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Abstract

One-dimensional Maxwell’s equations are considered in a ferromagnetic body
surrounded by vacuum. Existence and uniqueness of solution for the resulting
system of P.D.E.s with hysteresis on the whole real line is proved under suitable
constitutive hypotheses.
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1 Introduction

The aim of this paper is to find existence and uniqueness of a solution for the following
model system





∂E

∂t
+ χΩ (E + Eapp) + (1− χΩ) Jext +

∂H

∂x
= 0

∂B

∂t
+

∂E

∂x
= 0

H = χΩ

(
G(B) + γ

∂B

∂t

)
+ (1− χΩ) B

in R× (0, T ) , (1.1)

where Ω is an open bounded interval of the real line, χΩ is the characteristic function
of the set Ω, G is a suitable scalar hysteresis operator, γ is a given positive constant
while Eapp and Jext are known functions.

This system arises in the context of electromagnetic processes. We show in the next
section how it can be obtained by coupling in a suitable way the Maxwell equations,
the Ohm law and a constitutive relation between the magnetic field and the magnetic
induction.

A similar equation was considered in [5] in the case of prescribed boundary conditions
on ∂Ω. Here we consider instead the evolution in the whole space, replacing the
boundary conditions by the continuity of E and H across ∂Ω.
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Some details of the physical motivation for (1.1) are contained in Section 2; in Section
3 we recall some basic fact about hysteresis and hysteresis operators; Section 4 contains
the statement of the main results which will be proved finally in Sections 5 and 6.

2 Physical motivation

Consider an electromagnetic process in a ferromagnetic material which occupies a
Euclidean domain Q ⊂ R3 in a time interval (0, T ). For more details on these topics
we refer for example to [6]. From now on we set

QT := Q× (0, T ) R3
T := R3 × (0, T ).

We suppose for simplicity that the electric displacement ~D is proportional to the
electric field ~E , that is ~D = ε ~E, where ε is the electric permittivity. We assume that
ε is a scalar constant and moreover we introduce the electric conductivity σ which is
supposed to vanish outside Q . We denote by ~Eapp a prescribed applied electromotive

force; then the Ohm law for the electric current ~J is given by the following relation

~J =





σ( ~E + ~Eapp) in Q× (0, T )

~Jext in [R3 \Q]× (0, T ).
(2.1)

Using the characteristic function χQ of the set Q, i.e. χQ = 1 inside Q and χQ = 0
outside Q , we rewrite (2.1) as

~J = χQ σ ( ~E + ~Eapp) + (1− χQ) ~Jext in R3
T . (2.2)

Now we recall the Ampère and the Faraday laws

c∇× ~H = 4π ~J + ε
∂ ~E

∂t
in R3

T (2.3)

c∇× ~E = −∂ ~B

∂t
in R3

T (2.4)

where ~H is the magnetic field, ~B is the magnetic induction and c is the speed of light
in vacuum.

Our analysis does not depend on the exact value of the constants σ, c, ε, π . In order to
simplify the presentation, we therefore consider the system





∇× ~H = χQ ( ~E + ~Eapp) + (1− χQ) ~Jext +
∂ ~E

∂t

∇× ~E = −∂ ~B

∂t

in R3
T . (2.5)

We further simplify our model system (2.5) by dealing with planar waves only. More
precisely, we consider an electromagnetic wave moving in a plane which we suppose for
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simplicity to be orthogonal to the x−axis, in a domain Q = {(x, y, z) : x ∈ Ω, (y, z) ∈
R2} , with Ω being a bounded interval of the real line.

We assume that ~E is parallel to the y−axis, i.e.

~E(x, t) = (0, E(x, t), 0) (x, t) ∈ R× (0, T ).

This in turn implies the following restriction on ~B

~B(x, t) = (0, 0, B(x, t)) (x, t) ∈ R× (0, T )

and therefore also ~H(x, t) = (0, 0, H(x, t)) for all (x, t) ∈ R× (0, T ). Thus we have

∇× ~H =

(
0,−∂H

∂x
, 0

)
∇× ~E =

(
0, 0,

∂E

∂x

)

and (2.5) reduces to a one-dimensional problem





∂E

∂t
+ χΩ (E + Eapp) + (1− χΩ) Jext +

∂H

∂x
= 0

∂B

∂t
+

∂E

∂x
= 0

in R× (0, T ) , (2.6)

where we also set ~Eapp(x, t) = (0, Eapp(x, t), 0) and ~Jext(x, t) = (0, Jext(x, t), 0) .

We couple this equation with an appropriate constitutive relation. We choose to relate
B and H by means of a constitutive law with hysteresis inside Ω and to set B = H
outside Ω.

The constitutive law between B and H inside Ω will be chosen according to the
“rheological” circuit model F − L as in [19, p. 54-55], where a ferromagnetic element

F : BF = HF + 4 π M = (I +W)(HF ),

where M is the magnetization and W is a scalar Preisach operator, is coupled in series
with an induction element

L : HL = γ
∂BL

∂t
.

The general rheological rule for series combinations yields

B := BF = BL H := HF + HL,

where B is the total induction and H is the total field. Summing up we obtain

H = χΩ

(
G(B) + γ

∂B

∂t

)
+ (1− χΩ)B, (2.7)

where we set G := (I +W)−1 . By coupling (2.6) and (2.7) we finally obtain (1.1).
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3 Hysteresis operators

The theory of hysteresis has a long history. A hundred years ago, Madelung in [15]
proposed probably the first axiomatic approach to hysteresis by defining three experi-
mental laws of what we call nowadays return point memory hysteresis (or “wiping-out
property”, cf. [16]). The model for ferromagnetic hysteresis proposed by Preisach in
1935 in [17] is a prominent representative that possesses the return point memory prop-
erty. Only recently, Brokate and Sprekels proved (see [2, Theorem 2.7.7]) that every
return point memory hysteresis operator, which admits a specific initial memory con-
figuration, has necessarily a Preisach-type memory structure. A basic mathematical
theory of hysteresis operators has been developed by Krasnosel’skĭı and his collabora-
tors. The results of this group are summarized in the monograph [9], which constitutes
until now the main source of reference on hysteresis. Our presentation here is based
on more recent results from [11, 12] that are needed here, in particular the alternative
one-parametric formulation of the Preisach model based on variational inequalities.

