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Abstract. The most common matching applications, e.g., ontology matching,
focus on the computation of the correspondences holding betweendies b
graph structures (e.g., concepts in two ontologies). However therapplica-
tions, such as matching of web service descriptions, where matchingesaly

to compute the correspondences holding among the full graph streictugeore-
serve certain structural properties of the graphs being considehedgdal of
this paper is to provide an implementation of a new matching operator, that we
call structure preserving matcihis operator takes two graph-like structures and
produces a mapping between those nodes of the structures thapoodegman-
tically to each other, (i) still preserving a set of structural propertieseftaphs
being matched, (ii) only in the case if the gragisbally correspond semantically

to each other. We present an exact and an approximate structurdngattdo-
rithms. The latter is based on a formal theory of abstraction and builds tiygo
well known tree edit distance measures. We have implemented the algoatiun
applied them to the web service matchmaking scenario. The evaluatidtsyesu
though preliminary, show the efficiency and effectiveness of ourcgmt.

1 Introduction

We are interested in the problem of location of web servicethe basis of the capabili-
ties that they provide. This problem is often referred aschmatking problem, see [14,
15, 21] for some recent examples. Most previous solutiongl@ma single ontology
approach, namely the web services are assumed to be delsoyilbee concepts taken
from a shared ontology. This allows to reduce the matchngagioblem to reasoning
within the shared ontology. In contrast to this work, as desd in [19, 6], we assume
that the web services are described taking the terms frdiereift ontologies and that
their behavior is described using complex terms, actuathy éirder terms. This allows
us to provide very detailed description of their input antpatibehavior. The problem
becomes therefore that of matching two web service degmmip{that can be seen as
graph structures) and the mapping is considered as suatesbfif the two graphs are
globallysimilar (e.g.tree; is 0.7 similar totrees, according to some metric). A further
requirement of these applications is that the mapping niestgove certain structural



properties of the graphs being considered. In particularsgntactic types and sorts
have to be preserved (e.g., a function symbol must be mamgpadunction symbol
and a variable must be mapped to a variable). At the same tieneauld like to en-
able the matchmaking of the web service descriptions thathmanly approximately
(see [6] for a detailed description). For instangefWine(Region, Country, Color,
Price, Numberof_bottles)can be (approximately) mappedget Wine(Region(Country,
Area), Colour, Cost, Year, Quantity)

In this paper we define an operator that we salcture preserving matcihis
operator takes two graph-like structures and produces pimgapetween those nodes
of the structures that correspond semantically to eachr,offyestill preserving a set
of structural properties of the graphs being matched, (ly in the case if the graphs
globally correspond semantically to each other. Notice that thislpro significantly
differs from the ontology matching problem, as defined fatamce in [8, 23], where
(i) is only partially satisfied and (ii) is not even an arguméfle present an exact and
an approximate structure matching algorithms. The formobres the exact structure
matching problem. It is designed to succeed on equivalemistand to fail otherwise.
The latter solves an approximate structure matching pnodigs based on the fusion of
the ideas derived from the theory of abstraction [7] andedéedistance algorithms [28,
3]. We have implemented the algorithms and evaluated thetheodataset constructed
from different versions of the state of the art first orderodogies.

The rest of the paper is organized as follows. We present avatiog example in
Section 2. Section 3 is devoted to the exact structure nragcilgorithm. In Section 4
we define the abstraction operations and introduce the smorelence between them
and tree edit operations. In Section 5 we show how existieg &dit distance algo-
rithms can be exploited for the computation of the globalilsirity between two web
service descriptions. Section 6 is devoted to approxintatetsire matching algorithm.
The evaluation results are presented in Section 7. Thesks,aghough preliminary, il-
lustrate the high efficiency and effectiveness of our apgiro8ection 8 briefly reviews
the related work and concludes the paper.

2 A Motivating Example

Figure 1 provides an example of exactly matched web sengsergptions along with
their tree representations (or term trees). Dashed lirsexldor the correspondences
holding among the nodes of the term trees.
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Fig. 1. Exactly matched web service descriptions and their tree representations.



In particular, in Figure 1 we have an exact match, namely tisé df the services
requires the second to retu@ars of a givenBrand, Yearand Color while the other
providesAutosof a givenBrand, Yearand Color. Notice that, there are no structural
differences and that the only difference is in the functiames.

get Wine(Region,C ountry, Color, Price Number_of bottles) get Wine(Region(Country, Area) Colour,Cost, Year, Quantity)
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Fig. 2. Approximately matched web service descriptions and their tree repatioss.

