s

(

e−
R

σ

s
ψ2(η)dη − e−

R

σ

s
ψ1(η)dη

)

d φ̃s
dσ

(a, σ)dσ ds > 0

for a.e. a ∈ (0, ω) (because by assumption 4 we have

d φ̃

dσ
(a, σ) = e−

R

σ

0
i(η)dη d φ

dσ
(a, σ) < 0 ,

d φ̃s
dσ

(a, σ) = e−
R

σ

s
i(η)dη d φ

dσ
(a, σ) < 0

for a.e. (a, σ) ∈ (0, ω) × (0, ω) ).

Then sure we have Φψ2 − Φψ1 ∈ L1
+(0, ω) \ {0}; hence the definition of e-

increasing operator is satisfied once we set e(·) ≡ 1 and

α(ψ1, ψ2) = ε1

{

∫ ω

0

(

e−
R

σ

0
ψ1(η)dη − e−

R

σ

0
ψ2(η)dη

)

dσ+

+

∫ ω

0

ix(s)

∫ ω

s

(

e−
R

σ

s
ψ2(η)dη − e−

R

σ

s
ψ1(η)dη

)

dσ ds
}

β(ψ1, ψ2) = (1 + ω)‖β‖∞‖n‖∞
{

∫ ω

0

(

e−
R

σ

0
ψ1(η)dη − e−

R

σ

0
ψ2(η)dη

)

dσ+

+

∫ ω

0

ix(s)

∫ ω

s

(

e−
R

σ

s
ψ1(η)dη − e−

R

σ

s
ψ2(η)dη

)

dσ ds
}
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(

we have indeed ‖ d φ̃s

dσ
‖∞ ≤ (1 + ω)‖β‖∞ ‖n‖∞ ∀ s ∈ (0, ω)

)

q.e.d.

From theorem (4) and proposition (4) it then follows:

Theorem 5 Under ausumptions (1)-(4) there exists a unique fixed point of Φ
in D; that is, a unique equilibrium solution for (2.3).

We now drop assumption (4) to show that Φ is an e-increasing operator.
We replace assumption (2) with the more restrictive:

Assumption 2’. There exists m > 0 such that

φ̃(a, s;σ) = e−
R

σ

s
i(τ)dτ φ(a, s) ≥ m for a.e. a, s ∈ (0, ω) , σ ∈ (s, ω).

Then under assumption (2’) we have:

m ≤ φ̃(a, s;σ) ≤M for a.e. a, s ∈ (0, ω)

where M = ‖φ‖∞ (the sup norm in L∞
(

(0, ω) × (0, ω)
)

).

We replace assumption (4) with the:

Assumption 4’. Let (I−T )−1 be defined and continuous; we assume that
u0 satisfies:

e−‖(I−T )−1u0‖

‖(I − T )−1u0‖
≥
M

m
.

Then for small enough ‖u0‖1, we can prove uniqueness in the case r(T ) < 1.
We prove before the following lemma concerning an upper bound for a fixed
point of Φ in terms of ‖u0‖1:

Lemma 2 If r(T ) < 1, ψ ∈ L1
+(0, ω) is a fixed point of Φ then we have:

(0 ≤)ψ ≤ (I − T )−1u0 .

Proof. We have 0 ≤ Tψ + u0 − Φψ = Tψ + u0 − ψ.

r(T ) < 1, then there exists (I − T )−1 and (I − T )−1 ∈ L+(L1(0, ω)), because
T ∈ L+(L1(0, ω)). So we have:

0 ≤ (I − T )−1
(

Tψ + u0 − ψ
)

= (I − T )−1
(

u0 − (I − T )ψ
)

= (I − T )−1u0 − ψ ,

hence:
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ψ ≤ (I − T )−1u0

q.e.d.

This lemma establishes, in the case r(T ) < 1, that a fixed point of Φ belongs
to the order interval [u0, (I − T )−1u0].

Proposition 5 Let assumptions (2’),(4’) hold and let r(T ) < 1. Then the
operator Φ is e-increasing on the order interval [0, (I − T )−1u0].

Proof. Given ψ1, ψ2 ∈ L1
+(0, ω) such that ψ1 ≤ ψ2 ≤ (I − T )−1u0 we

have:

(Φψ2)(a) − (Φψ1)(a) =

=

∫ ω

0

(

ψ2(σ)e−
R

σ

0
ψ2(τ)dτ − ψ1(σ)e−

R

σ

0
ψ1(τ)dτ

)

e−
R

σ

0
i(τ)dτφ(a, σ)dσ+

+

∫ ω

0

ix(s)

∫ ω

s

(

ψ2(σ)e−
R

σ

s
ψ2(τ)dτ − ψ1(σ)e−

R

σ

s
ψ1(τ)dτ

)

e−
R

σ

s
i(τ)dτφ(a, σ)dσ ds =

=

∫ ω

0

(

ψ2(σ) − ψ1(σ)
)

e−
R

σ

0
ψ2(τ)dτ φ̃(a, σ) dσ−

−

∫ ω

0

ψ1(σ)

(

e−
R

σ

0
ψ1(τ)dτ − e−

R

σ

0
ψ2(τ)dτ

)

φ̃(a, σ) dσ+

+

∫ ω

0

ix(s)

∫ ω

s

(

ψ2(σ) − ψ1(σ)
)

e−
R

σ

s
ψ2(τ)dτ φ̃s(a, σ) dσ ds−

−

∫ ω

0

ix(s)

∫ ω

s

ψ1(σ)

(

e−
R

σ

s
ψ1(τ)dτ − e−

R

σ

s
ψ2(τ)dτ

)

φ̃s(a, σ) dσ ds ≥

(

where we have set φ̃s(a, σ) = e−
R

σ

s
i(τ)dτφ(a, σ)

)

≥

∫ ω

0

(

ψ2(σ) − ψ1(σ)
)

e−
R

σ

0
ψ2(τ)dτ φ̃(a, σ) dσ−

−

∫ ω

0

ψ1(σ)

∫ σ

0

(

ψ2(τ) − ψ1(τ)
)

dτ φ̃(a, σ) dσ+
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+

∫ ω

0

ix(s)

∫ ω

s

(

ψ2(σ) − ψ1(σ)
)

e−
R

σ

s
ψ2(τ)dτ φ̃s(a, σ) dσ ds−

−

∫ ω

0

ix(s)

∫ ω

s

ψ1(σ)

∫ σ

s

(

ψ2(τ) − ψ1(τ)
)

dτ φ̃s(a, σ) dσ ds =

(

because we have:

0 ≥ e−
R

σ

0
ψ2(τ)dτ − e−

R

σ

0
ψ1(τ)dτ ≥

∫ σ

0

(

ψ2(τ) − ψ1(τ)
)

dτ
)

=

∫ ω

0

(

ψ2(τ) − ψ1(τ)
)

[

e−
R

τ

0
ψ2(τ ′)dτ ′

φ̃(a, τ) −

∫ ω

τ

ψ1(σ)φ̃(a, σ)dσ
]

dτ +

+

∫ ω

0

ix(s)

∫ ω

s

(

ψ2(τ) − ψ1(τ)
)

[

e−
R

τ

s
ψ2(τ

′)dτ ′

φ̃s(a, τ)−

−

∫ ω

τ

ψ1(σ)φ̃s(a, σ)dσ
]

dτ ds ≥

≥
(

e−‖ψ2‖1m−M‖ψ1‖1

)

∫ ω

0

(

ψ2(τ) − ψ1(τ)
)

dτ+

+
(

e−‖ψ2‖1m−M‖ψ1‖1

)

∫ ω

0

ix(s)

∫ ω

s

(

ψ2(τ) − ψ1(τ)
)

dτ ds =

=
(

e−‖ψ2‖1m−M‖ψ1‖1

)

∫ ω

0

(

ψ2(τ) − ψ1(τ)
)(

1+

∫ τ

0

ix(s) ds
)

dτ > 0

∀ψ1, ψ2 ∈ D such that ψ1 ≤ ψ2.

for if ψ1 ≤ ψ2 ≤ (I − T )−1u0, then:

e−‖ψ2‖1m−M‖ψ1‖1 ≥e−‖ψ2‖1m−M‖ψ2‖1 >

> e−‖(I−T )−1u0‖m−M ‖(I − T )−1u0‖ ≥ 0

because ‖(I − T )−1u0‖ satisfies assumption (4’). Hence the definition of
e-increasing operator is satisfied once we set:
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e(a) = 1 , ∀ a ∈ (0, ω)

α(ψ1, ψ2) =
(

e−‖ψ2‖1m−M‖ψ1‖1

)

∫ ω

0

(

ψ2(σ) − ψ1(σ)
)(

1 +

∫ σ

0

ix(s) ds
)

dσ

β(ψ1, ψ2) = 2max
{

‖Φψ1‖∞, ‖Φψ2‖∞
}

.

q.e.d.