3.1 The Preisach operator

We describe the ferromagnetic behaviour using the Preisach model (see [17]). Mathe-
matical aspects of this model were investigated by Krasnosel’skĭı and Pokrovskĭı (see
[7], [8], and [9]). The model has been also studied in connection with partial differential
equations by Visintin (see for example [18], [19]). The monograph of Mayergoyz ([16])
is mainly devoted to its modeling aspects.

Here we use the one-parametric representation of the Preisach operator which goes
back to [10]. The starting point of our theory is the so-called play operator. This
operator constitutes the simplest example of continuous hysteresis operator in the space
of continuous functions; it has been introduced in [9] but we can also find equivalent
definitions in [2] and [19]; for its extension to less regular inputs, see also [13] and [14].

Let r > 0 be a given parameter. For a given input function u ∈ C0([0, T ]) and initial
condition x0 ∈ [−r, r] , we define the output ξ = Pr(x

0, u) ∈ C0([0, T ]) ∩ BV (0, T ) of
the play operator

Pr : [−r, r]× C0([0, T ]) → C0([0, T ]) ∩BV (0, T )

as the solution of the variational inequality in Stieltjes integral form




∫ T

0

(u(t)− ξ(t)− y(t)) dξ(t) ≥ 0 ∀ y ∈ C0([0, T ]), max
0≤t≤T

|y(t)| ≤ r,

|u(t)− ξ(t)| ≤ r ∀ t ∈ [0, T ],

ξ(0) = u(0)− x0.

(3.1)

Let us consider now the whole family of play operators Pr parameterized by r >
0 , which can be interpreted as a memory variable. Accordingly, we introduce the
hysteresis memory state space

Λ := {λ : R+ → R : |λ(r)− λ(s)| ≤ |r − s| ∀ r, s ∈ R+ : lim
r→+∞

λ(r) = 0},
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together with its subspaces

ΛR̃ = {λ ∈ Λ : λ(r) = 0 for r ≥ R̃}, Λ∞ =
⋃

R̃>0

ΛR̃. (3.2)

For λ ∈ Λ, u ∈ C0([0, T ]) and r > 0 we set

℘r[λ, u] := Pr(x
0
r, u) ℘0[λ, u] := u,

where x0
r is given by the formula

x0
r := min{r, max{−r, u(0)− λ(r)}}.

We set
A(r, u(0)) := u(0)− x0

r. (3.3)

It turns out that
℘r : Λ× C0([0, T ]) → C0([0, T ])

is Lipschitz continuous in the sense that, for every u, v ∈ C0([0, T ]), λ, µ ∈ Λ and
r > 0 we have

||℘r[λ, u]− ℘r[µ, v]||C0([0,T ]) ≤ max{|λ(r)− µ(r)|, ||u− v||C0([0,T ])}. (3.4)

Moreover, if λ ∈ ΛR and ||u||C0([0,T ]) ≤ R , then ℘r[λ, u](t) = 0 for all r ≥ R and
t ∈ [0, T ] . For more details, see Sections II.3, II.4 of [11].

Now we introduce the Preisach plane as follows

P := {(r, v) ∈ R2 : r > 0}

and consider a function ϕ ∈ L1
loc(P) such that there exists β1 ∈ L1

loc(0,∞) with

0 ≤ ϕ(r, v) ≤ β1(r) for a.e. (r, v) ∈ P .

We set

g(r, v) :=

∫ v

0

ϕ(r, z) dz for (r, v) ∈ P

and for R > 0 , we put b1(R) :=

∫ R

0

β1(r) dr.

Then the Preisach operator

W : Λ∞ × C0([0, T ]) → C0([0, T ])

generated by the function g is defined by the formula

W [λ, u](t) :=

∫ ∞

0

g(r, ℘r[λ, u](t)) dr, (3.5)

for any given λ ∈ Λ∞ , u ∈ C0([0, T ]) and t ∈ [0, T ] . The equivalence of this definition
and the classical one in [16], [19], e.g., is proved in [10].

5



The function A(r, ·) in (3.3) is nondecreasing and Lipschitz continuous. Hence, the
mapping

A : R→ R : u(0) 7→
∫ ∞

0

g(r, A(r, u(0))) dr (3.6)

which with the initial input value u(0) associates the initial output value W [λ, u](0)
is nondecreasing and Lipschitz continuous as well.

Using the Lipschitz continuity (3.4) of the operator ℘r , it is easy to prove that also
W is locally Lipschitz continuous, in the sense that, for any given R > 0 , for every
λ, µ ∈ ΛR and u, v ∈ C0([0, T ]) with ||u||C0([0,T ]), ||v||C0([0,T ]) ≤ R , we have

||W [λ, u]−W [µ, v]||C0([0,T ]) ≤
∫ R

0

|λ(r)− µ(r)| β1(r) dr + b1(R) ||u− v||C0([0,T ]).

The first result on the inverse Preisach operator was proved in [3]. We make use of the
following formulation proved in [11], Section II.3.

Theorem 3.1. Let λ ∈ Λ∞ and b > 0 be given. Then the operator b I + W [λ, ·] :
C0([0, T ]) → C0([0, T ]) is invertible and its inverse is Lipschitz continuous. In partic-
ular the initial value mapping b I + A (see (3.6)) is increasing and bi-Lipschitz.

As we are dealing with partial differential equations, we should consider both the input
and the initial memory configuration λ that additionally depend on x . If for instance
λ(x, ·) belongs to Λ∞ and u(x, ·) belongs to C0([0, T ]) for (almost) every x , then we
define

W [λ, u](x, t) := W [λ(x, ·), u(x, ·)](t) :=

∫ ∞

0

g(r, ℘r[λ(x, ·), u(x, ·)](t)) dr.

