
 

 

 
 
 

 
 

UNIVERSITY 
OF TRENTO 

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY
  

38050 Povo – Trento (Italy), Via Sommarive 14 
http://www.dit.unitn.it 
 
 
 
 
 
 
 
 
 
 
 
FROM EARLY REQUIREMENTS ANALYSIS 
TOWARDS SECURE WORKFLOWS 
 
 
Ganna Frankova, Fabio Massacci and Magali Seguran 
 
 
May 2007 
 
Technical Report # DIT-07-036 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.
 



From Early Requirements Analysis
towards Secure Workflows ?

Ganna Frankova1, Fabio Massacci1, and Magali Seguran2

1 Dept. of Information and Communication Technologies
University of Trento
Via Sommarive, 14

38050 Trento
Italy

email: {ganna.frankova,fabio.massacci}@unitn.it
2 SAP Labs France

SAP Research - Security and Trust
805, avenue du Dr.Maurice Donat

06254 Mougins Cedex
France

email: magali.seguran@sap.com

Abstract. Requirements engineering is a key step in the software devel-
opment process that has little counterpart in the development of business
processes for web services. Furthermore, the existing design method-
ologies for web services do not address the issue of developing secure
web services, secure business processes and secure workflows. This paper
presents a methodology that allows a business process designer to de-
rive the skeleton of the concrete secure business processes from the early
requirements analysis. The proposed refinement methodology, aims to
obtain an appropriate coarse grained secure business process that can be
further refined into workflows. We introduce a specification language for
secure business processes, which is a dialect of WS-BPEL for the func-
tional parts and abstracts away low level implementation details from
WS-Security and WS-Federation specifications. To make the discussion
more concrete, we illustrate the proposal with an e-business banking case
study.

Keywords: Requirements Engineering, Business Processes, Security and Trust,
Web Services.

1 Introduction

There are many requirements engineering frameworks for modeling and analysing
security requirements, such as SI*/Secure Tropos [12, 20], UMLsec [16], Misuse-
Case [26], AntiGoals [28]. There are several methodologies aim to web services

? This work has been partly supported by the IST-FP6-IP-SERENITY project



and business processes design [24, 19, 25]. We noticed that there is a gap among
the requirements engineering methodologies and the actual production of soft-
ware and business processes based on a Service-Oriented Architecture (SOA).
Business processes and security issues are developed separately and often do not
follow the same strategy [21]. There are a number of security standards in the
area of SOA. For instance, WS-Federation [2] defines the mechanisms for federat-
ing trust, WS-Trust [15] enables security token interoperability, WS-Security [22]
covers the low level details such as message content integrity and confidentiality.
The question we address in this paper is “How to obtain a secure workflow from
the early requirements analysis?”.

We address the issue of secure workflows modeling based on early require-
ments analysis, namely, SI*/Secure Tropos [12, 20], by presenting a methodology
that bridges the gap between early requirements analysis and secure workflows
for web services development. The methodology allows a business process de-
signer to derive the skeleton of the concrete secure business processes from the
early requirements analysis. The proposed refinement methodology, aims to ob-
tain an appropriate coarse grained secure business process that can be further
refined into workflows. We introduce a specification language for secure business
processes, which is a dialect of WS-BPEL for the functional parts and abstracts
away low level implementation details from WS-Security and WS-Federation
specifications.

The remainder of the paper is organized as follows. In Section 2, we introduce
an e-business banking case study that is used as a running example throughout
the paper. We provide a brief description of the SI*/Secure Tropos framework
and describe the basic concepts and diagrams that we used for the early require-
ments analysis in Section 3. Section 4 is devoted to the proposed methodology
that allows a business process designer to derive the skeleton of the concrete
secure business processes from the early requirements analysis. Furthermore, we
introduce a specification language for secure business processes and show how
the running example can be described by the language. Section 5 opens the ‘lack
of permission” problem. Related work is discussed in Section 6. Concluding re-
marks are summarized in Section 7.

2 Running example: a loan origination process

The general environment in which the proposed scenario takes place is the
e-business organization domain. The running example is abstracted from an
e-business banking scenario, more specifically, from a typical loan origination
process in the context of which the activities about assignment of rights, roles,
and tasks need to be carefully considered from a security point of view. The sce-
nario is provided by the courtesy of SAP company 1 and is a working scenario

1 http://www.sap.com.



of the IST-FP6-IP-SERENITY project 2.For more information on the scenario
refer to [6].

Scenario description
John is a single 25 years old man who wants to buy a flat and needs a loan.
After visiting several banks, he decides to apply for a loan of 90,000 euros to his
time-proved the BBB bank.

Scene 1. John goes to the bank to ask for a loan - Peter, the pre-
processing clerk receives John, checks his identity, receives clients’s data for
identification from the Internal Computer System and matches them with the
identity of John.

Scene 2. The bank double checks the credit worthiness of John -
When the identity is checked, Peter introduces John to Paul, the post-processing
clerk. Paul obtains several external (conducted by the Credit Bureau) and in-
ternal (conducted by the Internal Computer System) ratings in order to check
the credit worthiness of the customer.