From theorem (4) and proposition (5) it follows again:

Theorem 6 If r(T ) < 1 then under assumptions (1),(2’), (3),(4’) there exists
a unique fixed point of Φ in [u0, (I − T )−1u0].

Proof. Existence follows from theorem (3). Uniqueness follows from the-
orem (4) because for the previous lemma a fixed point of Φ lies in the order
interval [u0, (I − T )−1u0] upon which Φ is e-increasing because of proposition
(5).

q.e.d.

Under a quite close assumption on Φ it is possible to obtain that Φ is an
e-increasing operator in both cases r(T ) < 1 and r(T ) > 1. We replace assump-
tion (4) with the:

Assumption 4”. We set R = supψ∈L1
+(0,ω) ‖Φψ‖1 < ∞ and assume that

R satisfies e−R

R
≥ M

m

In the same way as for proposition (5) we prove the following:

Proposition 6 Let assumptions (2’),(4”) hold. Then the operator Φ is
e-increasing on L1

+(0, ω) ∩ BR(0).

From theorem (4) and proposition (6) it follows again:

Theorem 7 Under assumptions (1),(2’),(3),(4”) there exists a unique fixed
point of Φ in D = [u0,+∞) ∩BR(0).
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3.4 Threshold-like results.

In the stable population model without immigration, Inaba ([10]) proved that
the spectral radius r(T ) of T = Φ′(0), is a threshold value for the infection.
Indeed he proved that:

Theorem 8 (Inaba)

1) If r(T ) ≤ 1, the only fixed point of the operator Φ is the null vector ψ ≡ 0;

2) if r(T ) > 1 there is at least a non-zero fixed point of Φ.

Now, in our model with immigration, in the same way it is possible to prove
that if the proportion iy(·) of immigrant individuals is zero, then we have the
same behaviour; that is we have ψ ≡ 0 (disease free equilibrium) as the only
equilibrium if r(T ) < 1 and that a positive (endemic) equilibrium is ever present
if r(T ) > 1. If the proportion of infective immigrants is not zero, i.e. u0 6= 0,
then we know (Theor. 3) that a positive equilibrium is present in both cases;
and that we have no more the disease free equilibrium. But it is still possible to
distinguish between two different situations for the steady states characterized
in terms of the spectral radius of a positive linear operator; we now look at the
limiting behaviour of a fixed point of Φ as ‖u0‖1 goes to zero.
Now, having a mind to let iy(·) going to zero, for fixed ix(·), iz(·), we consider a
sequence iy,n ∈ L1

+(0, ω) such that ‖iy,n‖1 −→ 0 and Φn, un as the analogous of
(3.5), (3.6) in which iy,n has been inserted in place of iy ; and Φ0,n = Φn − un .
We consider the positive linear operators Tn, T on L1(0, ω):

(Tnψ)(a) =

∫ ω

0

ψ(σ)
(

e−
R

σ

0
(ix(τ)+iy,n(τ)+iz(τ))dτ+

+

∫ σ

0

ix(s)e
−

R

σ

s
((ix(τ)+iy,n(τ)+iz(τ)))dτ ds

)

φn(a, σ)dσ , a ∈ (0, ω)

(3.9)

φn(a, σ) =

∫ ω

σ

β(a, ξ)n(ξ)e−γ(ξ−σ)−
R

ξ

σ
(ix(τ)+iy,n(τ)+iz(τ))dτdξ

(Tψ)(a) =

∫ ω

0

ψ(σ)
(

e−
R

σ

0
(ix(τ)+iz(τ))dτ+

+

∫ σ

0

ix(s)e
−

R

σ

s
((ix(τ)+iz(τ)))dτ ds

)

φ(a, σ)dσ , a ∈ (0, ω)

(3.10)
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φ(a, σ) =

∫ ω

σ

β(a, ξ)n(ξ)e−γ(ξ−σ)−
R

ξ

σ
(ix(τ)+iz(τ))dτdξ ,

un(a) =

∫ ω

0

iy,n(s)φ(a, s)ds .

Tn , T are the Frechet derivative in zero of Φn, Φ where now we think about
Φ as the (3.5) in which iy ≡ 0 . Let ψn be a fixed point for Φn. Then we have:

Theorem 9 i) If r(T ) < 1 then ψn −→
n→+∞

0;

ii) if r(T ) > 1 then there exists δ > 0 such that ψn ≥ δ ∀n ∈ N .

Remark. This kind of limiting behaviour has been observed from Brauer
and Van der Driessche ([3]); in their SIS and SIR models without age structure,
they assume that there is a constant flow of new members into a population
of which a fraction p is infective and that the disease is transmitted under a
law of mass action. If the positive parameter R0 (the so called ”basic repro-
duction number”) is greater than 1, then the equilibrium number of infectives
individuals goes to a positive number as p goes to zero; otherwise, if R0 < 1 ,
the equilibrium number of infectives goes to zero as p goes to zero.

Before proving the theorem we need to recall some definitions and results
about positive operator theory, extending the Perron-Frobenius theorem in the
context of infinite dimensional Banach spaces. A first extension of this kind was
carried over from Krein and Rutman ([12]).

Definition 2 Let E be a Banach space, K ⊂ E a cone. The cone K is called
total if we have

K −K = {ψ − ϕ : ψ, ϕ ∈ K} = E.

Theorem 10 (Krein, Rutman (1948))(1) Let A : E −→ E be a completely
continuous linear operator such that A(K) ⊆ K, K ⊆ E a total cone and
r(A) > 0. Then r(A) is an eigenvalue of A (of A∗) and there exists v ∈ K \ {0}
(f ∈ K∗ \ {0}) such that Av = r(A) v (A∗f = r(A) f).

If A is a strongly positive operator, Krein and Rutman (”Linear operators
leaving invariant a cone in a Banach space”) said more:



42 CHAPTER 3. STEADY STATES.

Definition 3 A linear operator A : E −→ E is called strongly positive with
respect to the cone K with non-empty interior, if for each v ∈ Fr(K) \ {0}
(Fr(K) the frontier of K), there is n=n(v)∈ N such that An(v) ∈ Int(K).

Theorem 11 (Krein, Rutman (1948))(2) If the assumptions of the previous
theorem are fulfilled and, moreover, A is strongly positive with respect to K,
then:

i) A has one and only one (except for a constant) eigenvector v ∈ Int(K),
Av = r(A) v;

ii) A∗ has one and only one (except for a constant) eigenvector f ∈ K∗ \ {0},
f strictly positive (that is f(v) > 0 for each v ∈ K \ {0}), A∗f = r(A) f ;

iii) |λ| < r(A) ∀λ eigenvalue of A, λ 6= r(A).

Hence if A is a strongly positive operator with respect to the cone with
interior K, not only we know that r(A) is an eigevalue which possesses a positive
(i.e. in K) eigenvector, but we know also that r(A) has geometric multiplicity
one and it has an eigenvector in Int(K).
But we cannot apply this result to our case because L1

+(0, ω) is a total cone in
L1(0, ω) but has empty interior. A different class of positive linear operators
that permits to obtain the same results was introduced by Sawashima ([18]) and
looks to fit our case:

Definition 4 (Sawashima (1964)) Given A ∈ L(E), A positive with respect to
the cone K, A is called non-supporting with respect to K, if for all v ∈ K \ {0},
for all f ∈ K∗ \ {0} there exists p = p(v, f) ∈ N such that < f,Anv >> 0
∀n ≥ p.

For a non-supporting operator it holds the following result:

Theorem 12 (Sawashima (1964)) Let the cone K be total, let A : E −→ E be
non-supporting with respect to K, and suppose that r(A) is a pole of the resolvent
of A, then:

i) r(A) > 0 and it is an algebraically simple pole of the resolvent;

ii) the eigenspace corresponding to r(T ) is one-dimensional and there is an
eigenvector v ∈ K \ {0} and it satisfies < f, v >> 0 ∀ f ∈ K∗ \ {0};
the relation Tϕ = µϕ with ϕ ∈ K implies that ϕ = c v for some constant
c > 0;

iii) the eigenspace of T ∗ corresponding to r(T ) is also a one-dimensional sub-
space of E∗ spanned by a strictly positive functional f ∈ K∗ .
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With regard to our case, we have that T = Φ′(0), Tn = Φ′
n(0) are non-

supporting operators:

Lemma 3 Under assumption (2), T , Tn are non-supporting operators with re-
spect to L1

+(0, ω).

