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Abstract. The most common matching applications, e.g., ontology matching,
focus on the computation of the correspondences holding between the nodes of
graph structures (e.g., concepts in two ontologies). However there are applica-
tions, such as matching of web service descriptions, where matching mayneed
to compute the correspondences holding among the full graph structures and pre-
serve certain structural properties of the graphs being considered. The goal of
this paper is to provide an implementation of a new matching operator, that we
call structure preserving match. This operator takes two graph-like structures and
produces a mapping between those nodes of the structures that correspond seman-
tically to each other, (i) still preserving a set of structural properties of the graphs
being matched, (ii) only in the case if the graphsgloballycorrespond semantically
to each other. We present an exact and an approximate structure matching algo-
rithms. The latter is based on a formal theory of abstraction and builds upon the
well known tree edit distance measures. We have implemented the algorithms and
applied them to the web service matchmaking scenario. The evaluation results,
though preliminary, show the efficiency and effectiveness of our approach.

1 Introduction

We are interested in the problem of location of web services on the basis of the capabili-
ties that they provide. This problem is often referred as matchmaking problem, see [14,
15, 21] for some recent examples. Most previous solutions employ a single ontology
approach, namely the web services are assumed to be described by the concepts taken
from a shared ontology. This allows to reduce the matchmaking problem to reasoning
within the shared ontology. In contrast to this work, as described in [19, 6], we assume
that the web services are described taking the terms from different ontologies and that
their behavior is described using complex terms, actually first order terms. This allows
us to provide very detailed description of their input and output behavior. The problem
becomes therefore that of matching two web service descriptions (that can be seen as
graph structures) and the mapping is considered as successful only if the two graphs are
globallysimilar (e.g.,tree1 is 0.7 similar totree2, according to some metric). A further
requirement of these applications is that the mapping must preserve certain structural



properties of the graphs being considered. In particular the syntactic types and sorts
have to be preserved (e.g., a function symbol must be mapped to a function symbol
and a variable must be mapped to a variable). At the same time we would like to en-
able the matchmaking of the web service descriptions that match only approximately
(see [6] for a detailed description). For instance,get Wine(Region, Country, Color,
Price, Numberof bottles)can be (approximately) mapped toget Wine(Region(Country,
Area), Colour, Cost, Year, Quantity).

In this paper we define an operator that we callstructure preserving match. This
operator takes two graph-like structures and produces a mapping between those nodes
of the structures that correspond semantically to each other, (i) still preserving a set
of structural properties of the graphs being matched, (ii) only in the case if the graphs
globally correspond semantically to each other. Notice that this problem significantly
differs from the ontology matching problem, as defined for instance in [8, 23], where
(i) is only partially satisfied and (ii) is not even an argument. We present an exact and
an approximate structure matching algorithms. The former solves the exact structure
matching problem. It is designed to succeed on equivalent terms and to fail otherwise.
The latter solves an approximate structure matching problem. It is based on the fusion of
the ideas derived from the theory of abstraction [7] and treeedit distance algorithms [28,
3]. We have implemented the algorithms and evaluated them onthe dataset constructed
from different versions of the state of the art first order ontologies.

The rest of the paper is organized as follows. We present a motivating example in
Section 2. Section 3 is devoted to the exact structure matching algorithm. In Section 4
we define the abstraction operations and introduce the correspondence between them
and tree edit operations. In Section 5 we show how existing tree edit distance algo-
rithms can be exploited for the computation of the global similarity between two web
service descriptions. Section 6 is devoted to approximate structure matching algorithm.
The evaluation results are presented in Section 7. These results, though preliminary, il-
lustrate the high efficiency and effectiveness of our approach. Section 8 briefly reviews
the related work and concludes the paper.

2 A Motivating Example

Figure 1 provides an example of exactly matched web service descriptions along with
their tree representations (or term trees). Dashed lines stand for the correspondences
holding among the nodes of the term trees.