4 Statement of the main results

Let Ω be an open bounded interval of R and set ΩT := Ω× (0, T ) ; let us fix an initial
memory configuration

λ ∈ L2(Ω; ΛR̃) for some R̃ > 0 , (4.1)

where ΛR̃ is introduced in (3.2).

Let M(Ω; C0([0, T ])) be the Fréchet space of strongly measurable functions Ω →
C0([0, T ]) , i.e. the space of functions v : Ω → C0([0, T ]) such that there exists a
sequence vn of simple functions with vn → v in C0([0, T ]) a.e. in Ω.

We fix a constant bF > 0 and introduce the operator F : M(Ω; C0([0, T ])) →
M(Ω; C0([0, T ])) in the following way

F(u)(x, t) := F(u(x, ·))(t) := bF u(x, t) +W [λ(x, ·), u(x, ·)](t); (4.2)

here W is the scalar Preisach operator defined in (3.5).
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Now Theorem 3.1 yields that F is invertible and its inverse is a Lipschitz continuous
operator in C0([0, T ]) . Let us set G = F−1 and let LG be the Lipschitz constant of
the operator G .

At this point we introduce the operator

G : M(Ω; C0([0, T ])) →M(Ω; C0([0, T ])) G := F −1
. (4.3)

It turns out that

G(w)(x, t) := G(w(x, ·))(t) ∀w ∈M(Ω; C0([0, T ])); (4.4)

it follows from Theorem 3.1 that G is Lipschitz continuous in the following sense

||G(u1)(x, ·)− G(u2)(x, ·)||C0([0,T ]) ≤ LG ||u1(x, ·)− u2(x, ·)||C0([0,T ])

for any u1, u2 ∈M(Ω; C0([0, T ])), a.e. in Ω.
(4.5)

The initial conditions for Problem (2.6)

E(x, 0) := E0(x) a.e. in R,

B(x, 0) := B0(x) a.e. in R,
(4.6)

are assumed in the form

E0(x) := χΩE1
0(x) + (1− χΩ) E2

0(x),

B0(x) := χΩB1
0(x) + (1− χΩ) B2

0(x),

as in the following we will assume different regularity for the initial data inside and
outside Ω.

The full P.D.E.s system for unknown functions E, B and H reads as follows




∂E

∂t
+ χΩ (E + Eapp) + (1− χΩ) Jext +

∂H

∂x
= 0

∂B

∂t
+

∂E

∂x
= 0

H = χΩ

(
G(B) + γ

∂B

∂t

)
+ (1− χΩ) B

a.e. in R× (0, T ) . (4.7)

with initial conditions (4.6), where Eapp and Jext are given functions.

For the sake of definiteness, we assume Ω = (−1, 1) , fix some r > 1 , and set K =
(−r, r) .

We first distinguish the case in which the data have compact support; in Section 5 we
thus prove the following existence result.

Theorem 4.1. Consider the following assumptions on the initial data

E1
0 ∈ H2(Ω), B1

0 ∈ H1(Ω)

supp E2
0 ⊂ K \ Ω, supp B2

0 ⊂ K \ Ω, E2
0 , B

2
0 ∈ H1(K \ Ω)

(4.8)
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together with the following compatibility conditions




(
Ã (B1

0)− γ
∂E1

0

∂x

)
(−1+) = B2

0(−1−), (4.9a)

(
Ã (B1

0)− γ
∂E1

0

∂x

)
(1−) = B2

0(1
+), (4.9b)

E1
0(−1+) = E2

0(−1−), E1
0(1

−) = E2
0(1

+), (4.9c)

where Ã = (b I + A )−1 is the initial value mapping associated with G , see Theorem
3.1. Moreover assume that

Eapp ∈ H1(0, T ; L2(Ω)), Jext ∈ H1(0, T ; L2(K)).

Then Problem (4.7) has a unique solution

E ∈ W 1,∞(0, T ; L2(R)) ∩ L2(0, T ; H1(R))

B|Ω ∈ H2(0, T ; L2(Ω))

B|R\Ω ∈ W 1,∞(0, T ; L2(R \ Ω))

H ∈ H1(0, T ; L2(R)) ∩ L∞(0, T ; H1(R)).

(4.10)

Finally in Section 6 we deal with the case of more general data, not necessarily with
compact support, and the result we are able to prove is the following.

Theorem 4.2. Consider the following assumptions on the initial data

E1
0 ∈ H2(Ω), B1

0 ∈ H1(Ω)

E2
0 ∈ H1

loc(R \ Ω), B2
0 ∈ H1

loc(R \ Ω),

together with the compatibility conditions (4.9a), (4.9b) and (4.9c); moreover assume
that

Eapp ∈ H1(0, T ; L2(Ω)), Jext ∈ H1(0, T ; L2
loc(R)).

Then Problem (4.7) has a unique solution such that

E ∈ W 1,∞(0, T ; L2
loc(R)) ∩ L2(0, T ; H1

loc(R))

B|Ω ∈ H2(0, T ; L2(Ω))

B|R\Ω ∈ W 1,∞(0, T ; L2
loc(R \ Ω))

H ∈ H1(0, T ; L2
loc(R)) ∩ L∞(0, T ; H1

loc(R)).

(4.11)

5 Proof of Theorem 4.1

The main idea in proving Theorem 4.1 is to use a space discretization scheme together
with a fixed point argument.
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Let us fix R > r + T ; for simplicity (this will be useful in the space discretization
procedure) we take R ∈ N . We prescribe the following “boundary conditions”

H(−R, t) = 0, E(R, t) = 0. (5.1)

• step 1: freezing. First of all we fix some Z ∈ H1(0, T ; L2(Ω)) with Z(0, x) =
B1

0(x) a.e. in Ω, and consider (4.7) with G(B) replaced by G(Z) , i.e. we look for
three functions E,B,H with the regularity outlined in (4.10) and initial conditions
(4.6) such that the following holds





∂E

∂t
+ χΩ (E + Eapp) + (1− χΩ) Jext +

∂H

∂x
= 0

∂B

∂t
+

∂E

∂x
= 0

H = χΩ

(
G(Z) + γ

∂B

∂t

)
+ (1− χΩ) B

a.e. in (−R,R)× (0, T ) . (5.2)

• step 2: existence of solutions for (5.2): space discretization scheme.