Using a Credit Bureau - The credit worthiness is checked querying the
Credit Bureau. The Credit Bureau is a third party business partner of finan-
cial institution that processes, stores and safeguards the credit information of
physical individual and industrial companies. In the case of John, the Credit
Bureau does not return any negative information about credit worthiness and
Paul continues to process John’s loan.

Using internal rating - For the internal check, the post-processing clerk
analyses results of calculation of the internal rating. The internal credit scoring
application assigns a low risk level to John’s application and the loan origination
process moves to the third phase.

Scene 3. The bank calculates the loan price - Paul queries the Pricing
Engine service to compute a price of the loan taking into account the score. The
result in terms of original price, customer segment special conditions, customer
company special conditions, asset limit for price, is then returned to Paul. Paul
is able to make a proposal to John.

Scene 4. The bank and John sign the form - If John is satisfied by the
proposed product, he is going to discuss the loan in more details and to finalize
the process. The representative of the bank may be Paul or Ted (the manager)
according to the loan amount or the customer type. In this case, John and Paul
are involved in the negotiation and signing of the contract.

The loan origination process is a business process that can be easily refined to
the workflow. The different steps of the case study are depicted at the workflow
diagram in Figure 1. In the rest of the work we will concentrate on those phases
of the case study that are relevant to describe the security requirements such as
separation of duty, compensation, and transaction.

2 SERENITY (System Engineering for Security and Dependability) is a R&D project
funded by the European Union. SERENITY aims at providing security and depend-
ability in Ambient Intelligence systems. For more information refer to the Serenity
project website http://www.serenity-project.org.



Fig. 1. Loan Origination Workflow.

3 The SI*/Secure Tropos framework

SI*/Secure Tropos is a formal framework and a methodology for modelling and
analysing security requirements [12, 20]. In this work we employ the early security
requirements analysis in order to develop a secure workflow. SI */Secure Tropos
uses the concepts of actor and goal. Actors can be agents or roles. SI*/Secure
Tropos also supports the notion of delegation of permission and delegation of ex-
ecution to model the transfer of entitlements and responsibilities from an actor
(called delegator) to another (called delegatee), respectively. Trust of permis-
sion and trust of execution are used to model the expectation of one actor (the
trustor) about the behavior and capabilities of another actor (the trustee). The
meaning of trust of permission is that a trustor trusts that trustee will at least
fulfill a service while trust of execution means that trustor trusts that trustee
will at most fulfill a service, but will not overstep it.

From a methodological perspective, SI*/Secure Tropos is based on the idea
of building a model of the system that is incrementally refined and extended.
Specifically, goal analysis consists of refining goals and eliciting new social re-
lationships among actors. They are conducted from the perspective of single
actors using AND/OR decomposition. In case an actor does not have the capa-
bilities to achieve his own objectives or assigned responsibilities by himself, he
has to delegate them to other actors making their achievement outside his direct
control.



(a) Actors and functional dependencies. (b) Authorization and trust.

Fig. 2. SI */Secure Tropos Diagrams.

The above constructs allow us to capture the functional, security and trust
requirements in a number of diagrams.

Actor diagram describes objectives, entitlements and capabilities of each ac-
tor which are also analyzed using goal refinement and contribution analysis
techniques from the perspective of the actor.

Functional dependency diagram identifies the dependencies among actors,
in particular, to which actor has been delegated the execution of which ser-
vices by which actor.

Authorization diagram identifies the transfers of right among actors, in par-
ticular, to which actor has been delegated the permission, on which services
and by which actor.

Trust diagram describes the expectations of actors about the behavior and
capabilities of other actors in terms of trust of permission and trust of exe-
cution.

Figure 2 shows the examples of the diagrams based on the case study pre-
sented above. Actor and functional dependency diagram (see Figure 2(a)) de-
scribes the actors (agents, depicted as circles with straight lines, and roles, de-
picted as circles with curves); some of the bank manager’s goals, depicted as
ovals; goal refinement by AND decomposition, depicted with a goal refinement
symbol marked with AND; and the delegation of execution dependencies among
bank manager, pre-processing and post-processing clerks, depicted with two lines
connected by a delegation of execution (De) graphical symbol. One of the vari-
ants of authorization and trust diagram is presented in Figure 2(b). The diagram
identifies the actors, that participate, i.e, the BBB bank and bank manager, and



involved services, i.e, the “launch loan origination process” goal, in delegation of
permission, trust on permission and trust of execution dependencies, depicted
with two lines connected by a delegation of permission (Dp), trust on permission
(Tp) and trust of execution (Te) graphical symbols.

4 From early requirements towards secure workflows

A secure business process is originated by the early requirements analysis and
then is used to the development of an appropriate workflow. The process of
deriving a secure workflow from early requirements is presented in Figure 3.
The process includes three phases, namely, (1) early requirements engineering,
(2) late requirements engineering and (3) detailed design.

Fig. 3. Relations among early requirements, business process and workflow levels.

For the purpose of developing secure workflows based on the early require-
ments analysis, we propose a refinement methodology and a specification lan-
guage, Secure BPEL, for secure requirements at the business process and work-
flow levels.