Fig. 1.Exactly matched web service descriptions and their tree representations.



In particular, in Figure 1 we have an exact match, namely the first of the services
requires the second to returnCars of a givenBrand, Year andColor while the other
providesAutosof a givenBrand, YearandColor. Notice that, there are no structural
differences and that the only difference is in the function names.

Fig. 2.Approximately matched web service descriptions and their tree representations.

Consider now Figure 2. It provides an example of an approximate match. In this
case a more sophisticated data translation is required. Forexample, the first web service
description requires that the fourth argument ofget Winefunction (Color) to be mapped
to the second argument (Colour) of get Winefunction in the second description. On the
other handRegionon the right is defined as a function with two arguments (Country
andArea) while on the leftRegionis an argument ofget Wine. Thus,Regionin the first
web service description must be passed to the second web service as the value of the
Areaargument of theRegionfunction. MoreoverYearon the right has no corresponding
term on the left.

Therefore, in order to guarantee the successful data translation we are interested in
the correspondences holding among the nodes of the term trees of the given web service
descriptions only in the case when the web service descriptions themselves are “similar
enough”. At the same time the correspondences have to preserve the certain structural
properties of the descriptions being matched. In particular we require the functions to
be mapped to functions and variables to variables.

3 Exact structure semantic matching

There are two stages in the matching process:

– Node matching: solves the semantic heterogeneity problem by consideringonly
labels at nodes and domain specific contextual information of the trees. In our ap-
proach we use semantic matching as extensively described in[8]. Notice that the
result of this stage is the set of correspondences holding between the nodes of the
trees.

– Structural tree matching: exploits the results of the node matching and the structure
of the tree to find the correspondences holding between the trees themselves (e.g.,
tree1 is 0.7 similar totree2).

Let us consider them in turn. The semantic node matching algorithm, as introduced
in [8], takes as input two term trees and computes as output a set of correspondences
holding among the nodes in the trees. This process is articulated in four macro steps:



Step 1. In this step we automatically translate natural language labels taken from the
term tree elements into an internal logical language with boolean semantics. Thus, for
example, the labelNumber of bottlesis translated intoCNumber of bottles = CNumber⊓
Cbottles, whereCbottles = 〈bottle, sensesWN#4〉 is taken to be the union of four
WordNet senses, and similarly fornumber.

Step 2. Term trees are hierarchical structures where the path fromthe root to a node
uniquely identifies that node (and also its meaning). We compute the logical formula
associated with a node as a conjunction of concepts of the labels in the path from the
given node to the root. For example, in Figure 2, the concept at node for the nodeArea
is computed as follows:CArea = Cget Wine ⊓ CRegion ⊓ CArea.

Step 3deals with acquisition of “world” knowledge. For example, from WordNet we
can derive thatRegionandAreaare synonyms, and therefore,CRegion = CArea.

Step 4deals with the computation of the semantic relations holding between two nodes.
This is done by reducing this problem to a propositional satisfiability (SAT) problem
and by exploiting state of the art SAT decider.

The exact structure matching algorithm exploits the results of the node matching
algorithm. It is designed to succeed for equivalent terms and to fail otherwise. It expects
the trees to have the same depth and the same number of children. More precisely we
say that two treesT1 andT2 match iff for any noden11 in T1 there is a noden21 in T2

such that

– n11 semantically matchesn21, which in this case holds iffc@n21 is equivalent to
c@n22 given the available background knowledge, wherec@n1 andc@n2 are the
concepts at nodes ofn1 andn2;

– n11 andn21 reside on the same depth inT1 andT2, respectively;

– all ancestors ofn11 are semantically matched to the ancestors ofn21;