We now fix n ∈ N and consider the equidistant partition of the interval [−R,R]

xk :=
k

n
, k = −Rn,−Rn + 1, . . . , Rn.

The characteristic function χΩ reduces to

χk =

{
1 k ∈ {−n + 1, . . . , n}
0 else.

We introduce the function

F (x, t) := χΩ Eapp(x, t) + (1− χΩ) Jext(x, t).

It turns out that
F ∈ H1(0, T ; L2(R)) ⊂ L2(R; C0([0, T ])). (5.3)

Now we set

Fk(t) = n

∫ k/n

(k−1)/n

F (x, t) dx k = −Rn + 1, . . . , Rn,

Gk(t) = n

∫ k/n

(k−1)/n

G(Z)(x, t) dx, k = −n + 2, . . . , n

and also
Dn := {−Rn + 1, . . . ,−n} ∪ {n + 1, . . . , Rn− 1}.

We now approximate (5.2) by a system of O.D.E.s, where the dot indicates the time
derivative.
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Our aim is to find unknown functions Ek , Bk , Hk such that the following holds, for
k = −Rn + 1, . . . , Rn− 1





Ėk + χk Ek + n (Hk −Hk−1) + Fk = 0 (5.4a)

Ḃk + n (Ek+1 − Ek) = 0 (5.4b)

Hk = χk

[
Gk + γḂk

]
+ (1− χk)Bk = 0. (5.4c)

This is coupled with the boundary conditions

H−Rn(t) = 0, ERn(t) = 0 (5.5)

and initial conditions

Ek(0) = Ek
0 := E0

(
k − 1

n

)

Bk(0) = Bk
0 := n

∫ k/n

(k−1)/n

B0(x) dx.

(5.6)

We choose the averages for Bk(0) in order to avoid difficulties related to the fact that
B0 may be discontinuous.

Eliminating Hk , Hk−1 from (5.4a), we rewrite (5.4a)-(5.4b) as a system of 2(2Rn− 1)
equations for 2(2Rn− 1) unknown functions

V̇ = Φ V + F̃ V = (E−Rn+1, . . . , ERn−1, B−Rn+1, . . . , BRn−1),

where Φ is a matrix and F̃ ∈ W 1,2(0, T ;R2(2Rn−1)) . This is enough to conclude that
the system, coupled with (5.5) and (5.6) admits a unique global solution.

In the following, for the sake of simplicity, we denote by C1, C2, . . . any constant
depending possibly on the data but independent on the discretization parameter n .

We now differentiate (5.4a), (5.4b) and (5.4c) in time, getting




Ëk + χk Ėk + n (Ḣk − Ḣk−1) + Ḟk = 0 (5.7a)

B̈k + n (Ėk+1 − Ėk) = 0 (5.7b)

Ḣk = χk

[
Ġk + γB̈k

]
+ (1− χk)Ḃk = 0. (5.7c)

Now we test (5.7a) by Ėk and (5.7b) by Ḣk , sum the result and divide by n . We have

1

2n

d

dt

Rn−1∑

k=−Rn+1

|Ėk|2 +
1

n

n∑

k=−n+1

|Ėk|2 +
Rn−1∑

k=−Rn+1

(Ḣk − Ḣk−1) Ėk

+
1

n

Rn−1∑

k=−Rn+1

Ḟk Ėk +
1

n

Rn−1∑

k=−Rn+1

B̈k Ḣk +
Rn−1∑

k=−Rn+1

(Ėk+1 − Ėk) Ḣk = 0.
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We remark that

Rn−1∑

k=−Rn+1

[(Ḣk − Ḣk−1) Ėk + (Ėk+1 − Ėk) Ḣk]

=
Rn−1∑

k=−Rn+1

[Ėk+1 Ḣk − Ḣk−1 Ėk] = [ĖRn ḢRn−1 − Ḣ−Rn Ė−Rn+1]
(5.5)
= 0.

Therefore, using (5.7c), we deduce

1

2n

d

dt

Rn−1∑

k=−Rn+1

|Ėk|2 +
1

n

n∑

k=−n+1

|Ėk|2 +
γ

n

n∑

k=−n+1

|B̈k|2 +
1

2n

d

dt

∑
Dn

|Ḃk|2

≤ 1

n

n∑

k=−n+1

B̈k Ġk − 1

n

Rn−1∑

k=−Rn+1

Ḟk Ėk ≤ γ

2n

n∑

k=−n+1

|B̈k|2

+
1

2γn

n∑

k=−n+1

|Ġk|2 +
1

n

Rn−1∑

k=−Rn+1

|Ḟk|2 +
1

n

Rn−1∑

k=−Rn+1

|Ėk|2.

Now, using (5.3) we deduce in particular that

1

2n

d

dt

Rn−1∑

k=−Rn+1

|Ėk|2 +
1

2n

d

dt

∑
Dn

|Ḃk|2

≤
∫ R

−R

F 2(x, t) dx +
1

n

Rn−1∑

k=−Rn+1

|Ėk|2 +
1

n

∑
Dn

|Ḃk|2.

The Gronwall lemma then yields

1

n

(
Rn−1∑

k=−Rn+1

|Ėk|2 +
∑
Dn

|Ḃk|2
)
≤ C1

n

[
Rn−1∑

k=−Rn+1

|Ėk(0)|2 +
∑
Dn

|Ḃk(0)|2
]

+ C2.

We have now to show that, due to our assumptions on the data, the term

1

n

Rn−1∑

k=−Rn+1

|Ėk(0)|2 +
1

n

∑
Dn

|Ḃk(0)|2

can be controlled by a constant independent of the discretization parameter n .

First of all, by comparison and using (5.4a) we have that

1

n

Rn−1∑

k=−Rn+1

|Ėk(0)|2 ≤ 1

n

n∑

k=−n+1

|Ek(0)|2 + n

Rn−1∑

k=−Rn+1

|Hk(0)−Hk−1(0)|2

+
1

n

Rn−1∑

k=−Rn+1

|Fk(0)|2.