Consider now Figure 2. It provides an example of an approtdmaatch. In this
case a more sophisticated data translation is requirecg@onple, the first web service
description requires that the fourth argumenget\Winefunction (Color) to be mapped
to the second argument¢lour) of get Winefunction in the second description. On the
other handRegionon the right is defined as a function with two argume@syntry
andAred) while on the leftRegionis an argument afet Wine Thus,Regionin the first
web service description must be passed to the second welbesas/the value of the
Areaargument of th&egionfunction. MoreovelYearon the right has no corresponding
term on the left.

Therefore, in order to guarantee the successful data &tamshve are interested in
the correspondences holding among the nodes of the terexdféee given web service
descriptions only in the case when the web service desmnipthemselves are “similar
enough”. At the same time the correspondences have to peetfer certain structural
properties of the descriptions being matched. In partiowkarequire the functions to
be mapped to functions and variables to variables.

3 Exact structure semantic matching

There are two stages in the matching process:

— Node matchingsolves the semantic heterogeneity problem by consideirg
labels at nodes and domain specific contextual informatfdheotrees. In our ap-
proach we use semantic matching as extensively describf@]. iNotice that the
result of this stage is the set of correspondences holditwgelem the nodes of the
trees.

— Structural tree matchingexploits the results of the node matching and the structure
of the tree to find the correspondences holding betweendles themselves (e.g.,
treey is 0.7 similar totrees).

Let us consider them in turn. The semantic node matchingighgo, as introduced
in [8], takes as input two term trees and computes as outpet af £orrespondences
holding among the nodes in the trees. This process is ateaaliin four macro steps:



Step 1 In this step we automatically translate natural languapels taken from the
term tree elements into an internal logical language witbldein semantics. Thus, for
example, the labéllumber of bottless translated iNt@' x ymber of botties = Cnumber! ]
Chottics, WhereCporries = (bottle, sensesy n#4) is taken to be the union of four
WordNet senses, and similarly foumber

Step 2 Term trees are hierarchical structures where the path fhentoot to a node
uniquely identifies that node (and also its meaning). We egmghe logical formula
associated with a node as a conjunction of concepts of ttedslai the path from the
given node to the root. For example, in Figure 2, the concepbde for the nodérea
is computed as followsZ 4req = Cyet-wine M Cregion T CAarea-

Step 3deals with acquisition of “world” knowledge. For exampleorh WordNet we
can derive thaRegionandAreaare synonyms, and therefol€xcgion = Carea-

Step 4deals with the computation of the semantic relations hgltietween two nodes.
This is done by reducing this problem to a propositionalsiatility (SAT) problem
and by exploiting state of the art SAT decider.

The exact structure matching algorithm exploits the resoftthe node matching
algorithm. It is designed to succeed for equivalent ternastarail otherwise. It expects
the trees to have the same depth and the same number of nhidoge precisely we
say that two tree%; and7, match iff for any node:;; in T3 there is a nodes; in Ts
such that

— ny; semantically matches,, which in this case holds i@Qn.; is equivalent to
cQ@Qnqys given the available background knowledge, whe@a; andcQny are the
concepts at nodes af; andns;

— ny1 andne; reside on the same depthdih andTs;, respectively;
— all ancestors ofi1; are semantically matched to the ancestors-gf

The pseudo code in Figure 3 illustrates an algorithm for exa&acture matching.
exactStructureMatch takes two trees of nodesourceandtarget as an inputexact-
StructureMatch returns an array oMappingElementsolding between the nodes of
the trees if there is an exact match between them and nulhwittee The array of
MappingElements resuis created (line 12) and filled bgxactTreeMatch (line 13).
allNodesMappedchecks whether all the nodessidurcetree are mapped to the nodes
of thetargettree (line 14). If this is the case there is an exact struanatch between
the trees and the set of computed mappings is returned @inexactTreeMatchtakes
two trees of nodesourceandtargetand array of MappingElementssultas an input.

It recursively fillsresultwith the mappings computed mpdeMatch (line 23).exact-
TreeMatch starts from obtaining the roots sburceandtargettrees (lines 19-20). The
semantic relation holding between them is computechdgeMatch (line 21) imple-
menting the node matching algorithm. If the relation is ggleince, the corresponding
mapping is saved teesultarray (lines 22-23) and the children of the root nodes are
obtained (line 26-27). Finally the loops @ourceChildrenand targetChildren(lines
28-32) allow to callexactTreeMatch recursively for all pairs of sub trees rooted at
sourceChildrerandtargetChildrenelements.