The pseudo code in Figure 3 illustrates an algorithm for exact structure matching.
exactStructureMatch takes two trees of nodessourceand target as an input.exact-
StructureMatch returns an array ofMappingElementsholding between the nodes of
the trees if there is an exact match between them and null otherwise. The array of
MappingElements resultis created (line 12) and filled byexactTreeMatch (line 13).
allNodesMappedchecks whether all the nodes ofsourcetree are mapped to the nodes
of the target tree (line 14). If this is the case there is an exact structurematch between
the trees and the set of computed mappings is returned (line 15).exactTreeMatchtakes
two trees of nodessourceandtargetand array of MappingElementsresultas an input.
It recursively fillsresultwith the mappings computed bynodeMatch (line 23).exact-
TreeMatch starts from obtaining the roots ofsourceandtarget trees (lines 19-20). The
semantic relation holding between them is computed bynodeMatch (line 21) imple-
menting the node matching algorithm. If the relation is equivalence, the corresponding
mapping is saved toresult array (lines 22-23) and the children of the root nodes are
obtained (line 26-27). Finally the loops onsourceChildrenand targetChildren(lines
28-32) allow to callexactTreeMatch recursively for all pairs of sub trees rooted at
sourceChildrenandtargetChildrenelements.



1.Node struct of
2. int nodeId;
3. String label;
4. String cLabel;
5. String cNode;

6.MappingElement struct of
7. int MappingElementId;
8. Node source;
9. Node target;
10. String relation;

11.MappingElement[] exactStructureMatch (Tree of Nodes source,target)
12. MappingElement[] result;
13. exactTreeMatch(source,target,result);
14. if (allNodesMapped(source,target,result))
15. return result;
16. else
17. return null;

18.void exactTreeMatch(Tree of Nodes source,target,MappingElement[] result)
19. Node sourceRoot=getRoot(source);
20. Node targetRoot=getRoot(target);
21. String relation= nodeMatch(sourceRoot,targetRoot);
22. if (relation=="=")
23. addMapping(result,sourceRoot,targetRoot,"=");
24. else
25. return;
26. Node[] sourceChildren=getChildren(sourceRoot);
27. Node[] targetChildren=getChildren(targetRoot);
28. For each sourceChild in sourceChildren
29. Tree of Nodes sourceChildSubTree=getSubTree(sourceChild);
30. For each targetNode in target
31. Tree of Nodes targetChildSubTree=getSubTree(targetChild);
32. exactTreeMatch(sourceChildSubTree, targetChildSubTree, nodesToMatch);

Fig. 3.Pseudo code for exact structure matching algorithm

4 Approximate matching via abstraction/refinement operations

In [7], Giunchiglia and Walsh categorize the various kinds of abstraction operations
in a wide-ranging survey. They also introduce a new class of abstractions, called TI-
abstractions (where TI means “Theorem Increasing”), whichhave the fundamental
property of maintaining completeness, while losing correctness. In other words any
fact which is true of the original term is also true of the abstract term, but not viceversa.
And similarly, if a ground formula is true so is the abstract formula, but not vice versa.
Dually, by taking the inverse of each abstraction operation, we can define a correspond-
ing refinement operation which preserves correctness whileloosing completeness. The
second fundamental property of the abstraction operationsis that they provide all and
only the possible ways in which two first order terms can be made to differ by ma-
nipulations of their signature, still preserving completeness. In other words, this set
of abstraction/refinement operations defines all and only the possible ways in which
correctness and completeness are maintained when operating on first order terms and
atomic formulas. This is the fundamental property which allows us to study and con-
sequently quantify the semantic similarity (distance) between two first order terms. To
this extent it is sufficient to determine which abstraction/refinement operations are nec-
essary to convert one term into the other and to assign to eachof them a cost that models
the “semantic distance” associated to the operation.



Giunchiglia and Walsh’s categories are as follows:

Predicate: Two or more predicates are merged, typically to the least general general-
ization in the predicate type hierarchy, e.g.,
– Bottle(X) + Container(X)7→ Container(X).
We callContainer(X)a predicate abstraction ofBottle(X)or Container(X) ⊒Pd

Bottle(X). Conversely we callBottle(X)a predicate refinement ofContainer(X)
or Bottle(X) ⊑Pd Container(X).