11



As E1
0 ∈ H2(Ω) , the first term on the right-hand side of the previous inequality can

be controlled while the third one is controlled due to (5.3).

To estimate the second term, we first notice that for k ∈ Dn , we have

Hk(0) = Bk(0),

while for k′ ∈ {−n + 1, . . . , n} , equation (5.4c) yields

Hk′(0) = Gk′(0) + γ Ḃk′(0) = Gk′(0)− γ n (Ek′+1(0)− Ek′(0)).

We have by (3.3) for x ∈ Ω that

G(Z)(x, 0) = Ã (B1
0(x)),

hence

Gk′(0) = n

∫ k′/n

(k′−1)/n

Ã (B1
0(x)) dx k′ ∈ {−n + 2, . . . , n}.

This yields

n

Rn−1∑

k=−Rn+1

|Hk(0)−Hk−1(0)|2 = n

−n∑

k=−Rn+1

|Bk(0)−Bk−1(0)|2 + n |H−n+1(0)−H−n(0)|2

+ n

n∑

k=−n+2

|Gk(0)−Gk−1(0)− γ n (Ek+1(0)− 2 Ek(0) + Ek−1(0))|2

+ n |Hn+1(0)−Hn(0)|2 + n

Rn−1∑

k=n+2

|Bk(0)−Bk−1(0)|2.

Two terms deserve special attention. First

H−n+1(0)−H−n(0) = G−n+1(0)− γ n (E−n+2(0)− E−n+1(0))−B−n(0)

= n

∫ −1+ 1
n

−1

Ã (B1
0(x)) dx− γ n

(
E1

0

(
−1 +

1

n

)
− E1

0(−1)

)
− n

∫ −1

−1− 1
n

B2
0(x) dx

= n

∫ −1+ 1
n

−1

Ã (B1
0(x)) dx− γ n

∫ −1+ 1
n

−1

∂E1
0

∂x
(x) dx− n

∫ −1

−1− 1
n

B2
0(x) dx

= n

∫ −1+ 1
n

−1

[Ã (B1
0(x))− Ã (B1

0(−1+))] dx− γ n

∫ −1+ 1
n

−1

[
∂E1

0

∂x
(x)− ∂E1

0

∂x
(−1+)

]
dx

− n

∫ −1

−1− 1
n

[B2
0(x)−B2

0(−1−)] dx + Ã (B1
0(−1+))− γ

∂E1
0

∂x
(−1+)−B2

0(−1−).

Using the compatibility condition (4.9a), we obtain

|H−n+1(0)−H−n(0)| ≤ n

∫ −1+ 1
n

−1

|Ã (B1
0(x))− Ã (B1

0(−1+))| dx

+ γ n

∫ −1+ 1
n

−1

∣∣∣∣
∂E1

0

∂x
(x)− ∂E1

0

∂x
(−1+)

∣∣∣∣ dx + n

∫ −1

−1− 1
n

|B2
0(x)−B2

0(−1−)| dx.

12



The initial value mapping Ã is Lipschitz continuous. Hence,

n

∫ −1+ 1
n

−1

|Ã (B1
0(x))− Ã (B1

0(−1+))| dx ≤ C3 n

∫ −1+ 1
n

−1

∫ x

−1

∣∣∣∣
∂B1

0

∂ξ
(ξ)

∣∣∣∣ dξ dx

= C3 n

∫ −1+ 1
n

−1

∣∣∣∣
∂B1

0

∂ξ
(ξ)

∣∣∣∣
(∫ −1+ 1

n

ξ

dx

)
dξ

≤C3

∫ −1+ 1
n

−1

∣∣∣∣
∂B1

0

∂ξ
(ξ)

∣∣∣∣ dξ ≤ C3√
n

(∫ −1+ 1
n

−1

∣∣∣∣
∂B1

0

∂x

∣∣∣∣
2

dx

)1/2

.

The other terms are treated similarly, so that

|H−n+1(0)−H−n(0)| ≤ C4√
n

[∫ −1+ 1
n

−1

(∣∣∣∣
∂B1

0

∂x

∣∣∣∣
2

+

∣∣∣∣
∂2E1

0

∂x2

∣∣∣∣
2
)

dx +

∫ −1

−1− 1
n

∣∣∣∣
∂B2

0

∂x

∣∣∣∣
2

dx

]
.

We can estimate in a similar way the term n |Hn+1(0) −Hn(0)|2 , using this time the
compatibility condition (4.9b).

The remaining terms can be estimated in a more standard way using the regularity of
the data (4.8), and we obtain

1

n

Rn−1∑

k=−Rn+1

|Ėk(0)|2 ≤ C5.

On the other hand, by comparison, using (5.4b)

1

n

∑
Dn

|Ḃk(0)|2 ≤ n
∑
Dn

|Ek+1(0)− Ek(0)|2

and this can be controlled using the fact that E2
0 ∈ H1(K) . Therefore, summing up

we deduce

max
0≤t≤T

[
1

n

Rn−1∑

k=−Rn+1

|Ėk(t)|2 +
1

n

∑
Dn

|Ḃk(t)|2
]

+

∫ T

0

(
1

n

n∑

k=−n+1

|Ėk(t)|2
)

dt +
γ

n

∫ T

0

(
n∑

k=−n+1

|B̈k(t)|2
)

dt ≤ C6.