Proof. Given ψ ∈ L1
+(0, ω) \ {0}, we have:

(

Tψ
)

(a) =

∫ ω

0

[

ψ(σ)e−
R

σ

0
i(τ)dτ + ψ(σ)

∫ σ

0

ix(s)e
−

R

σ

s
i(τ)dτ ds

]

·

·

∫ ω

σ

β(a, ξ)n(ξ)e−γ(ξ−σ)−
R

ξ

σ
i(τ)dτ dξ dσ ≥

≥

∫ ω

0

ψ(σ) e−γω−‖i‖1 m

∫ ω

max{σ,ω−α}

n(ξ) dξ dσ > 0 for a.e. a ∈ (0, ω).

That is we have Tψ ∈ L1
+(0, ω) \ {0} ∀ψ ∈ L1

+(0, ω) \ {0} and hence

< f, Tψ >> 0 ∀f ∈ (L1
+(0, ω))∗ \ {0}. In the same way, given n > 1, if

Tnψ ∈ L1
+(0, ω) \ {0}, it follows that (T n+1ψ)(a) > 0 for a.e. a ∈ (0, ω) and

then
< f, Tn+1ψ >> 0 ∀f ∈ (L1

+(0, ω))∗\{0}. Then the definition of non-supporting
operator is satisfied once we set p = p(ψ, f) = 1 ∀ψ ∈ L1

+(0, ω) \ {0}, ∀ f ∈
(L1

+(0, ω))∗ \ {0}. And the same calculations are to be performed for Tn.
q.e.d.

Lemma 4 We have that Tn , n ∈ N , T are completely continuous operators
such that ‖Tn − T‖L(L1) −→ 0 ;
if we assume there exists m > 0 such that φ(a, s) ≥ m ∀ a, s ∈ (0, ω), then we
have also r(Tn) −→ r(T ) .

Proof. That Tn, T are completely continuous operators follows as in proof
of proposition (2); that ‖Tn − T‖L(L1) −→ 0 follows by applying the Lebesgue
dominated convergence theorem.
From the theory of linear completely continuous operators, we have that every
eigenvalue λ 6= 0 of T , Tn is a pole of the resolvent operators
R(λ, T ) = (λI − T )−1, R(λ, Tn). We know from theorem (10) of Krein-Rutman
that r(T ), r(Tn) are eigenvalues of T , Tn hence are also poles of R(λ, T ),R(λ, Tn)
and from lemma (3) we know that T , Tn are non-supporting with respect to the
total cone L1

+(0, ω). Hence it is valid theorem (12) from Sawashima.
Let rn = r(Tn), r = r(T ) and let ϕn, ϕ be the eigenvectors of T , Tn with respect
to r(T ), r(Tn) of norm one, ‖ϕn‖1 = 1 and ‖ϕ‖1 = 1 .

From rnϕn = Tnϕn = Tϕn + (Tn − T )ϕn we have rnϕn − Tϕn −→
n

0.
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T is compact,
{

ϕn
}

is bounded then there exists a converging subsequence
{

Tϕnk

}

of
{

Tϕn
}

; hence there exists r ≥ 0 such that rnk
−→
k

r .

We have r > 0, because of

(Tϕ)(a) ≥ me−‖ix+iy‖1 ‖ϕ‖1 ∀a ∈ (0, ω) , ∀ϕ ∈ L1
+(0, ω)

and then

rnk
≈ ‖Tϕnk

‖1 ≥ me−‖ix+iy‖1 ‖ϕnk
‖1 = me−‖ix+iy‖1 ∀k ∈ N .

From rnk
ϕnk

− Tϕnk
= rnk

(

ϕnk
−

Tϕnk

rnk

)

−→
k

0 it follows there exists the

limit:

lim
k
ϕnk

= lim
k

1

rnk

Tϕnk
= ϕ , ϕ ∈ L1

+(0, ω) , ‖ϕ‖1 = 1 .

We have also Tϕnk
−→
k

Tϕ, therefore 1
r
Tϕ = ϕ, that is rϕ = Tϕ; r is an

eigenvalue of T which has positive eigenvectors. From Sawashima’s Theorem it
follows that r = r(T ).
Let now {rn′

k
} be another subsequence of {rn}; in the same way it is proved

that it is possible to extract a converging subsequence rk, rk −→
k

r , and that

r = r(T ) . Then from every subsequence of {rn} it is possible to extract a
subsequence converging to r(T ). Therefore we have r(T ) = lim

n→+∞
r(Tn) .

q.e.d.

In the following lemma we prove an inequality regarding the operators Φ0,
T:

Lemma 5 It holds the following inequality:

e−
Pn−1

k=0 ‖Tkψ‖1 Tnψ ≤ Φn0 ψ ≤ Tnψ ∀ ψ ∈ L1
+(0, ω), ∀ n ∈ N (3.11)

Proof. We proceed by induction; given ψ ∈ L1
+(0, ω) we have:

(

Φ0

)

(a) =

∫ ω

0

[

ψ(σ)e−
R

σ

0
(ψ+i)dτ + ψ(σ)

∫ σ

0

ix(s)e
−

R

σ

s
(ψ+i)dτ ds

]

φ(a, σ) dσ ≤

≤

∫ ω

0

[

ψ(σ)e−
R

σ

0
i(τ)dτ + ψ(σ)

∫ σ

0

ix(s)e
−

R

σ

s
i(τ)dτ ds

]

φ(a, σ)dσ =
(

Tψ
)

(a)

and:
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(

Φ0

)

(a) ≥ e−
R

ω

0
ψdτ

∫ ω

0

[

ψ(σ)e−
R

σ

0
i(τ)dτ+

ψ(σ)

∫ σ

0

ix(s)e
−

R

σ

s
i(τ)dτ ds

]

φ(a, σ)dσ = e−‖ψ‖1
(

Tψ
)

(a)

for a.e. a∈ (0, ω). Let now the assert be valid for n > 1, then we have:

(

Φn+1
0

)

(a) = Φ0

(

Φn0ψ
)

(a) ≤ T
(

Φn0ψ
)

(a) ≤ T
(

Tnψ
)

(a) =
(

Tn+1ψ
)

(a)

for a.e. a∈ (0, ω), because of the first step and the inductive hypothesis; and
further:

(

Φn+1
0 ψ

)

(a) =Φn0 Φ0ψ (a) ≥ e−
Pn−1

k=0 ‖TkΦ0ψ‖1
(

TnΦ0ψ
)

(a) ≥

≥e−
Pn−1

k=0 ‖TkTψ‖1 Tn
(

e−‖ψ‖1 Tψ
)

(a) = e−
Pn

k=0 ‖Tkψ‖1
(

Tn+1ψ
)

(a)

for a.e. a∈ (0, ω), again because of the first step and the inductive hypothesis
and because of the monotoneity of the L1-norm.

q.e.d.

We can now prove theorem (9):
Proof.

i) If r(T ) < 1 then we have eventually r(Tn) < 1 as n → +∞: there exists
ν ∈ N such that r(Tn) < 1 ∀ n > ν . Further, there exist (I − T )−1,

(I − T )−1 ∈ L+

(

L1(0, ω)
)

and there exists (I − Tn)
−1 ∀ n > ν with

(I − Tn)
−1 ∈ L+

(

L1(0, ω)
)

. Let ψn ∈ L1
+(0, ω) be a fixed point of Φn , we

have:

0 ≤ ψn = Φnψn = Φ0,nψn + un ≤ Tnψn + un

because of the previous lemma and then:

ψn − Tnψn = (I − Tn)ψn ≤ un , (0 ≤)ψn ≤ (I − Tn)
−1un ∀ n > ν

for (I − Tn)
−1 is a positive operator. Then from:
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(I − Tn)
−1un = (I − T )−1un +

(

(I − Tn)
−1 − (I − T )−1

)

un

the assert follows for the monotoneity of the L1-norm, the boundedness
of (I − T )−1 and the fact that ‖Tn − T‖L(L1) −→

n
0 .

ii) From r(T ) > 1 it follows there exists a ν ∈ N such that r(Tn) > 1 ∀n > ν .
Let ψn ∈ L1

+(0, ω) be such that ψn = Φn ψn.

Let us suppose that ‖ψn‖1 −→
n→+∞

0. Let fn ∈ (L1
+(0, ω))∗ \ {0} be the

strictly positive eigenvector of T ∗
n with respect to the eigenvalue r(Tn).