Domain: Two or more terms are merged, typically by moving the functions (or con-
stants) to the least general generalization in the domain type hierarchy, e.g.,
– Daughter(Me) + Child(Me)7→ Child(Me).
– Acura + Nissan7→ Nissan.
Similarly to the previous item we callChild(Me)andNissana domain abstractions
of Daughter(Me)and Acura respectively orChild(Me) ⊒D Daughter(Me),
Nissan ⊒D Acura. Conversely we callDaughter(Me)andAcuraa domain refine-
ments ofChild(Me)andNissanor Daughter(Me) ⊑D Child(Me), Acura ⊑D

Nissan.
Propositional: One or more arguments are dropped, e.g.,

– Bottle(A) 7→ Bottle.
We call Bottle a propositional abstraction ofBottle(A)or Bottle ⊒P Bottle(A).
ConverselyBottle(A) is a propositional refinement ofBottle or Bottle(A) ⊑P

Bottle.
Precondition: The precondition of a rule is dropped3 , e.g.,

– [Ticket(X)→ Travel(X)] 7→ Travel(X).

Consider the following pair of first order terms(Bottle A)and(Container). In this
case there is no abstraction/refinement operation that makethem equivalent. However
consequent applications of propositional and predicate abstraction operations make the
two terms equivalent:

(Bottle A) 7→⊑P (Bottle) 7→⊑P d (Container) (1)

In fact the relation holding among the terms is a compositionof two refinement oper-
ations, namely(Bottle A) ⊑P (Bottle) and(Bottle) ⊑Pd (Container). We define
anabstraction mapping element (AME)as a 5-tuple〈IDij , t1, t2, R, sim〉, whereIDij

is a unique identifier of the given mapping element;t1 and t2 are first order terms;
R specifies a relation for the given terms; andsim stands for a similarity coefficient
in the range [0..1] quantifying the strength of the relation. In particular for the AMEs
we allow the following semantic relations{≡,⊑,⊒}, where≡ stands for equivalence;
⊒ represents an abstraction relation and connects the precondition and the result of
a composition of arbitrary number of predicate, domain and propositional abstraction
operations; and⊑ represents a refinement relation and connects the precondition and
the result of a composition of arbitrary number of predicate, domain and propositional
refinement operations.

3 We do not consider precondition abstraction and refinement in the rest of this paper as we do
not want to drop preconditions, because this would endanger the successful matchmaking of
web services.



Therefore, the problem of AME computation becomes a problemof minimal cost
composition of the abstraction/refinement operations allowed for the given relationR
that are necessary to convert one term into the other. In order to solve this problem we
propose to represent abstraction/refinement operations astree edit distance operations
applied to the term trees. This allows to redefine the problemof AME computation into
a tree edit distance problem.

In its traditional formulation, the tree edit distance problem considers three opera-
tions: (i) vertex deletion, (ii) vertex insertion, and (iii) vertex replacement [25]. Often
these operations are presented as rewriting rules:

(i)υ → λ; (ii)λ → υ; (iii )υ → ω; (2)

whereυ andω correspond to the labels of nodes in the trees whileλ stands for the
special blank symbol. Figure 4 illustrates two applications of delete and replace tree
edit operations.

Fig. 4.Delete and replace tree edit operations

Our proposal is to restrict the formulation of the tree edit distance problem in order
to reflect the semantics of the first order terms. In particular we propose to redefine
the tree edit distance operations in such a way that will allow them to have one-to-one
correspondence to the abstraction/refinement operations presented previously in this
section. Table 1 illustrates the correspondence between abstraction/refinement and tree
edit operations. The first column presents the abstraction/refinement operations. The
Table 1.The correspondence between abstraction/refinement operations andtree edit operations.