(5.8)

We have as a consequence that

max
0≤t≤T

1

n

Rn−1∑

k=−Rn+1

|Ḃk(t)|2 ≤ C7,

and by comparison,

max
0≤t≤T

n

Rn−1∑

k=−Rn+1

|Ek+1(t)− Ek(t)|2 ≤ C8. (5.9)

13



At this point, with the intention to let n tend to ∞ , we define the following interpolates

E(n)(x, t) = Ek(t) + n

(
x− (k − 1)

n

)
[Ek+1(t)− Ek(t)]

H(n)(x, t) = Hk−1(t) + n

(
x− (k − 1)

n

)
[Hk(t)−Hk−1(t)]

Ē(n)(x, t) = Ek(t)

H̄(n)(x, t) = Hk(t)

B̄(n)(x, t) = Bk(t)

Ḡ(n)(x, t) = Gk(t)

χ̄(n)(x) = χk

F̄ (n)(x, t) = Fk(t)

for x ∈ (
k−1
n

, k
n

]
, k = −Rn+1, . . . , Rn and t ∈ [0, T ] . Therefore Problem (5.4a)-(5.4c)

can be rewritten as




∂Ē

∂t

(n)

+ χ̄(n)Ē(n) +
∂H

∂x

(n)

+ F̄ (n) = 0 (5.10a)

∂B̄

∂t

(n)

+
∂E

∂x

(n)

= 0 (5.10b)

H̄(n) = χ̄(n)

(
Ḡ(n) + γ

∂B̄

∂t

(n)
)

+ (1− χ̄(n)) B̄(n). (5.10c)

The a priori estimate (5.8) gives

max
0≤t≤T




∣∣∣∣
∣∣∣∣
∂E(n)

∂t
(t)

∣∣∣∣
∣∣∣∣
2

L2(−R,R)

+

∣∣∣∣∣

∣∣∣∣∣
∂Ē

∂t

(n)

(t)

∣∣∣∣∣

∣∣∣∣∣

2

L2(−R,R)

+

∣∣∣∣∣

∣∣∣∣∣
∂B̄

∂t

(n)

(t)

∣∣∣∣∣

∣∣∣∣∣

2

L2((−R,R)\Ω̄)




+

∣∣∣∣∣

∣∣∣∣∣
∂2B̄

∂t2

(n)

(t)

∣∣∣∣∣

∣∣∣∣∣

2

L2(0,T ;L2(Ω))

≤ C6.

(5.11)

At this point, by comparison, (5.3), (5.10a) and (5.11) give

max
0≤t≤T

∣∣∣∣∣

∣∣∣∣∣
∂H

∂x

(n)

(t)

∣∣∣∣∣

∣∣∣∣∣

2

L2(−R,R)

≤ C9.

On the other hand (5.11) entails

∣∣∣∣∣

∣∣∣∣∣
∂B̄

∂t

(n)

(t)

∣∣∣∣∣

∣∣∣∣∣

2

L2(0,T ;L2(−R,R))

≤ C10,
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and, by comparison, using (5.10b) we deduce

∣∣∣∣∣

∣∣∣∣∣
∂E

∂x

(n)

(t)

∣∣∣∣∣

∣∣∣∣∣

2

L2(0,T ;L2(−R,R))

≤ C11.

Combining the above estimates and possible selecting a suitable subsequence of n →
∞ , we find that there exist functions E, B, H in the appropriate Sobolev spaces such
that the following convergences take place:

∂E

∂t

(n)

→ ∂E

∂t
,

∂H

∂x

(n)

→ ∂H

∂x

}
weakly-star in L∞(0, T ; L2(−R, R)),

∂2B̄

∂t2

(n)

→ ∂2B

∂t2

}
weakly in L2(0, T ; L2(Ω)),

∂B̄

∂t

(n)

→ ∂B

∂t
,

∂E

∂x

(n)

→ ∂E

∂x

}
weakly in L2(0, T ; L2(−R,R))

E(n) → E uniformly in C([−R, R]× [0, T ]).

Note that

|E(n)(x, t)− Ē(n)(x, t)|2 ≤
Rn−1∑

k=−Rn+1

|Ek+1(t)− Ek(t)|2
(5.9)

≤ C8

n
,

hence
∂Ē(n)

∂t
→ ∂E

∂t
weakly-star in L∞(0, T ; L2(−R, R)) .

Therefore we can pass to the limit in (5.10a)-(5.10c) to see that (5.2) is satisfied a.e.
in (−R, R)× (0, T ) and the solution has the regularity outlined in (4.10).

• step 3: finite speed of propagation.

fed
−R −r −1 0 1 r R x

t

T A
+

T

A
+
t

A
−

T

Γ1

Γ2

Γ3

Γ4ΩT

Figure 1: Finite speed of propagation outside Ω.

In order to find solutions to (5.2), we used a space discretization scheme; by doing
that, we actually solved a boundary value problem in the domain (−R,R) × (0, T ) .
To complete our existence result we have actually to show that the solution we found
solves also our original model problem.
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Our argument is illustrated on Figure 1. We define the sets

A+
T = {(x, t) ∈ R× (0, T ); t ∈ (0, T ), r + t < x < R}

A−
T = {(x, t) ∈ R× (0, T ); t ∈ (0, T ), −R < x < −r − t}

with the intention to prove that E ≡ H ≡ 0 in A+
T ∪ A−

T . In A+
T , E and H are

solutions of the linear wave equation





∂E

∂t
+

∂H

∂x
= 0

∂H

∂t
+

∂E

∂x
= 0

(5.12)

hence satisfy the energy balance

∂

∂t

(
1

2
(E2 + H2)

)
+

∂

∂x
(E H) = 0. (5.13)

We now proceed as in [4] and integrate (5.13) over the set A+
t = A+

T ∩ (R× (0, t)) with
some fixed t ∈ (0, T ) . Using Green’s formula, we obtain

∫

A+
t

∂

∂t

(
1

2
(E2 + H2)

)
+

∂

∂x
(EH) dx dt =

∫

∂A+
t

(
E H n1 +

1

2
(E2 + H2) n2

)
ds,

(5.14)
where ~n = (n1, n2) is the unit outward normal vector to ∂A+

t . The boundary of A+
t

consists of four parts: ∂A+
t = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 , with ~n = (0,−1) on Γ1 , ~n = (1, 0)

on Γ2 , ~n = (0, 1) on Γ3 , and ~n =
(
− 1√

2
, 1√

2

)
on Γ4 . We have

∫

Γ1

(
E H n1 +

1

2
(E2 + H2) n2

)
ds = −

∫ R

r

1

2

[
(E2

0)
2(x) + (B2

0)
2(x)

]
dx = 0

∫

Γ2

(
E H n1 +

1

2
(E2 + H2) n2

)
ds =

∫ t

0

E(R, τ) H(R, τ) dτ = 0

∫

Γ3

(
E H n1 +

1

2
(E2 + H2) n2

)
ds =

∫ R

r+t

1

2

(
E2(x, t) + H2(x, t)

)
dx ≥ 0

∫

Γ4

(
E H n1 +

1

2
(E2 + H2) n2

)
ds =

1

2
√

2

∫ t

0

(E −H)2(r + τ, τ) dτ ≥ 0.