Then we have:

< fn, ψn >=< fn,Φn ψn >=< fn,Φ0,n ψn + un >≥ (3.12)

≥< fn, e
−‖ψn‖1 Tnψn + un >>< fn, e

−‖ψn‖1 Tnψn >= e−‖ψn‖1 < T ∗
nfn, ψn >=

= e−‖ψn‖1r(Tn) < fn, ψn > ∀ n ∈ N,

where the first inequality follows from lemma (5). For ψn ≥ un > 0
and fn is a strictly positive functional, we have that:

1 > e−‖ψn‖1 r(Tn) ∀ n ∈ N

which is an absurd because we have eventually

e−‖ψn‖1 r(Tn) ≥ 1 as n −→ +∞. It then follows that there exists δ > 0

such that ‖ψn‖1 ≥ δ ∀n.

q.e.d.

Remark. From (3.12) we can say something about the location of a fixed
point ψ of Φ in L1

+(0, ω) (in the case r(T ) > 1 and with u0 not necessarily zero);
indeed from:

< f, ψ >≥ e−‖ψ‖1 r(T ) < f, ψ > + < f, u0 >

it follows:

(

1 −
< f, u0 >

< f, ψ >

)

1

r(T )
≥ e−‖ψ‖1

and hence:

‖ψ‖1 ≥ ln

(

1

1 − <f,u0>
<f,ψ>

)

+ ln
(

r(T )
)

> ln
(

r(T )
)

.



3.5. TWO REMARKS ON THE ISSUE OF UNIQUENESS. 47

3.5 Two remarks on the issue of uniqueness.

H. Inaba in his work [10] about a SIR model without immigration did an accurate
analyis of conditions under which it is possible to prove uniqueness for solutions
of the nonlinear operator equation one obtains when studing the steady states
of (2.3) (without immigration). In the case r(T ) > 1, he wed the theory of
positive monotone operators on cones in Banach spaces under the technical
hypothsis (4). When proving the uniqueness of the disesease free equilibrium,
for r(T ) < 1, he resorted to the Sawashima’s theorem.
In either case, he did not employ the fact n(a) is a non-increasing function, since
it is the given by the form:

n(a) = N0 e
−

R

a

0
µ(τ)dτ

(N0 the yearly number of newborns).
A relevant question is if it is possible to drop assumption (4) in proving unique-
ness in the case without immigration or in our case with immigration (let us
remember that now the disease free equilibrium has disappeared).

Here we show that the assumption that n(a) is not decreasing is necessary for
proving the uniqueness. Indeed we exhibit an example with an increasing n(a),
for which the necessary condition of a tangent bifurcation of the positive fixed
point is satisfied. Adding some technical conditions, this will yeld parameter
values with multiple stationary solutions. Since, with immigration, the function
n(a) may be increasing, this show that it is possible to find immigration func-
tions I(a) and infection kernels β(a, a′) with multiple stationary solutions. Now
to the construction of the example.

Given 0 < α < ω we set I1 = (0, α), I2 = (α, ω), and consider the contact
coefficient β(·, ·) in the form:

β(a, s) = βij ⇐⇒ (a, s) ∈ Ii × Ij i, j = 1, 2 , (3.13)

with βij ≥ 0 and not all zero (this choice of subdividing the interval (0, ω)
in a finite number of intervals and taking a β(·, ·) of this kind is what is usually
done in practice to perform simulations of real situations [2], and we will do in
the next chapter).

Then with this choice of β(·, ·), we rewrite Φ in this way:

(Φψ)(a) =

∫ ω

0

(Fψ)(s)φ(a, s)ds =

∫ ω

0

(Fψ)(s)

∫ ω

s

β(a, ξ)n(ξ)e−γ(ξ−s)dξ ds =
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(with F : L1
+(0, ω) −→ L1

+(0, ω) such that (Fψ)(a) = ψ(a)e−
R

a

0
ψ(τ)dτ )

=

∫ ω

0

β(a, ξ)n(ξ)

∫ ξ

0

(Fψ)(s) e−γ(ξ−s)ds dξ =

=

2
∑

i=1

1Ii
(a)

2
∑

j=1

βij

∫

Ij

n(ξ)

∫ ξ

0

(Fψ)(s) e−γ(ξ−s)ds dξ.

where Ii(·) is the indicator function of the interval Ii. Therefore ImΦ ⊆
<1I1 ,1I2 , >+ ; if ψ ∈ L1

+(0, ω) is a positive fixed point for Φ we have ψ =
∑2

i=1 xi 1Ii
, (x1, x2) ∈ R2

+ \
{

(0, 0)
}

.

(x1, x2) is solution of the equation on R2
+:

xi = βi1

∫ α

0

n(ξ)

∫ ξ

0

x1 e
−sx1e−γ(ξ−s)ds dξ + βi2

∫ ω

α

n(ξ)

∫ α

0

x1 e
−sx1e−γ(ξ−s)ds dξ+

+ βi2

∫ ω

α

n(ξ)

∫ ξ

α

x2e
−αx1e−(s−α)x2e−γ(ξ−s)ds dξ , i = 1, 2;

that is:

xi = βi1

∫ α

0

n(ξ)e−γξ x1
eξ(γ−x1) − 1

γ − x1
dξ+βi2 x1

eα(γ−x1) − 1

γ − x1

∫ ω

α

n(ξ)e−γξdξ+

+ βi2 x2 e
−αx1eαx2

∫ ω

α

n(ξ)e−γξ
eξ(γ−x2) − eα(γ−x2)

γ − x2
dξ . (3.14)

By writing as fi(x) the right term of xi, we have defined an operator
f : R2

+ −→ R2
+. Hence, with the choices we have did, we have transformed our

operator equation problem on L1
+(0, ω), into a problem in dimension two.

For the derivatives of the various terms containig x1, x2 we have:

d

dx1

(

x1
eξ(γ−x1) − 1

γ − x1

)

=
eξ(γ−x1) − 1

γ − x1
+x1

−ξeξ(γ−x1)(γ − x1) + eξ(γ−x1) − 1

(γ − x1)2
,
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d

dx2

(

x2e
αx2

eξ(γ−x2) − eα(γ−x2)

γ − x2

)

= (1 + αx2)e
αx2

eξ(γ−x2) − eα(γ−x2)

γ − x2
+

+ x2e
αx2

(

−ξeξ(γ−x2) + αeα(γ−x2)
)

(γ − x2) + eξ(γ−x2) − eα(γ−x2)

(γ − x2)2
.

Then by choosing all the parameters βij , γ, α, ω, in such a way that x∗ =
(1, 1) be a fixed point, we have:

1 = βi1

∫ α

0

n(ξ)e−γξ
eξ(γ−1) − 1

γ − 1
dξ + βi2

eα(γ−1) − 1

γ − 1

∫ ω

α

n(ξ)e−γξdξ+

+ βi2

∫ ω

α

n(ξ)e−γξ
eξ(γ−1) − eα(γ−1)

γ − 1
dξ , i = 1, 2.

We write I as the unit matrix of two dimension, Jf (x) as the Jacobian of f
in x = (x1, x2) and with respect to the x1, x2 variables. Then we have:

(

I− Jf (x
∗)
)

11
= β11

∫ α

0

n(ξ)e−γξ
1 − eξ(γ−1) + ξ(γ − 1)eξ(γ−1)

(γ − 1)2
dξ+

+ β12
1 − eα(γ−1) + α(γ − 1)eα(γ−1)

(γ − 1)2

∫ ω

α

n(ξ)e−γξdξ+

+ β12

∫ ω

α

n(ξ)e−γξ(1 + α)
eξ(γ−1) − eα(γ−1)

γ − 1
dξ ;

(

I− Jf (x
∗)
)

22
= β21

∫ α

0

n(ξ) e−γξ
eξ(γ−1) − 1

γ − 1
dξ+

+ β22
eα(γ−1) − 1

γ − 1

∫ ω

α

n(ξ) e−γξdξ + β22

∫ ω

α

n(ξ) e−γξ
[

−α
eξ(γ−1) − eα(γ−1)

γ − 1
+

+
ξ(γ − 1)eξ(γ−1) − eξ(γ−1) −

(

α(γ − 1)eα(γ−1) − eα(γ−1)
)

(γ − 1)2

]

dξ ;
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(

I − Jf (x
∗)
)

12
= β12

∫ ω

α

n(ξ) e−γξ
[

− (1 + α)
eξ(γ−1) − eα(γ−1)

γ − 1
+

+
ξ(γ − 1)eξ(γ−1) − eξ(γ−1) −

(

α(γ − 1)eα(γ−1) − eα(γ−1)
)

(γ − 1)2

]

dξ ;

(

I−Jf (x
∗)
)

21
= β21

∫ α

0

n(ξ)e−γξ
[

−
eξ(γ−1) − 1

γ − 1
+

1 − eξ(γ−1) + ξ(γ − 1)eξ(γ−1)

(γ − 1)2

]

dξ+

+ β22

[

−
eα(γ−1) − 1

γ − 1
+

1 − eα(γ−1) + α(γ − 1)eα(γ−1)

(γ − 1)2

]

∫ ω

α

n(ξ) e−γξdξ+

+ β22 α

∫ ω

α

n(ξ) e−γξ
eξ(γ−1) − eα(γ−1)

γ − 1
dξ .