4.1 Early requirements engineering

Early requirements engineering is concerned with understanding the organiza-
tional context within which the system-to-be will eventually function. During
early requirements analysis the domain actors and their dependencies on other
actors for goals to be fulfilled are identified. For early requirements elicitation,
one need to reason about trust relationships and delegation of authority. We
employ SI*/Secure Tropos modelling framework to derive and analyse both
functional dependencies and security and trust requirements. Various activities
contribute to the acquisition of the early requirements model, namely:



Actor modelling aims at identifying actors and analysing their goals.
Functional dependency modelling aims at identifying actors depending on

other actors for obtaining services, and actors which are able to provide
services.

Permission delegation modelling aims at identifying actors delegating to
other actors the permission on services.

Trust modelling aims at identifying actors trusting other actors for services,
and actors which own services.

A graphical representation of the model obtained according these modelling
activities is given respectively through the actor, functional dependency, autho-
rization, and trust diagrams, described in Section 3.

The process of the early requirements model acquisition starts from user
requirements, goes thought actor, functional dependency, permission delegation
and trust modelling and ends with actor, functional dependency, authorization,
and trust diagrams, i.e., the requirements model obtaining (see Figure 4).

Fig. 4. Early requirements model acquisition process.

4.2 Late requirements engineering

Late requirements engineering is concerned with a definition of the functional
and non-functional requirements of the system-to-be. In this work the proposed
refinement methodology aims to obtain an appropriate coarse grained business
process and workflow at the workflow level based on early requirements. The re-
finement is processed by diagrams created in the early requirements engineering
phase. The methodology takes the components of the diagrams and derives a
secure business process constructs from them that is described by the proposed
Secure BPEL language (see Figure 5).

The relevant components of actor diagram are actors, goals and spawning
of dependency relationships among actors. In functional dependency diagram,
we consider dependencies among actors that delegate or are delegatees of execu-
tion of services. The components of authorization diagram are transfers of right
among actors that delegate or are delegatees of permission on services. In trust
diagram we consider the expectations of actors about the behavior and capabil-
ities of other actors in terms of trust on permission and trust on execution.



Fig. 5. Late requirements engineering.

Figure 6 presents two steps of actor diagram refinement. In first step, partners
are designed based on the actors identified in the early requirements engineering
stage. We assume that each actor has a single root goal that can be decomposed
by AND/OR goal decomposition. Each AND/OR goal decomposition lead to
operationalization phase. The second step considers partner and orchestration
specification by the Secure BPEL language. Operationalization is completed with
additional information to AND/OR goal decomposition on choice of sequential
or parallel operation.

Fig. 6. Actor diagram refinement.

For the lack of space we do not present two steps of other diagrams refine-
ment. The idea is that in first step dependencies (for functional dependency and
authorization diagrams) or trust (for trust diagram) and choreography are de-
signed and in second step choreography is specified. We consider that the level
of goals is the level of services.

The table in Figure 7 presents the mentioned diagrams to Secure BPEL
language notions refinement. Considering actor diagram, the notion of actor is
refined into partner in Secure BPEL, a root goal is refined into business process
while AND/OR goal decomposition with delegation are refined into orchestra-
tion. The notions of delegation of execution and delegation of permission pre-
sented in dependency and authorization diagrams are refined into choreography
of services and authorization respectively. As for trust diagram, trust on execu-
tion and permission are refined into choreography of attestation that is further



refined into attestation of integrity for the notion of trust on execution and
attestation of reporting for trust on permission.

Fig. 7. Diagrams to Secure BPEL refinement.

4.3 Secure BPEL Language

Secure BPEL language is an extension of Web Services Business Process Ex-
ecution Language (WS-BPEL) [23] that allows for secure workflows specifica-
tion. Hence, if a business process designer is familiar with WS-BPEL processes,
he simply needs to understand the additional constructs introduced by Secure
BPEL. We suffix each new or refined construct with the keyword “S” to clearly
distinguish them.

Refining Actor Diagram
Actors identification consists in identifying all actors, i.e., agents and roles, in-
volved in a business process and all roles played by all the agents identified.

The concept of actors at the business process level is refined as partners and
specified in Secure BPEL by the <partnerS> construct (see Figure 8).

To ease the language specification we provide a slight extension to the WS-
BPEL standard by retaining the <partner> construct from the Business Process
Execution Language for Web Services (BPEL4WS) [3]. While such extension is
not necessary for actually writing down the workflow solution (because each
partner role is specified on every individual invocation), it is extremely conve-
nient at the requirements level because it offers a compact view of who is doing



<partnersS>

<partnerS nameS = "agentName">+

roles played by agent

</partnerS>

</partnersS>

Fig. 8. Actor identification.

what. Further, at this stage, we also need to identify which agent has to run
which process and hence the addition of the nameS attribute.

Each partners interaction at the business process level is specified by the
<partnerLinkS> construct 3 and specifying all roles played by a partner (see
Figure 9). The role of the partner itself is indicated by the attribute myRole and
the role of the companion is indicated by the attribute partnerRole within the
<partnerLinkS> construct. When there is only one role, one of these attributes is
omitted as appropriate. The partner is identified by the partnerNameS attribute.
Each partnerLinkS is named and this name is used for all service interactions
via that partnerLinkS.