Comparing these identities with (5.13) and (5.14), we see that E = H = 0 on Γ3 . As
t ∈ (0, T ) has been arbitrary, we obtain the desired result E = H = 0 in A+

T .

The argument in A−
T is fully analogous.

• step 4: fixed point.

Let us come back to our original problem. For any Z ∈ H1(0, T ; L2(Ω)) we found a
unique solution (E,B, H) to (5.2) with the regularity outlined in (4.10). Thus we can
introduce the following closed subspace S of H1(0, T ; L2(Ω))

S := {Z ∈ H1(0, T ; L2(Ω)) : Z(0, x) = B1
0(x)},
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and an operator J : S → S which associates with every fixed datum Z ∈ S the quan-
tity B ∈ S of the corresponding solution (E, B, H) . At this point we take two different
data Z1, Z2 ∈ S and consider the corresponding solutions to (5.2), (E1, B1, H1) and
(E2, B2, H2) , respectively associated with Z1 and Z2 . We have B1 := J(Z1) and
B2 := J(Z2) and moreover we obtain





∂

∂t
(E1 − E2) + χΩ (E1 − E2) +

∂

∂x
(H1 −H2) = 0 (5.15a)

∂

∂t
(B1 −B2) +

∂

∂x
(E1 − E2) = 0 (5.15b)

H1 −H2 = χΩ

[
G(Z1)− G(Z2) + γ

∂

∂t
(B1 −B2)

]
+ (1− χΩ) (B1 −B2). .(5.15c)

We test (5.15a) by (E1 − E2) and (5.15b) by (H1 − H2) and then sum the result;
taking into account that the terms

∫

R

∂

∂x
(H1 −H2) (E1 − E2) dx

∫

R

∂

∂x
(E1 − E2) (H1 −H2) dx

cancel out, we deduce, using (5.15c)

1

2

d

dt

∫

R
|E1 − E2|2 dx +

∫

Ω

|E1 − E2|2 dx +
3

4
γ

∫

Ω

∣∣∣∣
∂

∂t
(B1 −B2)

∣∣∣∣
2

dx

+
1

2

d

dt

∫

R\Ω
|B1 −B2|2 dx ≤ 1

γ

∫

Ω

|G(Z1)− G(Z2)|2 dx.

We remark that this last estimate together with the causality of the operator G entails
that (5.2) admits a unique solution, for any fixed Z ∈ H1(0, T ; L2(Ω)) .

We now set

D(t) :=
1

2

[∫

R
|E1 − E2|2 dx +

∫

R\Ω
|B1 −B2|2 dx

]

and we remark that D(0) = 0. Thus in particular we deduce

dD

dt
+

3

4
γ

∫

Ω

∣∣∣∣
∂

∂t
(B1 −B2)

∣∣∣∣
2

dx ≤ 1

γ

∫

Ω

|G(Z1)− G(Z2)|2 dx. (5.16)

On the other hand
∫

Ω

[G(Z1)(x, t)− G(Z2)(x, t)]2 dx
(4.5)

≤ L2
G

∫

Ω

||Z1(x, ·)− Z2(x, ·)||2C0([0,t]) dx

≤ L2
G

∫

Ω

(∫ t

0

∣∣∣∣
∂

∂τ
(Z1 − Z2)

∣∣∣∣ (x, τ) dτ

)2

dx

≤ L2
G t

∫ t

0

∫

Ω

∣∣∣∣
∂

∂τ
(Z1 − Z2)

∣∣∣∣
2

(x, τ) dx dτ,

(5.17)
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where we used the fact that Z1(0, x) = Z2(0, x) , a.e. in Ω, as Z1, Z2 ∈ S .

We now introduce an equivalent norm on H1(0, T ; L2(Ω)) : for all z ∈ H1(0, T ; L2(Ω))

|||z||| :=
(
||z(0)||2L2(Ω) +

∫ T

0

exp

(
−2 L2

Gt
2

γ2

) ∣∣∣∣
∣∣∣∣
∂z

∂t

∣∣∣∣
∣∣∣∣
2

L2(Ω)

(t) dt

)1/2

.

At this point we divide (5.16) by γ , multiply the result by exp

(
−2 L2

G t2

γ2

)
and inte-

grate in time, for t ∈ (0, T ) . We first remark that

∫ T

0

exp

(
−2 L2

G t2

γ2

)
dD

dt
(t) dt = exp

(
−2 L2

G T 2

γ2

)
D(T )

+

∫ T

0

D(t) exp

(
−2 L2

G t2

γ2

)
4L2

G t

γ2
dt ≥ 0

and therefore we have

3

4
|||J(Z1)− J(Z2)|||2 ≤

∫ T

0

exp

(
−2 L2

Gt
2

γ2

)
L2
G t

γ2

∫ t

0

∫

Ω

∣∣∣∣
∂

∂τ
(Z1 − Z2)

∣∣∣∣
2

(x, τ) dx dτ

=− 1

4
exp

(
−2 L2

GT
2

γ2

) ∫ T

0

∫

Ω

∣∣∣∣
∂

∂t
(Z1 − Z2)

∣∣∣∣
2

(x, t) dx dt

+
1

4

∫ T

0

exp

(
−2 L2

Gt
2

γ2

) ∫

Ω

∣∣∣∣
∂

∂t
(Z1 − Z2)

∣∣∣∣
2

(x, t) dx dt

which in turn gives

|||J(Z1)− J(Z2)|||2 ≤ 1

3
|||Z1 − Z2|||2.