By taking a not monotone decreasing density of population, we now let de-
terminant det

((

I − Jf (x
∗)
))

making a sign jump. This means that for some
values of the parameters, the necessary condition for x∗ to be a bifurcation
point is satisfied

(

[21] prop. (8.2)
)

. We take: β11 = β22 = 0 , γ = 1 , n(ξ) = eξ ;
then:

Proposition 7 For the upper choice of the parameters, there exists suitabble
0 < α∗ < ω∗ < +∞ such that:

det
((

I− Jf (x
∗)
))

= β12β21

(

∫ ω∗

α∗

[

(1 + α)
(

ξ − α
)

+ α2/2
]

dξ ·

∫ α∗

0

ξ dξ+

+

∫ ω∗

α∗

[

(1 + α)
(

ξ − α
)

−
1

2

(

ξ2 − α2
)

]

dξ ·

∫ α∗

0

[

− ξ + ξ2/2
]

dξ

)

= 0.

(3.15)

Proof. We now see how to choose α and ω. We take α > 0 ”little” in
such a way that we have:

ξ >

∣

∣

∣

∣

−ξ +
1

2
ξ2
∣

∣

∣

∣

∀ 0 < ξ < α;
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and ω = α+ ε , ε > 0, in such a way that:

(1 + α)
(

ξ − α
)

+
1

2
α2 >

∣

∣

∣

∣

(1 + α)
(

ξ − α
)

−
1

2

(

ξ2 − α2
)

∣

∣

∣

∣

∀α < ξ < ω .

Then det
((

I− Jf (x
∗)
))

> 0.
And now we let α raise in such a way that:

∫ α

0

[

− ξ + ξ2/2
]

dξ > 0 . (3.16)

Let us observe that we have:

∫ ω

α

[

(1 + α)
(

ξ − α
)

+ α2/2
]

dξ = O(ω2) per ω −→ +∞ ,

∫ ω

α

[

(1 + α)
(

ξ − α
)

−
1

2

(

ξ2 − α2
)

]

dξ = O(ω3) per ω −→ +∞ ,

∫ ω

α

[

(1 + α)
(

ξ − α
)

−
1

2

(

ξ2 − α2
)

]

dξ −→ −∞ per ω −→ +∞ .

Then for α as in (3.16) e ω big enough we have det
((

I− Jf (x
∗)
))

< 0.
Then follows the thesis by continuity reasons.

q.e.d.

Remark. A choice for ω suitable for the proof could be ω = α+ α2.

The second remark is as follows.
If n(a) is a non-increasing function and β(a, a′) is given by the functional form
(3.13), then the sign jump of proposition (7) cannot happen. With some ad-
ditional considerations this show that if β(a, a′) is (3.13), the model without
immigrationa has a unique stationary solution.
To prove this fact, we begin by observing it is possible to consider the determi-
nant det

((

I− Jf (x
∗)
))

as composed of the sum of three pieces:

det
((

I − Jf (x
∗)
))

= β11

∫ α

0

· · · dξ ·
(

I−Jf (x
∗)
)

22
+β12 β21

(

· · ·
)

+β12 β22

(

· · ·
)

.



52 CHAPTER 3. STEADY STATES.

The first piece is positive for very possible choice of the parameters, indeed
we have:

∫ α

0

n(ξ)e−γξ
1 − eξ(γ−1) + ξ(γ − 1)eξ(γ−1)

(γ − 1)2
dξ > 0

because the function:

v(ξ) =
1 − eξ(γ−1) + ξ(γ − 1)eξ(γ−1)

(γ − 1)2

is strictly monotone increasing on all of [0,+∞) and with v(0) = 0;

and the terms contained in
(

I − Jf (x
∗)
)

22
are all positive becuse of the

monotoneity of the exponential function and because the function:

v(ξ) = −α
eξ(γ−1) − eα(γ−1)

γ − 1
+

+
ξ(γ − 1)eξ(γ−1) − eξ(γ−1) −

(

α(γ − 1)eα(γ−1) − eα(γ−1)
)

(γ − 1)2

is strictly positive on (α,+∞).

If we write all of the second piece, β12 β21

(

· · ·
)

, we have:

β12β21

(∫ ω

α

n(ξ)e−γξ
[1 − eα(γ−1) + α(γ − 1)eα(γ−1)

(γ − 1)2
+ (1+α)

eξ(γ−1) − eα(γ−1)

γ − 1

]

dξ ·

·

∫ α

0

n(ξ) e−γξ
eξ(γ−1) − 1

γ − 1
dξ+

+

∫ ω

α

n(ξ)e−γξ
[

(1+α)
eξ(γ−1) − eα(γ−1)

γ − 1
−
ξ(γ − 1)eξ(γ−1) − eξ(γ−1) −

(

α(γ − 1)eα(γ−1) − eα(γ−1)
)

(γ − 1)2

]

dξ·

·

∫ α

0

n(ξ)e−γξ
[

−
eξ(γ−1) − 1

γ − 1
+

1 − eξ(γ−1) + ξ(γ − 1)eξ(γ−1)

(γ − 1)2

]

dξ

)

(3.17)

Remark. This is the term of the sign jump of proposition (7).

We have the lemma:
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Lemma 6 The following inequalities hold:

∫ ω

α

n(ξ)e−γξ
[1 − eα(γ−1) + α(γ − 1)eα(γ−1)

(γ − 1)2
+ (1+α)

eξ(γ−1) − eα(γ−1)

γ − 1

]

dξ >

>

∫ ω

α

n(ξ)e−γξ
[

(1 + α)
eξ(γ−1) − eα(γ−1)

γ − 1
−

−
ξ(γ − 1)eξ(γ−1) − eξ(γ−1) −

(

α(γ − 1)eα(γ−1) − eα(γ−1)
)

(γ − 1)2

]

dξ > 0 ;

∀γ > 0, ∀ 0 < α < ω, ∀n(·) ∈ L1
+(0, ω), n(·) monotone decreasing.

Proof. First inequality suddenly follows from:

1 − eξ(γ−1) + ξ(γ − 1)eξ(γ−1)

(γ − 1)2
> 0 ∀ξ ∈ R \ {0} .

To prove second inequality, let us consider before the case n(·) ≡ 1. We have
the equality:

∫ +∞

α

e−γξ
[

(1 + α)
eξ(γ−1) − eα(γ−1)

γ − 1
−

−
ξ(γ − 1)eξ(γ−1) − eξ(γ−1) −

(

α(γ − 1)eα(γ−1) − eα(γ−1)
)

(γ − 1)2

]

dξ = 0

∀α, γ > 0. (you can check this for example with maple). Let us consider
the functions u : (α,+∞) −→ R defined as:

u(ω) =

∫ ω

α

e−γξ
[

(1 + α)
eξ(γ−1) − eα(γ−1)

γ − 1
−

−
ξ(γ − 1)eξ(γ−1) − eξ(γ−1) −

(

α(γ − 1)eα(γ−1) − eα(γ−1)
)

(γ − 1)2

]

dξ

and v : (α,+∞) −→ R defined as:
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v(ξ) = (1 + α)
eξ(γ−1) − eα(γ−1)

γ − 1
−

−
ξ(γ − 1)eξ(γ−1) − eξ(γ−1) −

(

α(γ − 1)eα(γ−1) − eα(γ−1)
)

(γ − 1)2
.

We have v′(ξ) = eξ(γ−1)
(

1 + α − ξ
)

, hence v is monotone increasing on
(α, α+ 1), decreasing on (α+ 1,+∞); and we have v(α) = 0,

limξ→+∞ v(ξ) =







−∞ if γ ≥ 1

eα(γ−1)

1−γ

(

1 − 1
1−γ

)

if 0 < γ < 1

with 1 − 1
1−γ < 0 for γ ∈ (0, 1).