<partnerLinksS>

<partnerLinkS name="partnerLinkName"

myRole = "myRoleName"?

partnerNameS = "agentName"?

partnerRole = "partnerRoleName"?>+

</partnerLinkS>

</partnerLinksS>

Fig. 9. Actor description.

Example 1. According to the first scene of the case study presented in Sec-
tion 2, in the actor identification step, two agents (specified by the <partnersS>
construct) are identified, namely, John and Peter (the nameS attribute of the
<partnerS> construct). For the partners interaction at the business process level
(the <partnerLinkS> construct), the agents roles are described (the myRole /
partnerRole attribute within the <partnerLinkS> construct). Partner John has
a role customer. John is a partner of Peter whose role is a pre-processing clerk.
In such manner it is possible to identify and describe all actors presented in the
case study.

3 As we work at a high level of abstraction, at this point some workflow details are
not considered. Most notably, we do not specify partner link types that characterizes
the conversational relationship between two partners by defining the roles played by
each of the partners in the conversation.



The concept of actor is specified in the SI*/Secure Tropos metamodel [27]
as an agent can play several roles. Figure 10 shows the portion of the Secure
BPEL metamodel where the concept of partner and role are specified. One secure
business process can be composed of several partners. While to each partner can
be associated one or more partner links that specify all roles played by a partner.
The role of a partner itself is specified by the myRole attribute and the role of
the companion is indicated by the partnerRole attribute.

Fig. 10. The Secure BPEL metamodel specifying the partner concept.

Structured activities is a basis of orchestration specification and consist
of a sequential/parallel composition and branching statement. The notion of
sequential and parallel composition corresponds to a refinement of the concept
of AND goal decomposition. Branching statement is a refinement of the concept
of OR goal decomposition.

Sequential composition is specified by the <sequence> construct. The con-
struct defines a collection of activities to be performed sequentially, in the lexical
order in which they appear within the construct. Parallel composition is spec-
ified by the <flow> construct. The construct defines one or more activities to
be performed concurrently. While branching statement is specified by the <if>
construct that is used to select exactly one activity for execution from a set of
choices. Refer to WS-BPEL [23] specification for the syntax of the constructs.

Example 2. Following the case study presented in Section 2, all the main activi-
ties are sequential. The following activities: customer identification, check rating,
calculation of the price and signature of the contract are done in a sequential
way. At the business process level, the process defining these activities in the
sequential order, is implemented by the <sequence> construct.

Example 3. In the second scene of the case study presented in Section 2, the
process of checking the credit worthiness is divided in two parallel subprocesses:
the external part (provided by Credit Bureau) and the internal one (based on in-
ternal scoring). Nevertheless the internal one is stopped when the results coming
from the Credit Bureau are negative. At the business process level, the process
is implemented by the <flow> construct.



Refining Functional Dependency Diagram
Dependencies derived from a functional dependency diagram are notably dele-
gation of execution. The refinement process starts with abstract goals and ends
up with concrete atomic activities at the business process level, while those ac-
tivities can be further refined at the workflow level. Here we consider that the
level of goals is the level of services. Atomic activities is a basis of choreography
specification and consist of the service invocation activities and the response to
a service invocation activities.

Considering one particular dependency, invocation of a service by a depender
is specified by the <invoke> construct (see Figure 11(a)). Responding to a service
invocation by a dependee is specified by the <pick> construct (see Figure 11(b)).
The construct allows to block and wait for a suitable message to arrive, i.e., a
message of service invocation. When the message arrives, the associated activity,
i.e., service execution, is performed and the pick completes.

(a) Service invocation. (b) Response to service invocation.

Fig. 11. Atomic activities.

The concept of delegation of execution at the business process level is refined
as a process that consists of invocation of a goal (service), from one partner, i.e.,
a depender and other partner’s, i.e, dependee, acceptance of the delegation and
execution of the goal.

Example 4. The concept of delegation of execution is seen in some scenes of the
case study presented in Section 2. In particular, in the first scene, John as a
bank customer delegates the function of processing the loan origination to the
BBB bank. Then the BBB bank delegates the identification of the customer to
Peter, the pre-processing clerk, and delegates the managing of the loan orig-
ination process to Paul, the post-processing clerk. In the second scene, Paul
delegates the credit worthiness check, in particular, external rating analysing, to
the Credit Bureau. At the business process level the delegation process of credit
worthiness check to the Credit Bureau is a follows. At the delegater side, the
partner Paul invokes the operation “credit worthiness check” (by the <invoke>
construct) from the partner Credit Bureau. While at the delegatee side, the
partner Credit Bureau, the delegatee responds to a service invocation (see the
<pick> construct) accepting the message of service invocation and executes the
goal “credit worthiness check”.

Refining Authorization and Trust Diagrams
Interactions with partners can be more complicated than delegation of execu-



tion represented by the atomic activities. There is a set of activities to represent
the SI*/Secure Tropos concepts of delegation of permission, trust on execu-
tion and trust on permission at the business process level. This set includes
request/response for authentication token, authorization token, attestation of
integrity and attestation of reporting.