Abstraction/ Tree editPreconditions of operation use
refinement operationoperation

t1 ⊒Pd t2 a → b a ⊒ b; a andb correspond to predicates
t1 ⊒D t2 a → b a ⊒ b; a andb correspond to functions or constants
t1 ⊒P t2 λ → a a corresponds to predicate, function or constant
t1 ⊑Pd t2 a → b a ⊑ b; a andb correspond to predicates
t1 ⊑D t2 a → b a ⊑ b; a andb correspond to functions or constants
t1 ⊑P t2 a → λ a corresponds to predicate, function or constant

second column lists corresponding tree edit operations. The third column describes the
preconditions of the tree edit operation use. Consider, forexample, the first line of Table
1. The predicate abstraction operation applied to first order termt1 results with termt2
(t1 ⊒Pd t2). This abstraction operation corresponds to tree edit replacement operation
applied to term tree oft1 that replaces the nodea with the nodeb (a → b). Moreover
the operation can be applied only in the case if (i) labela is a generalization of label
b and (ii) both the nodesa andb in the term trees correspond to predicates in the first
order terms.



5 Computing the global similarity between two trees

Our goal now is to compute the similarity between two term trees. In order to perform
this we need to compute the minimal cost composition of the abstraction/refinement
operations that are necessary to convert one term tree/firstorder term into the other. The
starting point is the traditional formulation of the tree edit distance problem.

Cost =
∑

i∈S

ni ∗ Costi (3)

The solution of the problem then becomes to minimizeCostin Eq. 3 and, therefore, to
determine the minimal set of operations (i.e., the one with the minimum cost) which
transforms one tree into another. In Eq. 3S stands for the set of the allowed tree edit
operations;ni stands for the number of i-th operations necessary to convert one tree
into the other andCosti defines the cost of the i-th operation. Our goal is to define the
Costi in a way to model the semantic distance.

A possible uniform proposal is to assign the same unit cost toall tree edit operations
that, as from Table 1, have their abstraction theoretic counterparts. Table 2 illustrates
the costs of the abstraction/refinement (tree edit) operations, depending on the rela-
tion (equivalence, abstraction or refinement) being computed. Notice that the costs for
estimating abstraction (⊑) and refinement (⊒) relations in AME have to be adjusted
according to their definitions. In particular the tree edit operations corresponding to
abstraction/refinement operations that are not allowed by the definition of the given re-
lation have to be prohibited by assigning to them an infinite cost. Notice also that, we
do not give any preference to a particular type of abstraction/refinement operations. Of
course this strategy can be changed to satisfy certain domain specific requirements.

Table 2. Costs of the abstraction/refinement (tree edit) operations, exploited for computation of
equivalence (Cost≡), abstraction (Cost⊑) and refinement (Cost⊒) relations holding among the
terms.

Abstraction/refinement (tree edit) operationCost≡ Cost⊑ Cost⊒

t1 ⊒Pd t2 1 ∞ 1
t1 ⊒D t2 1 ∞ 1
t1 ⊒P t2 1 ∞ 1
t1 ⊑Pd t2 1 1 ∞

t1 ⊑D t2 1 1 ∞

t1 ⊑P t2 1 1 ∞

Consider, for example, the first line in Table 2. The cost of the tree edit distance
operation that correspond to the propositional abstraction (t1 ⊒Pd t2) is equal to 1 when
used for the computation of equivalence (Cost≡) and abstraction (Cost⊒) relations in
AME. It is equal to∞ when used for the computation of refinement (Cost⊑) relation.

Eq. 3 can now be used for computation of the tree edit distancescore. However,
when comparing two web service descriptions we are interested rather in similarity
than in distance. We exploit the following equation to convert the distance produced by



an edit distance algorithm into the similarity score:

sim = 1 −
Cost

max(number of nodes1, number of nodes2)
(4)

wherenumber of nodes1 andnumber of nodes2 stand for the number of nodes in
the trees. Note that for the special case ofCostequal to∞ the similarity score is esti-
mated to 0.