Then there exists ω0 > α + 1 such that v > 0 on (α, ω0), v < 0 on (ω0,+∞).
Hence we have: u is strictly monotone increasing on (α, ω0), strictly monotone
decreasing on (ω0,+∞); and with u(α) = 0, limω→+∞ u(ω) = 0.
It is then possible to conclude that u(ω) > 0 ∀ω > α.

Let us now consider the case n(·) monotone decreasing and n(·) 6= 1.
If α < ω < ω0, then:

∫ ω

α

n(ξ)e−γξv(ξ) dξ > n(ω)

∫ ω

α

e−γξv(ξ) dξ = n(ω)u(ω) > 0.

Otherwise if ω > ω0:

∫ ω

α

n(ξ)e−γξv(ξ) dξ =

∫ ω0

α

· · · dξ +

∫ ω

ω0

· · · dξ ≥

≥ n(ω0)

∫ ω0

α

e−γξv(ξ) dξ + n(ω0)

∫ ω

ω0

e−γξv(ξ) dξ = n(ω0)u(ω) > 0

(v(·) is negative on (ω0,+∞)).
q.e.d.

We now write as I1 , I2 , I3 , I4 the integrals in (3.17) with the order they
appear, then:

β12 β21

(

I1 I2 + I3 I4
)

= β12 β21

(

(

I1 − I3
)

I2 + I3
(

I2 + I4
)

)

> 0
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because we have:

• I2 > 0 , I2 + I4 > 0 because they are integrals of positive functions;

(we have:

I2 + I4 =

∫ α

0

n(ξ)e−γξ
eξ(γ−1) − 1

γ − 1
dξ+

+

∫ α

0

n(ξ)e−γξ
[

−
eξ(γ−1) − 1

γ − 1
+

1 − eξ(γ−1) + ξ(γ − 1)eξ(γ−1)

(γ − 1)2

]

dξ =

=

∫ α

0

n(ξ)e−γξ
1 − eξ(γ−1) + ξ(γ − 1)eξ(γ−1)

(γ − 1)2
dξ > 0

because 1 − eξ(γ−1) + ξ(γ − 1)eξ(γ−1) > 0 ∀ ξ > 0 , ∀ γ > 0).

• I1 − I3 > 0 , I3 > 0 for the lemma.

In conclusion, the term β12β21

(

· · ·

)

is ever positive for each possible choice

of the parameters.

In the same way it is possible to study the sign of the term β12β22

(

· · ·

)

.

Let us write all of this term:
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β12β22

(

∫ ω

α

n(ξ)e−γξ
[1 − eα(γ−1) + α(γ − 1)eα(γ−1)

(γ − 1)2
+ (1+α)

eξ(γ−1) − eα(γ−1)

γ − 1

]

dξ ·

·

∫ ω

α

n(ξ)e−γξ
[eα(γ−1) − 1

γ − 1
− α

eξ(γ−1) − eα(γ−1)

γ − 1
+

+
ξ(γ − 1)eξ(γ−1) − eξ(γ−1) −

(

α(γ − 1)eα(γ−1) − eα(γ−1)
)

(γ − 1)2

]

dξ+

+

∫ ω

α

n(ξ)e−γξ
[

(1+α)
eξ(γ−1) − eα(γ−1)

γ − 1
−
ξ(γ − 1)eξ(γ−1) − eξ(γ−1) −

(

α(γ − 1)eα(γ−1) − eα(γ−1)
)

(γ − 1)2

]

dξ·

·

∫ ω

α

n(ξ)e−γξ
[

−
eα(γ−1) − 1

γ − 1
+

1 − eα(γ−1) + α(γ − 1)eα(γ−1)

(γ − 1)2
+α

eξ(γ−1) − eα(γ−1)

γ − 1

]

dξ

)

(3.18)

The first and third of these integrals we have yet met in the lemma: they are
positive ∀0 < α < ω, ∀ γ > 0. Again, we write as I1 , I2 , I3 , I4 the integrals in
(3.18) with the order they appear, then:

β12 β22

(

I1 I2 + I3 I4
)

= β12 β22

(

(

I1 − I3
)

I2 + I3
(

I2 + I4
)

)

> 0

because we have:

• I1 , I3 satisfy the lemma;

• I2 > 0 because of the positivity of the function in this integral ∀ ξ > α;

• I2 + I4 > 0 , indeed we have:

I2 + I4 =

∫ ω

α

n(ξ)e−γξ
[eα(γ−1) − 1

γ − 1
− α

eξ(γ−1) − eα(γ−1)

γ − 1
+

+
ξ(γ − 1)eξ(γ−1) − eξ(γ−1) −

(

α(γ − 1)eα(γ−1) − eα(γ−1)
)

(γ − 1)2

]

dξ+

+

∫ ω

α

n(ξ)e−γξ
[

−
eα(γ−1) − 1

γ − 1
+

1− eα(γ−1) + α(γ − 1)eα(γ−1)

(γ − 1)2
+α

eξ(γ−1) − eα(γ−1)

γ − 1

]

dξ =

=

∫ ω

α

n(ξ)e−γξ
1 − eξ(γ−1) + ξ(γ − 1)eξ(γ−1)

(γ − 1)2
dξ > 0
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Hence also the third piece is ever positive as all the parameters vary. In
conclusion we have proved the following:

Proposition 8 If β(a, a′) is in the functional form (3.13) and n(·) is monotone
non-increasing then we have det

((

I − Jf (x
∗)
))

> 0 for each possible choice
of the parameters βij > 0 , γ > 0 , 0 < α < ω , where x∗ is a fixed point for the
operator defined by (3.14).
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Chapter 4

Numerical simulations.

In the preceding chapter we have dealt with the question of the steady states
of the system, which is relevant when studing the behaviour of the solution tra-
jectories on the long run. In order to take a glance into the transient phase we
now turn on system (1.8) and, following ([11, 16]) write a numerical algorithm
based on a first-order implicit finite difference method along the characteristics
for such system. We then utilize this algorithm to perform simulations on some
examples of diffusion of an infectious disease in a population under the demo-
graphical assumptions till now adopted, that is with resident population in BRF
and subject to immigration.

But before beginning in dealing with simulations, we must spend some time
with the force of the infection.

4.1 Force of infection and the WAIFW matrix.

Let us remember that we choosed, following [2, 10, 19], as for the force of
infection the functional form (1.2):

λ(a, t) =

∫ ω

0

β(a, s)Y (s, t) ds . (4.1)

in which age structure is taken into account by mean of the contact coefficient
β(a, s). Then now it raises the question of how to choose a convenient form for
the β(·, ·) that fit our problem. What is nowaday usually done, as pointed out
in [2], is to divide the population into n discrete age classes Ii, i = 1 . . . n , and
to set

β(a, a′) = βij iff (a, a′) ∈ Ii × Ij ;

59
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hence the transmission coefficient is represented by the n× n matrix
{

βij
}

,
with βij the probability for an infective individual of age a′ to have an effective
contact with a susceptible of age a, per unit time. Such matrix is called WAIFW
(”who acquires infection from whom”) matrix.
Then we can write the force of infection λ(a, t) as:

λ(a, t) =

∫ ω

0

β(a, s)Y (s, t) ds =

n
∑

i=1

1Ii
(a)λi(t) (4.2)

with 1Ii
the indicator function of the i-th age class and λi(t) the force of

infection of the i-th age class at time t:

λi(t) =
n
∑

j=1

βij

∫

Ij

Y (s, t)ds ,

which represents the proportion of the susceptibles in the i-th age class that
become infective in the time unit (from a phisical point of view it has the
dimension of a frequency).