The concept of attestation characterizes the process of vouching for the ac-
curacy of information [13]. In this work we use two types of attestation, i.e,
attestation of integrity and attestation of reporting. Attestation of integrity pro-
vides proof that an actor can be trusted to report integrity and performed using
the set or subset of the credentials associated with the actor. Attestation of
reporting is the process of attesting to the contents of integrity reporting.

The <RequestSecurityServiceS> construct is used to request a token for
the purpose of authentication, authorization, attestation of integrity and attes-
tation of reporting. The syntax for the construct is presented on Figure 12.

<requestSecurityServiceS>

<typeS>

typeS="Authentication|Authorization|

Attestation-Integrity|Attestation-Reporting"

</typeS>

<purposeS>

goalName+

</purposeS>

<participantsS>+

<participantS nameS = "agentName">

<participantS>

</participantsS>

<onBehalfOfS>... </onBehalfOfS>

<usageS> ... </usageS>

</requestSecurityServiceS>

Fig. 12. Request security service.

The following describes the attributes and elements listed above:

/requestSecurityServiceS/typeS This element describes the type of security
service requested, i.e., authentication, authorization, attestation of integrity
and attestation of reporting. That is, the type of the service that will be
returned by the <requestSecurityServiceResponseS> construct.

/RequestSecurityServiceS/purposeS This element specifies the scope for
which the security service is desired, i.e., the goal to which the service applies.

/RequestSecurityServiceS/participantsS/ This element specifies the par-
ticipants sharing the security service. This attribute is used by the requestor
to clarify the actual parties involved.



/RequestSecurityServiceS/participantsS/participantS This element spec-
ifies participant (or multiple participants) that play a role in the use of the
service or who are allowed to use the service.

/RequestSecurityServiceS/onBehalfOfS This element indicates that the
requestor is making the request on behalf of another.

/RequestSecurityServiceS/usageS This element specifies a policy (as de-
fined in WS-Policy) that indicates desired settings for the requested service
such as <delegatable> true|false </delegatable>.

The <RequestSecurityServiceResponseS> construct is used to return a
security service or response to a security service request. It should be noted that
any type of parameter specified as input to a service request may be present
on response in order to specify the exact parameters used by the issuer. The
syntax for this construct is similar to the one presented on Figure 12. The only
difference is in the additional <requestedSecurityServiceS> element that is
used to return the requested security service.

Example 5. As we shown in the Example 4 the concept of delegation of execution
is seen in some scenes of the case study presented in Section 2. This example aims
to show the concept of delegation of permission by using the first scene of the case
study. The BBB bank delegates the identification of the customer to Peter the
pre-processing clerk. At the business process level, from the delegator side, the
type of security services requested is authorization (specified with the <typeS>
element), the purpose is “customer identification” (by the <purpose> element)
and the participant is Peter (by the <participant> element), see Figure 12.
From the delegatee side, the <requestSecurityServiceResponseS> construct
is used to respond to the security service request with the purpose (by the
<purpose> element) “customer identification” and the participant is Ted (by
the <participant> element).

Example 6. Following the second scene of the case study presented in Section 2,
the post processing clerk trusts the Credit Bureau to give trustworthy exter-
nal rating, i.e, trust on permission concept. At the business process level, from
the truster side, the type of security service requested is authentication (spec-
ified with the <typeS> element) with the goal check external rating (with the
<purpose> element) and participant Credit Bureau (with <participant>). From
the trustee side, the <requestSecurityServiceResponseS> construct is used to
answer to the security service request with the <purpose> check external rating
and the <participant> post-processing clerk. After this step, from the truster
side, the type of security service is attestation of integrity (specified with the
<typeS> element) with the goal check external rating (with the <purpose> ele-
ment) and participant Credit Bureau (with <participant>). From the trustee
side, the <requestSecurityServiceResponseS> is used to answer to the secu-
rity service request with the <purpose> check external rating and the
<participant> post-processing. The concept of trust on execution is considered
in the second scene of the case study. At the business process level, the process
is very similar to the one presented above for trust on permission. The only



one difference is the type of the security service involved, which is attestation of
reporting in the second step.

Figure 13 shows the portion of the Secure BPEL metamodel where the con-
cept of activity is specified. Activity is composed of partner activity and struc-
tured activity. Partner activity, in its turn, consists of the invoke, pick, request
security serviceS, and request security service responseS activities.
While structured activity is composed of the sequence, flow, and if activities.

Fig. 13. The Secure BPEL metamodel specifying activity hierarchy.

Refining Delegation and Trust At the SI*/Secure Tropos level it is possi-
ble to check the presence of trust or delegation chains by means of the satisfaction
of axioms. Axiomatization for build a delegation chain is as follows:
delegate(A, B,G) −→ delegateChain(A,B, G).
delegate(A, C,G) ∩ delegateChain(C, B, G) −→ delegateChain(A,B, G).
Delegation transitivity rule:
delegate(A, C,G) ∩ delegate(C,B,G) −→ delegate(A,B, G).
Axiomatization for build a trust chain is as follows:
trust(A, C,G) −→ trustChain(A,B, G).
trust(A, C,G) ∩ trustChain(C, B, G) −→ trustChain(A,B, G).
Trust transitivity rule:
trust(A, C,G) ∩ trust(C,B,G) −→ trust(A,B, G).