1. Node struct of
2. int nodeld;

3. String | abel;
4. String clLabel;
5 String cNode;

6. Mappi ngEl enent struct of
7 int Mappi ngEl ement | d;
8. Node source;

9 Node target;

10. String relation;

11. Mappi ngEl ement [] exact StructureMatch (Tree of Nodes source, target)
12. Mappi ngEl ement[] result;

13. exact TreeMatch(source, target,result);

14. if (all NodesMapped(source,target,result))

15. return result;

16. el se

17. return null;

18. voi d exact TreeMat ch(Tree of Nodes source,target, Mappi ngEl enent[] result)
19. Node sour ceRoot =get Root (source) ;

20. Node target Root =get Root (target);

21. String rel ati on= nodeMat ch(sourceRoot, target Root ) ;

22. if (relation=="=")
23. addMappi ng(result, sourceRoot, t arget Root, "=");
24. else

25. return;

26. Node[] sourceChil dren=get Chil dren(sourceRoot);

27. Node[] target Children=get Children(targetRoot);

28. For each sourceChild in sourceChildren

29. Tree of Nodes sourceChil dSubTree=get SubTr ee(sour ceChild);

30. For each targetNode in target

31. Tree of Nodes target Chil dSubTree=get SubTree(targetChild);

32. exact TreeMat ch(sour ceChi | dSubTree, targetChil dSubTree, nodesToMatch);

Fig. 3. Pseudo code for exact structure matching algorithm

4 Approximate matching via abstraction/refinement operatons

In [7], Giunchiglia and Walsh categorize the various kindsabstraction operations
in a wide-ranging survey. They also introduce a new classbefractions, called TI-
abstractions (where Tl means “Theorem Increasing”), whiekie the fundamental
property of maintaining completeness, while losing cdress. In other words any
fact which is true of the original term is also true of the afstterm, but not viceversa.
And similarly, if a ground formula is true so is the abstramtfiula, but not vice versa.
Dually, by taking the inverse of each abstraction operatiancan define a correspond-
ing refinement operation which preserves correctness Wtking completeness. The
second fundamental property of the abstraction operatfotigt they provide all and
only the possible ways in which two first order terms can be enaddiffer by ma-
nipulations of their signature, still preserving comptedss. In other words, this set
of abstraction/refinement operations defines all and ordypibssible ways in which
correctness and completeness are maintained when opeoatifirst order terms and
atomic formulas. This is the fundamental property whiclowad us to study and con-
sequently quantify the semantic similarity (distancesetn two first order terms. To
this extent it is sufficient to determine which abstractiefihement operations are nec-
essary to convert one term into the other and to assign tosdlcbm a cost that models
the “semantic distance” associated to the operation.



Giunchiglia and Walsh’s categories are as follows:

Predicate: Two or more predicates are merged, typically to the leastggmeneral-
ization in the predicate type hierarchy, e.g.,
— Bottle(X) + Container(X)— Container(X)
We call Container(X)a predicate abstraction 8ttle(X)or Container(X) Jpg
Bottle(X). Conversely we calBottle(X)a predicate refinement @ontainer(X)
or Bottle(X) Cpq Container(X).

Domain: Two or more terms are merged, typically by moving the fumtigor con-
stants) to the least general generalization in the domaim ltyerarchy, e.g.,
— Daughter(Me) + Child(Me)— Child(Me)
— Acura + Nissan— Nissan
Similarly to the previous item we calhild(Me)andNissana domain abstractions
of Daughter(Me)and Acura respectively orChild(Me) Jdp Daughter(Me),
Nissan Jp Acura. Conversely we calDaughter(MeandAcuraa domain refine-
ments ofChild(Me) andNissanor Daughter(Me) Cp Child(Me), Acura Cp
Nissan.

Propositional: One or more arguments are dropped, e.g.,
— Bottle(A)— Bottle
We call Bottle a propositional abstraction &ottle(A)or Bottle Jp Bottle(A).
ConverselyBottle(A) is a propositional refinement dottle or Bottle(A) Cp
Bottle.