The subsequent problem it raises is how to choose such matrix. It is known that
is not an easy task to establish the value of the contact probabilities βij . The
contact process is more obscure than reporting new cases classified by age. Then
the data usually available is the vector {λi}, i = 1 . . . n, with λi the number of
new cases of infection in the i-th age class per time unit, known by reporting
age-structured data. The problem of determinig the n(n + 1)/2 elements βij
(remember that β(a, a′) = β(a′, a), hence the

{

βij
}

matrix is symmetric) from
the known λi, i = 1 . . . n, was solved firstly by Schentzle in [19] by constructing
the WAIFW matrix in such a way that it has only n distict entries.
An age-class subdivision, suitable for our purposes of analyzing the evolution of
a childhood infectious disease, is [0, 3), [3, 6), [6, 11), [11, 19), [19, ω) as adopted
in [13, 15, 9]; and as the WAIFW matrix we choose the default mixing matrix
of [13, 15], properly conceived for measles, and ”which assigns a dominant role
to transmission in school and pre-school ages”:













β1 β1 β1 β1 β5

β1 β2 β4 β4 β5

β1 β4 β3 β4 β5

β1 β4 β4 β3 β5

β5 β5 β5 β5 β5













(4.3)

4.2 A numerical algorithm.

Let ∆t > 0 be the age-time discretization parameter and let us Xn
j ,Y nj ,Znj be
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an approximation of X(j∆t, n∆t), Y (j∆t, n∆t), Z(j∆t, n∆t) respectively, with

j,n integer such that n ≥ 0, 0 ≤ j ≤ Ω, Ω =
[

ω
∆t

]

(in practice the usual choice

for the parameter ∆t is 1/2k, k = 0, 1, 2 . . . ).
To move from time step j to j + 1 we solve explicitly the linear part of the
equation from time t to time t+ ∆t , that is we rewrite (1.8) as:















d
dh
X(a+ h, t+ h) = −

(

λ(a+ h, t+ h) + µ(a+ h)
)

X(a+ h, t+ h) + IX (a+ h)

d
dh
Y (a+ h, t+ h) = λ(a+ h, t+ h)X(a+ h, t+ h) −

(

γ + µ(a+ h)
)

Y (a+ h, t+ h) + IY (a+ h)

d
dh
Z(a+ h, t+ h) = γY (a+ h, t+ h) − µ(a+ h)Z(a+ h, t+ h) + IZ(a+ h)

for a ∈ (0, ω), t > 0 and h ∈ R such that a + h ∈ (0, ω), t + h > 0. Such
system has solution:

X(a+ h, t+ h) = X(a, t)e−
R

h

0
(λ(a+τ,t+τ)+µ(a+τ))dτ +

+

∫ h

0

IX (a+ s)e−
R

h

s
(λ(a+τ,t+τ)+µ(a+τ))dτds

Y (a+ h, t+ h) = Y (a, t)e−γh−
R

h

0
µ(a+τ)dτ +

+

∫ h

0

(

λ(a+ s, t+ s)X(a+ s, t+ s) + IY (a+ s)
)

e−γ(h−s)−
R

h

s
µ(a+τ)dτds

Z(a+ h, t+ h) = Z(a, t)e−
R

h

0
µ(a+τ)dτ +

+

∫ h

0

(

γY (a+ s, t+ s) + IZ(a+ s)
)

e−
R

h

s
µ(a+τ)dτds

(4.4)

We now set h = ∆t, a = j∆t, t = n∆t ; and further:

µj = µ(j∆t) , Λnj = λ(j∆t, n∆t) ,

IX,j = IX(j∆t) , IY,j = IY (j∆t) , IZ,j = IZ(j∆t) for j = 0, 1, . . . ,Ω − 1 , n = 0, 1, 2, . . .

and we write the following discretization scheme for the first two equation
in (4.4):
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Xn+1
j+1 = Xn

j e
−(Λn

j +Λn+1
j+1 )∆t

2 e−(µj+µj+1)∆t
2 +

+
∆t

2

(

IX,je
−Λn

j ∆te−(µj+µj+1)∆t
2 + IX,j+1

)

Y n+1
j+1 = Y nj e

−γ∆te−(µj+µj+1)∆t
2 +

+
∆t

2

(

(

ΛnjX
n
j + IY,j

)

e−γ∆te−(µj+µj+1)∆t
2 + Λn+1

j+1X
n+1
j+1 + IY,j+1

)

(4.5)

where to compute the integrals we use a second order quadratura formula
(trapezes formula). But this scheme is not satisfactory in terms of time com-
puting for at each time step a system of non linear equations should be solved;
this in view of the fact that Λnj is updated at each time step by mean of the
formula:

Λnj =
Ω
∑

k=0

β̃jk Y
n
k ∆t (4.6)

with

β̃jk = βj̄k̄ if j∆t ∈ Ij̄ , k∆t ∈ Ik̄ , j̄, k̄ = 1, 2, . . . , N

(here N is the number of age classes). Hence, with the (4.6) updating of the
force of infection, the algorithm becomes recursive. To avoid such complication,

in (4.5) we substitute Λn+1
j+1 with Λnj ; in approximating

∫ h

0 (λ(a + τ, t + τ)dτ
this corresponds to use of a first order quadratura formula (left point formula).
Our scheme to approximate solutions of (1.8) is then:

Xn+1
j+1 = Xn

j e
−Λn

j ∆te−(µj+µj+1)∆t
2 +

+
∆t

2

(

IX,je
−Λn

j ∆te−(µj+µj+1)∆t
2 + IX,j+1

)

Y n+1
j+1 = Y nj e

−γ∆te−(µj+µj+1)∆t
2 +

+
∆t

2

(

(

ΛnjX
n
j + IY,j

)

e−γ∆te−(µj+µj+1)∆t
2 +

(

ΛnjX
n+1
j+1 + IY,j+1

)

)

Zn+1
j+1 = Znj e

−(µj+µj+1)∆t
2 +

+
∆t

2

(

(

γY nj + IZ,j
)

e−γ∆te−(µj+µj+1)∆t
2 + γY n+1

j+1 + IZ,j+1

)

.

(4.7)
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4.3 A look at the italian situation.

We now resort to simulations to enlight some features of the epidemiological
model (1.8) under two main demographical assumptions:

(a) the SPI model context, that is we take as initial age profile that furnished
from the equilibrium (1.6) of (1.5) that is we observe the evolution of
the disease in the long term population result of the prosecution of the
actual vital rates, in particular fertility below replacement, and stabilized
by means of a constant migration inflow.

Long term age-profile typically employs a long period of time (more than
one hundred years) to emerge; then we do the following too:

(b) we take the actual (2004) italian age profile as initial conditions to have a
look in the transient phase.

Simulations are performed by numerically solving system (1.8) by mean of
the algorithm (4.7).

Let us now do some assumptions on demographical and epidemiological rates
and parameters in the model:

• Let us remeber that we assumed that immigrants suddenly acquire the
same vital rates of the natives, that is fertility and mortality rates; and
that our model is a one-sex model, only the female part of the population
is considered. Hence as for the mortality rate we adopt that corresponding
to the female italian population, observed in the year 2004; and as for the
fertility rate we take the italian datum observed during the years 1996-
2000. With these vital rates the net reproduction rate (the number of
newborns an individual is expected to produce during his reproductive
life) is:

R =

∫ ω

0

β(a)Π(a)da ∼= 0.59 (4.8)

(that is largely under the repalcement level R = 1 ).

• The contact pattern between individuals is determined by choosing the
(4.3) WAIFW matrix, with the entries determined by means of the italian
force of infection in the period preceding the beginning of vaccination and
of the immigration; these fcts almost coincides: italian vaccination pro-
gramme began in 1976, immigration in Itly began in the eighties)
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• We assume that at the beginning of simulations measles is at the endemic
state, for the resident population, furnished from the equilibrium of the
SIR model without immigration and constant force of infection:















(

∂
∂t

+ ∂
∂a

)

X = −(λ+ µ(a))X
(

∂
∂t

+ ∂
∂a

)

Y = λX − (µ(a) + γ)Y ω > a > 0 , t > 0
(

∂
∂t

+ ∂
∂a

)

Z = γY − µ(a)Z

(4.9)

where λ it corresponds to the reciprocal of the average age at infection
and is supposed different in the two populations (presumebly higher for
the immigrants). By rescaling in (4.9) as did for (2.2), the equilibrium
system of equations is:



































d
da
x(a) = −λx(a)

d
da
y(a) = λx(a) − γ y(a)

d
da
z(a) = γ z(a)

0 < a < ω

x(0) = 1 , y(0) = 0 , z(0) = 0

(4.10)

whose solutions are given by:

x(a) = e−λa

y(a) =
λ

γ − λ

(

e−λa − e−γa
)

z(a) =
γ

γ − λ

(

1 − e−λa
)

−
λ

γ − λ

(

1 − e−γa
)

(4.11)

Hence as initial condition we take:

X0(a) = x(a)n(a) , , Y0(a) = y(a)n(a) , Z0(a) = z(a)n(a) (4.12)

(

notice that 1 = x(a) + y(a) + z(a) ∀ a ∈ (0, ω)
)

where n(a) is the
equilibrium age profile (1.6) of the population equation with immigration
(1.5) if we are in the setting of the SPI model; or it is the italian (female)
age-profile as given from ISTAT at 1/1/04 if we are looking at the transient
phase.
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• We assume that I immigrants enter the resident population in the unit
time and take a relative age profile obtained by adapting the so called
”double exponential curves” (as done in [17]) to observed migration data
in Italy in the ′90s.
Further, at the moment of their arrival, they are assumed in the same
equilibrium situation given by (4.11) with respect to measles but with a
higher (constant) λ, representing the fact they come from countries with
higher force of infection and lower average age at infection. As for the
fraction xi(·), yi(·), zi(·) between the epidemiological classes hence we set:

IX (a) = I xi(a) , IY (a) = I yi(a) , IZ(a) = I zi(a) (4.13)

• As for γ, the reciprocal of the average duration of infection, we take
γ = 52.0 year−1 (that is, duration of infection ∼= 1week).