Delegation/trust transitivity rules appear only at the formal level. At the
business process level the properties should be checked. In order to check the sat-
isfaction of the properties, i.e, to construct a delegation/trust chain, for every rule
instance one needs a delegation/trust broker that builds up a delegation/trust
chain. At this point the notion of brokering delegation/trust appear and the del-
egation/trust brokering service can be implemented by security token services
(see WS-Trust [15]). The security token services play the role of authorities and



form the basic of trust by evaluating requests and issuing a rage of security to-
kens that are used to broker trust relationships between different trust domains.
There are several mechanisms to delegation/trust bootstrap. The simplest one
is if an actor, i.e, the recipient, has a fixed set of delegation/trust relationships.
Then the mechanism will evaluate all requests to determine if they contain secu-
rity tokens from one of the trusted roots. The second mechanism is based on the
first one and it relevant for our work. An actor may choose to allow hierarchies
of trust so long as the trust chain eventually leads to one of the known trust
roots. The mechanisms for federating trust are defined in WS-Federation [2].

Example 7. In the case study presented in Section 2, the BBB banks delegates
the function of providing a loan to the general director and the general director
delegates the function to the manager. The manager delegates the customer
identification to pre-processing clerk and the management of the loan origination
process to the post-processing clerk. Taking into account the axioms for build
a delegation chain and the delegation transitivity rule, one needs a delegation
broker that builds up a delegation chain. The process is as follows: from the fact
that the BBB banks delegates the function of providing a loan to the general
director and the general director delegates the function to the manager implies
the fact that the BBB banks delegates the function of providing a loan to the
manager.

5 “Lack of permission” Problem

The proposed methodology aims to derive the skeleton of the concrete secure
business processes from the early requirements analysis. Besides that, the method-
ology allows to further refine a coarse grained secure business process into secure
workflow.

While deriving the concrete secure business processes from the early require-
ments analysis, one can face the situation we named as “lack of permission”.
The “lack of permission” situation appears when there is a chain of delega-
tion/trust of execution with no corresponding chain of delegation/trust of per-
mission. Each delegator/trustor of execution delegates/trusts on execution of a
goal to the corresponding delegatee/trustee, which, in its turn, plays the role
of delegator/trustor of execution and delegates/trusts on execution of the goal
to other delegatee/trustee, etc. As there is no corresponding chain of delega-
tion/trust of permission, i.e., the root delegator/trustor of execution (actor A)
delegates/trusts permission of the goal (goal G) only to the leaf actor that ac-
tually executes the goal (actor C), while all the other nodes (actor B) faces the
“lack of permission” problem (see Figure 14).

In the Secure BPEL language both delegation and trust are modeled by in-
vocation. The delegation of execution concept is modeled as invocation of an op-
eration by one partner from the other partner. The concepts of delegation/trust
of permission/execution are modeled as different types of security services in-
vocation. In order to address the “lack of permission” problem one needs of



Fig. 14. “Lack of permission” problem.

introducing special types of invocation. The new invocation should allow the
data to be protected, i.e, allows message confidentiality and integrity.

6 Related Work

Requirements engineering methodology for business processes in the context of
web services is gaining increasing attention in the Software Engineering and
Service-Oriented Communities. Next, we overview not only approaches aimed to
use requirements engineering methodologies in the context of web service design,
but also specifications developed in order to build secure web services.

Lau and Mylopoulos [19] propose a design methodology for web services
adapted from the Tropos [7, 5] project. The work is based on the use of goals
to determine the space of alternative solutions to satisfy the goals. The key
point is that the solutions are represented by web services. The generated web
services design is expected to accommodate as many of those solutions as possible
rendering the design usable by a broader class of applications. On the negative
side, Tropos is not tailored specifically to web service design. Therefore the
proposed methodology does not address the issue of integration of Web Service
Business Process Language in order to specify actual behaviour of participants
in a business interaction. Furthermore, the design methodology for web services
does not aim to design secure web services.

Kazhamiakin, Pistore, and Roveri [18] propose a methodology for business
requirements modelling that uses the Tropos framework to capture the strategic
goals of the enterprise. The proposed methodology enables to produce a con-
crete business process expressed by BPEL4WS description. The concrete busi-
ness process is elicited from the description of business process notions with
Tropos concepts extended with formal annotation called Formal Tropos [10].
On the contrary, our work aims to design secure business processes. The re-
quirements expressed by the proposed language are security and dependability
requirements that are not temporal properties Formal Tropos deals with.

Penserini, Perini, Susi, and Mylopoulos [25] address the issue of refining the
Tropos methodology and tailoring it to the design of web services. The Tropos



design process is extended to support a revised notion of capability that explicitly
correlates actor plans with stakeholders needs and environmental constraints.
The agent capability is considered as a service. Furthermore, the authors sketch
how Tropos design-tome models can support service discovery and composition
by relating stakeholder goals to sets of services available. Even if, the idea is
feasible, the work is in an the early stage and there is a need for more precise
mapping of agent capability that is considered as a service. Furthermore, there
is no secure web services design support.