Hence J is a contraction on the closed subset S of H1(0, T ; L2(Ω)), which finishes the
proof. ¤

6 Proof of Theorem 4.2

We now deal with the general case.

���Ur

−1 0 1 r x

t

T (x, t)

ΩT

Figure 2: Set Ur and domain of dependence for (x, t) outside Ur .
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For data as in Theorem 4.2, we define sequences indexed by n ∈ N of truncated data
with supports in (−2n, 2n) for n →∞ as

Jn
ext(x, t) = χ(−n,n)(x) Jext(x, t),

(E2
0)

n(x) =





E2
0(x) for x ∈ (−n, n)

(
2− x

n

)
E2

0(n) for x ∈ [n, 2n)
(
2 +

x

n

)
E2

0(−n) for x ∈ (−2n,−n]

0 for |x| ≥ 2n,

(B2
0)

n(x) =





B2
0(x) for x ∈ (−n, n)

(
2− x

n

)
B2

0(n) for x ∈ [n, 2n)
(
2 +

x

n

)
B2

0(−n) for x ∈ (−2n,−n]

0 for |x| ≥ 2n,

By Theorem 4.1, there exists a sequence of solutions {(En, Bn, Hn)}n∈N associated
with these data. We now refer again to the Courant-Hilbert trick and show that on
every domain

Ur = {(x, t) ∈ R× (0, T ); 0 ≤ t ≤ T, −r − 2T + t ≤ x ≤ r + 2T − t}

(see Fig. 2) with an arbitrarily fixed parameter r > 1 , all these solutions with n >
r + 2T coincide.

Let us take two solutions (Ej, Bj, Hj) and (Ek, Bk, Hk) , with j 6= k , j, k > r + 2T .
We set Ē := Ej − Ek , B̄ := Bj − Bk , H̄ := Hj −Hk , Ḡ := G(Bj) − G(Bk) . Then
we obtain





∂Ē

∂t
+ χΩ Ē +

∂H̄

∂x
= 0 (6.1a)

∂B̄

∂t
+

∂Ē

∂x
= 0 (6.1b)

H̄ = χΩ

(
Ḡ + γ

∂B̄

∂t

)
+ (1− χΩ) B̄. . (6.1c)

We test (6.1a) by Ē , (6.1b) by H̄ and integrate over Ur . We obtain

∫

ΩT

(
Ē2 + γ

(
∂B̄

∂t

)2

+ Ḡ
∂B̄

∂t

)
dx dt

+

∫

Ur

[
∂

∂t

(
1

2
(Ē2 + (1− χΩ) B̄2)

)
+

∂

∂x
(Ē H̄)

]
dx dt = 0.

(6.2)
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The set ∂Ur consists of four straight segments, Γ̃1, Γ̃2, Γ̃3, Γ̃4 , with endpoints respec-
tively (−r−2T, 0) and (r+2T, 0) , (r+2T, 0) and (r+T, T ) , (r+T, T ) and (−r−T, T ) ,
(−r − T, T ) and (−r − 2T, 0) , see Fig. 2.

Now, the Green formula yields

∫

Ur

[
∂

∂t

(
1

2
(Ē2 + (1− χΩ) B̄2)

)
+

∂

∂x
(Ē H̄)

]
dx dt = −

∫

Γ̃1

1

2
(Ē2 + (1− χΩ) B̄2) ds

+

∫

Γ̃2

[
1√
2

(Ē H̄) +
1

2
√

2
(Ē2 + (1− χΩ) B̄2)

]
ds +

∫

Γ̃3

1

2
(Ē2 + (1− χΩ) B̄2) ds

+

∫

Γ̃4

[
− 1√

2
(Ē H̄) +

1

2
√

2
(Ē2 + (1− χΩ) B̄2)

]
ds.

Now the integral over Γ̃1 vanishes as the initial data for (Ej, Bj, Hj) and (Ek, Bk, Hk)
coincide while the integral over Γ̃3 yields a nonnegative contribution. Finally, taking
into account that

Γ̃2 ∩ ΩT = ∅ Γ̃4 ∩ ΩT = ∅,
we have that the integrals over Γ̃2 and Γ̃4 give a nonnegative contribution, as H̄ = B̄ .

At this point (6.2) entails in particular

∫

ΩT

(
γ

(
∂B̄

∂t

)2

+ Ḡ
∂B̄

∂t

)
dx dt ≤ 0.

This in turns gives, working as in (5.17)

γ

2

∫

ΩT

∣∣∣∣
∂B̄

∂t

∣∣∣∣
2

dx dt ≤ 1

2γ

∫ T

0

∫

Ω

|Ḡ|2 dx dt ≤
∫ T

0

L2
G

2γ
t

∫ t

0

∫

Ω

∣∣∣∣
∂B̄

∂τ

∣∣∣∣
2

dx dτ dt.

From the Gronwall lemma, we finally obtain B̄ = 0 and therefore, by comparison,
Ē = H̄ = 0. Hence, all solutions coincide on Ur , independently on the way we
constructed the sequence of data with compact support.

Outside Ur the solution of (4.7) is given by the explicit formula for the solution of the
linear wave equation. More precisely, outside Ur (4.7) reduces to the following





∂E

∂t
+ Jext +

∂B

∂x
= 0

∂B

∂t
+

∂E

∂x
= 0.

This means that
∂2E

∂t2
− ∂2E

∂x2
= −∂Jext

∂t
=: J̃

and the initial conditions are

E(x, 0) = E2
0

∂E

∂t
(x, 0) = −∂B

∂x
(x, 0)− Jext(x, 0) =: Ẽ.
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The solution for the linear wave equation can be represented as

E(x, t) =
1

2
[E2

0(x + t)− E2
0(x− t)] +

1

2

∫ x+t

x−t

Ẽ(ξ) dξ +
1

2

∫ t

0

∫ x+t−τ

x−t+τ

J̃(τ, ξ) dξ dτ,

for (x, t) ∈ [R× (0, T )] \ Ur , and the assertion follows. ¤
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