Many existing tree edit distance algorithms allow to keep track of the nodes to which
a replace operation is applied. Therefore, as a result they allow to obtain not only the
minimal tree edit cost but also a minimal cost mapping among the nodes of the trees.
According to [25] this minimal cost mapping is (i) one-to-one; (ii) horizontal order
preserving between sibling nodes; and (iii) vertical orderpreserving. For example, the
mapping depicted in Figure 1 complies to all these requirements while the mapping
depicted in Figure 2 violates (ii). In particular the third sibling Price on the left tree is
mapped to the third siblingCoston the right tree while the fourth siblingColor on the
right tree is mapped to the second siblingColour on the left tree.

For the tree edit distance operations depicted in Table 1 we propose to keep track
of nodes to which the tree edit operations derived from the replace operation are ap-
plied. In particular we consider the operations that correspond to predicate and domain
abstraction/refinement (t1 ⊒Pd, t1 ⊑Pd, t1 ⊒D, t1 ⊑D). This allows us to obtain a
mapping among the nodes of the term trees with the desired properties (i.e., there is
only one-to-one correspondences in the mapping). Moreoverit complies to the struc-
ture preserving matching requirements namely functions are mapped to functions and
variables are mapped to variables. This is the case because (i) predicate and domain ab-
straction/refinement operations do not convert, for example, a function into a variable
and (ii) the tree edit distance operations, as from Table 1, have a one-to-one correspon-
dence with abstraction/refinement operations.

At the same time a mapping returned by a tree edit distance algorithm preserves the
horizontal order among the sibling nodes, but this is not desirable property for the data
translation purposes. This is the case because the correspondences that do not comply
to the horizontal order preservation requirements, like the one holding betweenColour
andColor on Figure 2, are not included in the mapping. However, as fromTable 1,
the tree edit operations corresponding to predicate and domain abstraction/refinement
(t1 ⊒Pd, t1 ⊑Pd, t1 ⊒D, t1 ⊑D) can be applied only to those nodes of the trees whose
labels are either generalizations or specializations of each other, as computed by the
node matching algorithm. Therefore, given the mapping produced by the node matching
algorithm we can always recognize the cases when the horizontal order between sibling
nodes is not preserved and change the ordering of the siblingnodes to make the mapping
horizontal order preserving. For example, swapping the nodesCostandColour in the
right tree depicted on Figure 2 does not change the meaning ofthe corresponding term
while allows the correspondence holding betweenColour andColor on Figure 2 to be
included in the mapping produced by a tree edit distance algorthm.



6 The approximate structure matching algorithm

As from above our goal is to find ‘good enough’ services [9] if perfect are not available.
We start by providing a definition of the approximate structure matching as the basis
for the algorithm.

We say that two nodesn1 andn2 in the treesT1 andT2 approximately match iff
c@n1 R c@n2 holds given the available background knowledge, wherec@n1 andc@n2

are the concepts at nodes ofn1 andn2, and whereR ∈ {≡,⊑,⊒,∧,⊥, not related}.
We say that two treesT1 andT2 match iff there is at least one noden11 in T1 and a

noden21 in T2 such that

– n11 approximately matchesn21;
– all ancestors ofn11 are approximately matched to the ancestors ofn21;

The approximate structure matching algorithm exploits thenode matching algo-
rithm presented in Section 3. First the approximate structure matching algorithm esti-
mates the similarity of two terms by application of a tree edit distance algorithm with
the tree edit operations and costs modified as described in Sections 4 and 5. The sim-
ilarity scores are computed for equivalence, abstraction and refinement relations. For
each of these cases the tree edit distance operation costs are modified as depicted on
Table 2. The relation with the highest similarity score are assumed to hold among the
terms. If the similarity score exceeds a given threshold themappings connecting the
nodes of the term trees, as computed by the tree edit distancealgorithm, are returned by
the matching routine what allows for further data translation.