Georg, Ray and France [11] propose the use of aspects for designing a secure
system. The work illustrates how an aspect-oriented approach to modeling allows
to encapsulate the concerns of security, availability of services and timeliness so
they can be woven into a secure system design. The weaving strategy identifies
security aspects based on the kinds of possible attacks and the mechanisms that
allows the detection, prevention, and recovery from such attacks. Haley, Laney,
and Nuseibeh [14] represent security requirements as crosscutting threat de-
scriptions using aspect-oriented software development crosscutting concepts and
problem frames. Security requirements are seen as constraints on functional re-
quirements intended to reduce the scope of vulnerabilities. This allows to analyze
secure requirements along with other constraints when producing specification
for the problem. Cheng, Konrad, Campbell, and Wassermann [8] propose the
use of security patterns for modeling and analysing secure systems. The authors
describe a collection of security patterns using a template that addresses dif-
ficulties inherent to the development of secure-critical systems. Employing the
patterns, it is possible to gain insight into the issue of modeling and analysing
security concerns starting from the requirements engineering phase. On the neg-
ative site, the approaches do not support the design of software and business
processes based on a service-oriented architecture.

In addition, the use of User Requirements Notation for business process mod-
elling is proposed by Weiss and Amyot [29]. The research works of Colombo,
Mylopoulos, and Spoletini [9] presents a methodological framework that sup-
ports the modelling and formal analysis of requirements for service composi-
tion through a social and process perspective. While Kaabi, Souveyet, and Rol-
land [17] propose a goal driven approach to service elicitation, distribution and
orchestration. The agent-oriented methodology Tropos is used for analysing web
service requirements by Aiello and Giorgini in [1]. In the approach the authors
do not model every individual web service as an agent, but rather model the
whole set of interacting services as a multi-agent system where different depen-
dent strong and soft goals coexist. None of these methodologies aims to design
secure web services or supports secure business processes.

WS-Security [22] specifies enhancements to SOAP messaging that while build-
ing secure web services can be used in order to implement message content
integrity and confidentiality. WS-Security does not address the issues of inter-
operability between SOAP client and SOAP service. The standard does not
specifies how a SOAP client and a SOAP service can agree on the nature and
characteristics of the security tokens. WS-Security begins with the assumption



that, if one of the partners uses a particular type of security token, then the
other partner will be able to interpret and process the token. While the guar-
antee that both partners who wish to use WS-Security to secure their SOAP
messages support the security token they will be able to understand and process
is needed. WS-Trust [15] enables security token interoperability by defining a
request/response protocol by which SOAP actors can request of some trusted
authority that a particular security token be exchanged for another. WS-Trust
supports broker trust relationships and therefore can be used to build delegation
and trust chains between partners. A semantic of the main mechanisms of WS-
Trust and typical protocols, relying on these mechanisms are modelled in [4].
The core security properties of the specification are proved and some limitation
and potential vulnerabilities are discussed. Designing secure business processes
is out of the scope of this work as it focuses at the lower level, i.e, protocols
modelling and verification.

7 Concluding Remarks

One of the most thought provoking issues in requirements engineering is that of
designing web services and developing of business processes and workflows for
web services. The research on web services design is well under way, but most of
the design methodologies for web services do not address the issue of developing
secure web services, secure business processes and secure workflows.

The main contribution of the paper is to bridge the gap between early require-
ments analysis and secure workflows for web services development. In particular,
we have proposed a methodology that allows a designer of a business process to
derive the skeleton of the concrete secure business processes based on the early
requirements analysis. Furthermore, the secure business processes are refined in
order to obtain the appropriate secure workflows that can be described by the
proposed specification language for secure requirements called Secure BPEL.

The research presented in this work is still in progress. This work prods for
more investigation of the proposed Secure BPEL language. In the framework
of the IST-FP6-IP-SERENITY project, the Workflow Security Analysis Tool is
currently underway. The tool supports workflow security requirements imple-
mentation by Secure BPEL specification language. In the next future, we plan
to dive into the details of the low level secure requirements of transaction, mes-
sages integrity and confidentiality that will be included in the next release of the
language.

References

1. M. Aiello and P. Giorgini. Applying the Tropos Methodology for Analysing Web
Services Requirements and Reasoning about Qualities of Services. CEPIS Upgrade
- The European journal of the informatics professional, 5(4):20–26, 2004.



2. S. Bajaj, G. Della-Libera, B. Dixon, M. Dusche, M. Hondo, M. Hur, C. Kaler,
H. Lockhart, H. Maruyama, A. Nadalin, N. Nagaratnam, A. Nash, H. Prafullchan-
dra, and J. Shewchuk. Web Services Federation Language (WS-Federation) 1.0,
July 2003. http://specs.xmlsoap.org/ws/2003/07/secext/.

3. BEA, IBM, Microsoft, SAP AG, and Siebel Systems. Business Process Execu-
tion Language for Web Services Version 1.1, May 2003. http://www.ibm.com/

developerworks/library/ws-bpel/.
4. K. Bhargavan, R. Corin, C. Fournet, and A. D. Gordon. Secure Sessions for Web

Services. In Proceedings of Workshop on Secure Web Service, Fairfax, VA, USA,
October 24 2004.