4.3.1 Long term age profiles.

Under various assumptions on the immigrants, as age profile and total number
of yearly entries, we now look at the long term age profile assumed from the
resident population in each case. We take two age profiles (given in figure 4.1) of
the immigrants in the form If(a) , where f(a) is a relative age profile obtained
by adapting the so-called double exponential curves of Rogers and Castro as
in [17], to immigration data observed in Italy in the ninties; these relative age
profiles have the same shape with the difference that peak at the age 21 under
the ”younger” hypothesis (call it PR1) and at the age 31 under the ”older”
hypothesis (call it PR2).

And as the annual number of entries we do three hypothesis. In the ninties
the annual number of female entries was about I=25000, as reported in [14],
we call such number I1; but in the last years such number has quite raised, so
we do also the ”middle” hypothesis I = 50000 (that we call I2) and the ”big”
hypothesis I = 100000 (that we call I3).
In [14] was noticed that the I1 yearly number of entries is very far from being a
remedy to ageing of italian population caused by the prolonged BRF situation.
In figure 4.2 we see the actual and the long term italian age profiles assumed
under the opposite assumptions I1-PR2 and I3-PR1

where it is evident that even in the most optimistic assumption I3-PR1
italian population would undergo a substantial decrease; and with a quite old
shape, in spite of the ”rejuvenating effect” ([14]) caused by immigration. In
figure 4.3 is shown an example of some phases of the transition to the long term
age profile (notice that typically such age profiles employ quite long periods to
be approached, more than 200 years).
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Figure 4.1: The two assumed (page 65) relative age profiles for the immigrants.
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Figure 4.2: The age profiles of the actual female italian population ang the long
term age profiles assumed under I3-pr1 and I1-pr3 ipothesys.
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Figure 4.3: The current age profile and the age profiles that italian population
will undergo in 30,60,90,120 years with the current vital rates and immigrant
age-profile I3-PR1 (page 65); and the stationary age profile under I3-PR1.
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4.3.2 Long term behaviour of the infection.

Aging of the population sure affects transmission of a disease like measles: rais-
ing of the average age of the population has the effect of lowering force of
infection, due to the characteristic feature of measles transmission patterns of
having higher coefficients at younger ages.

Remark. Aging is not the only way to lower force of infection: remember
that as FOI was adopted the functional form (1.2)

λ(a, t) =

∫ ω

0

β(a, s)Y (s, t) ds . (4.14)

this FOI has the drawback that when population decreases, the FOI also
will be lowered. It is ever reasonable such an effect? A functional form suitable
to make the FOI less sensitive to demographical effects is

λ(a, t) =

∫ ω

0

β(a, s)
Y (s, t)

n(s, t)
ds . (4.15)

as studied in [15].

A characteristic feature of SIR models is the existence of thresholds, as indi-
cated for example in [7, 6, 10, 3]. In SIR model with immigration, following [3],
we speak of threshold-like results; following [6, 3], in section 3.4 we characterized
the limiting behaviour (as the fraction immigrant approaches zero) of solutions
of the operator equations for the study of the steady states, in terms of the
spectral radius of a positive linear operator. We now show some examples to
have a look at this behaviour: the total number of infectives on the long term
under the various demographical assumptions made on the immigrants.

Figures 4.4-4.9 are put in order of increasing yearly number of entries and
with the older profile before. All cases share a quite long initial phase charac-
terized by oscillatory behaviour, which means that population is experiencing
periodic epidemics. In figures 4.4,4.5,4.6 the trajectory looks becoming zero,
but numerically speaking is not so: it stays at values below one which is mean-
ingless if we are dealing with individuals. Presumebly we are under threshold
(r(T ) < 1), the few infected immigrant cannot induce an epidemic. The FOI
has reached so little values that the burden of morbidity embodied in the new
infected few entries cannot be employed; they recover and have very low chances
to transmit the disease to others.
In figure 4.7 this trend changes. The eventual FOI is strong enough that the
newly arrived infectives can transmit the disease to a number of individuals
greater than the number of the infectors: a threshold value has been crossed.
Anyway, the forecast of the model is that the decrease of the population, caused
by the prolonged BRF situation, causes a substantial decrease of the incidence
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Figure 4.4: Long term behaviour of total number of infectives under demograph-
ical assumption I1-PR2 (page 65) on immigrants.
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Figure 4.5: Long term behaviour of total number of infectives under demograph-
ical assumption I1-PR1 (page 65) on immigrants.



70 CHAPTER 4. NUMERICAL SIMULATIONS.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0  50  100  150  200  250  300  350  400

Figure 4.6: Long term behaviour of total number of infectives under demograph-
ical assumption I2-PR2 (page 65) on immigrants.
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Figure 4.7: Long term behaviour of total number of infectives under demograph-
ical assumption I2-PR1 (page 65) on immigrants.
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Figure 4.8: Long term behaviour of total number of infectives under demograph-
ical assumption I3-PR2 (page 65) on immigrants.
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Figure 4.9: Long term behaviour of total number of infectives under demograph-
ical assumption I3-PR1 (page 65) on immigrants.
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of the disaese.

4.3.3 Long term average age at infection.

Aging of the population and the consequent decline in the FOI affects also a
relevant epidemiological parameter, that is the average age at infection. Average
age at infection at time t A(t) is given, for the SIR model represented by system
(1.8), as in [2], by:

A(t) =

∫ ω

0
a λ(a, t)X(a, t)da

∫ ω

0
λ(a, t)X(a, t)da

(4.16)

Remark. In the case considered we have γ � λ(a, t) ∀ a ∈ (0, ω) ∀ t > 0;
it is then possible to place us in the approximation ”short infection” ([2]) and
rewrite (4.16) as:

A(t) =

∫ ω

0 a Y (a, t)da
∫ ω

0 Y (a, t)da
(4.17)

as a consequence of the fact that we have:

Y (a, t) w

λ(a, t)X(a, t)

γ
. (4.18)

The expression (4.17) is that used to calculate A(t) in the simulations. The
”short infection” approximation is reasonable in view of the fact we have γ = 52
and λ(a, t) ≤ 10−4 ∀a, t.

Under each of the six different demographical situation we have considered for
the immigrants, what is observed is a more or less marked increase of A(t), as
shown in figures 4.10,4.11. However it should be stressed the fact that in cases
I1-PR1,I1-PR2,I2-PR2 it does not make much sense calculation of A(t) when
the total amount of infectives has reached a value below one (this happens more
or less around the peak shown by such A(t) trajectories).

Again, this fact is the consequence of the decrease of the population which,
making smaller the term at denomintor in (4.16), magnifies A(t).

We note that (even if it has not been an argument faced in this thesis),
the solutions of (1.8) show an asymptotically stable behaviour, as suggested by
figures 4.12,4.13 4.14

This on the long term: in the transient phase these solutions can assume
very different values, as seen in figures 4.15,4.16 4.17
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Figure 4.10: The average ages at infection under the demographical assumptions
I1,I2,I3-PR2.
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Figure 4.11: The average ages at infection under the demographical assumptions
I1,I2,I3-PR1.
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Figure 4.12: Long term behaviour of total number of susceptibles with initial
condition the actual and the stationary population under the demographical
assumption I3-PR1.
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Figure 4.13: Long term behaviour of total number of infectives with initial
condition the actual and the stationary population under the demographical
assumption I3-PR1.
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Figure 4.14: Long term behaviour of total number of removeds with initial
condition the actual and the stationary population under the demographical
assumption I3-PR1.
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Figure 4.15: Long term behaviour of total number of susceptibles with initial
condition tha actual and the stationary population under the demographical
assumption I3-PR1.
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Figure 4.16: Long term behaviour of total number of infectives with initial
condition the actual and the stationary population under the demographical
assumption I3-PR1.
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Figure 4.17: Long term behaviour of total number of removeds with initial
condition the actual and the stationary population under the demographical
assumption I3-PR1.
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