Figure 5 illustrates approximate structure matching algorithm.

AME struct of
Tree of Nodes source;
Tree of Nodes target;
String relation;
double approximationScore;

1.MappingElement[] approximateStructureMatch
(Tree of Nodes source, target, double threshold)

2. MappingElement[] result;
3. approximateTreeMatch(source,target,result);
4. AME ame=analyzeMismatches(source,target,result);
5. if (getRelation(ame)=="=") or (getRelation(ame)=="<")

or (getRelation(ame)==">")
6. if (getApproximationScore(ame)>threshold)
7. return result;
8. return null;

Fig. 5.Pseudo code for approximate structure matching algorithm

approximateStructureMatch takes as input thesourceand target term trees and a
thresholdvalue.approximateTreeMatch fills the resultarray (line 3) which stores the
mappings holding between the nodes of the trees. In contrastto exactTreeMatch in
Figure 3approximateTreeMatch considers the semantic relations other than equiva-
lence. An AMEameis computed (line 4) byanalyzeMismatches. If amestands for
equivalence, abstraction or refinement relations (line 5) and if anapproximationScore
exceedsthreshold(line 6) the mappings calculated byapproximateTreeMatch are re-
turned (line 7).analyzeMismatchescalculates the aggregate score of tree match quality
by exploiting a tree edit distance algorithm as described inSection 5.



7 Evaluation

We have implemented the algorithms described in the previous sections in Java. In
the implementation we have exploited a modification of simple tree edit distance al-
gorithm from Valiente’s work [27]. We have evaluated the matching quality of the al-
gorithms on 132 pairs of first order logic terms. Half of the pairs were composed of
the equivalent terms (e.g.,journal(periodical-publication)andmagazine (periodical-
publication)) while the other half were composed from similar but not equivalent terms
(e.g.,web-reference(publication-reference)andthesis-reference (publication-reference)).
The terms were extracted from different versions of the Standard Upper Merged Ontol-
ogy (SUMO)4 and the Advance Knowledge Transfer (AKT)5 ontologies. We extracted
all the differences between versions 1.50 and 1.51, and 1.51and 1.52 of the SUMO
ontology and between versions 1, 2.1 and 2.2 of the AKT-portal and AKT-support on-
tologies6. These are both first order ontologies, so many of these differences mapped
well to the potential differences between terms that we are investigating. However, some
of them were more complex, such as differences in inference rules, or consisted of on-
tological objects being added or removed rather than altered, and had no parallel in our
work. These pairs of terms were discarded and our tests were run on all remaining dif-
ferences between these ontologies. Therefore, we have simulated the situation when the
service descriptions are defined exploiting the two versions of the same ontology.

In our evaluation we have exploited the commonly accepted measures of matching
quality, namely precision, recall, and F-measure. Precision varies in the [0,1] range;
the higher the value, the smaller the set of incorrect correspondences (false positives)
which have been computed. Precision is a correctness measure. Recall varies in the
[0,1] range; the higher the value, the smaller the set of correct correspondences (true
positives) which have not found. Recall is a completeness measure. F-measure varies
in the [0,1] range. The version computed here is the harmonicmean of precision and
recall. It is a global measure of the matching quality, increasing as the matching quality
improves. While computing precision and recall we have considered the correspon-
dences holding among first order terms rather than the nodes of the term trees. Thus,
for instance,journal(periodical-publication1)=magazine(periodical-publication2) was
considered as single correspondence rather than two correspondences, namelyjour-
nal=magazineandperiodical-publication1=periodical-publication2. The evaluation was
performed on a Pentium 4 computer with 512 Mb of RAM.