5. P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos. TROPOS:
An Agent-Oriented Software Development Methodology. Journal of Autonomous
Agents and Multi-Agent Systems, 8(3):203–236, 2004.

6. S. Campadello, L. Compagna, D. Gidoin, S. Holtmanns, V. Meduri, J.-C. Pazzaglia,
M. Seguran, and R. Thomas. A7.D1.1 - Scenario Selection and Definition. SAP,
April 2006. Report.

7. J. Castro, M. Kolp, and J. Mylopoulos. Towards Requirements-Driven Information
Systems Engineering: The Tropos Project. Information Systems, 27(6):365–389,
September 2002.

8. B. H. C. Cheng, S. Konrad, L.A. Campbell, and R. Wassermann. Using Security
Patterns to Model and Analyze Security Requirements. In IEEE Workshop on
Requirements for High Assurance Systems, Monterey, California, USA, September
2003.

9. E. Colombo, J. Mylopoulos, and P Spoletini. Modeling and Analyzing Context-
aware Composition of Services. In Proceedings of International Conference on
Service-Oriented Computing, Amsterdam, The Netherlands, December 13–15 2005.

10. A. Fuxman, L. Liu, j. Mylopoulos, M. Pistore, M. Roveri, and P. Traverso. Spec-
ifying and Analyzing Early Requirements in Tropos. Requirements Engineering,
9(2):132–150, May 2004.

11. G. Georg, I. Ray, and R. France. Using Aspects to Design a Secure System. In Pro-
ceedings of IEEE International Conference on Engineering of Complex Computer
Systems, Greenbelt, Maryland, USA, December 2 - 4 2002.

12. P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone. Requirements Engineer-
ing for Trust Management: Model, Methodology, and Reasoning. International
Journal of Information Security, 5(4):257–274, October 2006.

13. Trusted Computing Group. Tcg specification architecture overview revision
1.2, April 2003. https://www.trustedcomputinggroup.org/groups/TCG 1 0

Architecture Overview.pdf.
14. C.B. Haley, R.C. Laney, and B. Nuseibeh. Deriving Security Requirements from

Crosscutting Threat Descriptions. In Proceedings of International Conference on
Aspect-Oriented Software Development, Lancaster, UK, March 2004.

15. IBM, BEA Systems, Microsoft, Layer 7 Technologies, Oblix, VeriSign, Actional,
Computer Associates, OpenNetwork Technologies, Ping Identity, Reactivity, and
RSA Security. Web Services Trust Language (WS-Trust).

16. J. Jürjens. Secure Systems Development with UML. Springer-Verlag, 2004.
17. R.S. Kaabi, C. Souveyet, and C. Rolland. Eliciting Service Composition in a Goal

Driven Manner. In Proceedings of International Conference on Service Oriented
Computing, New York, NY, USA, November 15-18 2004.

18. R. Kazhamiakin, M. Pistore, and M. Roveri. A Framework for Integrating Business
Processes and Business Requirements. In Proceeding of the Enterprise Distributed
Object Computing Conference, California, USA, September 20-24 2004.



19. D. Lau and J. Mylopoulos. Designing Web Services with Tropos. In Proceedings of
IEEE International Conference on Web Services, San Diego, USA, July 6-9 2004.

20. F. Massacci, J. Mylopoulos, and N. Zannone. An Ontology for Secure Socio-
Technical Systems. Handbook of Ontologies for Business Interaction, 2007. To
appear.

21. T. Neubauer, M. Klemen, and S. Biffl. Secure Business Process Management: A
Roadmap. In Proceedings of International Conference on Availability, Reliability
and Security, Vienna, Austria, April 2006.

22. OASIS. Web Services Security: SOAP Message Security 1.1 (WS-Security).
23. OASIS. Web Services Business Process Execution Language Version 2.0, August

2006. Public Review Draft, http://docs.oasis-open.org/wsbpel/2.0/.
24. M.P. Papazoglou and J. Yang. Design Methodology for Web Services and Business

Processes. In Proceedings of the International Workshop on Technologies for E-
Services, Hong Kong, China, August 2002.

25. L. Penserini, A. Perini, A. Susi, and J. Mylopoulos. From Stakeholder Needs
to Service Requirements. In Proceeding of International Workshop on Service-
Oriented Computing: Consequences for Engineering Requirements, Minneapolis,
Minnesota, USA, September 12 2006.

26. G. Sindre and A.L. Opdahl. Eliciting Security Requirements with Misuse Cases.
Requirements Engineering, 10(1):34–44, January 2005.

27. A. Susi, A. Perini, J. Mylopoulos, and P. Giorgini. The Tropos Metamodel and its
Use. Informatica, 29:401–408, 2005.

28. A. van Lamsweerde, S. Brohez, R. De Landtsheer, and D. Janssens. From Sys-
tem Goals to Intruder Anti-Goals: Attack Generation and Resolution for Security
Requirements Engineering. In Proceedings of Workshop on Requirements for High
Assurance Systems, Monterey Bay, California, USA, September 9 2003.

29. M. Weiss and D. Amyot. Business Process Modeling with URN. International
Journal of E-Business Research, 1(3):63–90, 2005.