Interestingly enough our exact structure matching algorithm was able to find 36
correct correspondences what stands for 54% of Recall with 100% Precision. All mis-
matches (or correct correspondences not found by the algorithm) corresponded to struc-
tural differences among first order terms which exact structure matching algorithm is
unable to capture. The examples of correctly found correspondences are given below:

meeting-attendees(has-other-agents-involved)
meeting-attendee(has-other-agents-involved)

4 http://ontology.teknowledge.com/
5 http://www.aktors.org
6 seehttp://dream.inf.ed.ac.uk/projects/dor/ for full versions of these on-

tologies and analysis of their differences



r&d-institute(Learning-centred-organization)
r-and-d-institute(Learning-centred-organization)

piece(Pure2,Mixture)
part(Pure2,Mixture)

has-affiliatied-people(Affiliated-person)
has-affililated-person(affiliated-person)

The first and the second example illustrate the minor syntactic differences among
the terms, while the third and fourth examples illustrate the semantic heterogeneity in
the various versions of the ontologies.

Figure 6 presents the matching quality measures depending on the cut-off threshold
value for approximate structure preserving matching algorithm. As from Figure 6, the

Fig. 6. The matching quality measures depending on threshold value for approximate structure
matching algorithm

algorithm demonstrates high matching quality on the wide range of threshold values.
In particular, F-Measure values exceed 70% for the given range. Table 3 summarizes
the time performance of the matching algorithm. It presentsthe average time taken by

Table 3. Time performance of approximate structure matching algorithm (average on 132 term
matching tasks)

Node matchingNode matchingStructure matching
Step 1 and 2 Step 3 and 4

Time, ms 134.1 3.3 0.9

the various steps of the algorithm on 132 term matching tasks. As from the table, Step
1 and 2 of the node matching algorithm significantly slow downthe whole process.
However these steps correspond to the linguistic preprocessing that can be performed
once offline [8]. Given that the terms can be automatically annotated with the linguistic
preprocessing results [8] once when changed, the overall runtime is reduced to 4.2 ms,
which corresponds roughly to 240 term matching tasks per second.



8 Conclusion and Related Work

We have presented an exact and an approximate structure matching algorithms that im-
plement thestructure preserving matchoperator. We have implemented the algorithms
and applied them to the web service matchmaking scenario. The evaluation results,
though preliminary, show the efficiency and effectiveness of our approach.

Future work includes further investigations on the cost assignment for the abstrac-
tion/refinement operations. In the version of the algorithmpresented in the paper no
preference is given to the particular abstraction/refinement operation and all allowed
operations are assigned a unit cost. One may argue, for example, that the semantic
distance betweencat andmammalis less then the semantic distance betweencat and
animal. Therefore, the operation abstractingcat to mammalhave to be less costly than
the operation abstractingcat to animal.

The problem of location of web services on the basis of the capabilities that they
provide (often referred as matchmaking problem) recently has received a considerable
attention. Most of the approaches to the matchmaking problem so far employed a single
ontology approach (i.e., the web services are assumed to be described by the concepts
taken from the shared ontology). See [14, 15, 21] for example. Probably the most sim-
ilar to ours is the approach taken in METEOR-S [1] and in [20] where the services
are assumed to be annotated with the concepts taken from various ontologies. Then the
matchmaking problem is solved by the application of the matching algorithm. The al-
gorithm combines the results of atomic matchers that roughly correspond to the element
level matchers exploited in the Step 3 of the node matching algorithm in Section 3. In
contrast to this work we exploit a more sophisticated matching technique that allows us
to utilize the context provided by the first order term.

Many diverse solutions to the ontology matching problem have been proposed so
far. See [23] for a comprehensive survey and [5, 18, 16, 4, 22,10, 2, 12, 17, 24] for in-
dividual solutions. However most of efforts were devoted tocomputation of the corre-
spondences holding among the classes of description logic ontologies. Recently several
approaches allowed computation of correspondences holding among the object prop-
erties (or binary predicates) [13, 26]. The approach taken in [11] allows to find corre-
spondences holding among parts of description logic ontologies or subgraphs extracted
from the ontology graphs. In contrast to these approaches weallow the computation of
correspondences holding among first order terms.
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