Precondition: The precondition of a rule is droppéde.g.,
— [Ticket(X)— Travel(X)]— Travel(X)

Consider the following pair of first order terniBottle A)and(Container) In this
case there is no abstraction/refinement operation that thake equivalent. However
consequent applications of propositional and predicas&rattion operations make the
two terms equivalent:

(Bottle A) —E5P (Bottle) —=re (Container) (1)

In fact the relation holding among the terms is a compositibtwo refinement oper-
ations, namely Bottle A) Cp (Bottle) and(Bottle) Cpg (Container). We define
anabstraction mapping element (AME3 a 5-tupléID;;, t1, ta, R, sim), wherel D;;

is a unique identifier of the given mapping elementandt, are first order terms;
R specifies a relation for the given terms; agigh stands for a similarity coefficient
in the range [0..1] quantifying the strength of the relatibmparticular for the AMEs
we allow the following semantic relatiofss, C, J}, where= stands for equivalence;
J represents an abstraction relation and connects the migiconand the result of
a composition of arbitrary number of predicate, domain amppsitional abstraction
operations; andC represents a refinement relation and connects the premmditd
the result of a composition of arbitrary number of predicdtamain and propositional
refinement operations.

% We do not consider precondition abstraction and refinement in thefréss aper as we do
not want to drop preconditions, because this would endanger thessficcenatchmaking of
web services.



Therefore, the problem of AME computation becomes a prol@déminimal cost
composition of the abstraction/refinement operationsaatbfor the given relatio?
that are necessary to convert one term into the other. lrr todsolve this problem we
propose to represent abstraction/refinement operatioine@edit distance operations
applied to the term trees. This allows to redefine the proldEAME computation into
a tree edit distance problem.

In its traditional formulation, the tree edit distance desb considers three opera-
tions: (i) vertex deletion, (ii) vertex insertion, and )iiertex replacement [25]. Often
these operations are presented as rewriting rules:

(v — A; (i — v; (ili)v — w; 2

wherev andw correspond to the labels of nodes in the trees whiktands for the
special blank symbol. Figure 4 illustrates two applicati@i delete and replace tree
edit operations.

Bottle Bottle Container
O O

A—d Bottle —Container
&

Fig. 4. Delete and replace tree edit operations

Our proposal is to restrict the formulation of the tree editahce problem in order
to reflect the semantics of the first order terms. In particula propose to redefine
the tree edit distance operations in such a way that willxatleem to have one-to-one
correspondence to the abstraction/refinement operati@seipted previously in this
section. Table 1 illustrates the correspondence betwestraation/refinement and tree
edit operations. The first column presents the abstracsifinément operations. The

Table 1. The correspondence between abstraction/refinement operatiotreaedit operations.

Abstraction/ | Tree editPreconditions of operation use
refinement operatignperation
t1 Jpa t2 a — b |a Jb; aandb correspond to predicates
t1 dp ta2 a — b |a Jb; aandb correspond to functions or constants
t1 Jdp ta A — a |acorresponds to predicate, function or constan
t1 Cpa t2 a — b |a C b; aandb correspond to predicates
t1 Cp ta a — b |a C b; aandb correspond to functions or constants
t1 Cp ta a — X\ |acorresponds to predicate, function or constan

second column lists corresponding tree edit operations tfiind column describes the
preconditions of the tree edit operation use. ConsideexXample, the first line of Table

1. The predicate abstraction operation applied to firstratent¢; results with ternt,

(t1 dpg to2). This abstraction operation corresponds to tree editiogphent operation
applied to term tree of; that replaces the nodewith the nodeb (a — b). Moreover
the operation can be applied only in the case if (i) ladbéd a generalization of label

b and (ii) both the nodea andb in the term trees correspond to predicates in the first
order terms.



5 Computing the global similarity between two trees

Our goal now is to compute the similarity between two ternedrén order to perform
this we need to compute the minimal cost composition of therabtion/refinement
operations that are necessary to convert one term treeffitst term into the other. The
starting point is the traditional formulation of the tredtatistance problem.

Cost = Z n; * Cost; 3)

i€S

The solution of the problem then becomes to mininGaestin Eq. 3 and, therefore, to
determine the minimal set of operations (i.e., the one withrhinimum cost) which
transforms one tree into another. In EgS3tands for the set of the allowed tree edit
operationsn; stands for the number of i-th operations necessary to coowver tree
into the other and’ost; defines the cost of the i-th operation. Our goal is to define the
Cost; in a way to model the semantic distance.

A possible uniform proposal is to assign the same unit caait teee edit operations
that, as from Table 1, have their abstraction theoretic wyparts. Table 2 illustrates
the costs of the abstraction/refinement (tree edit) omeratidepending on the rela-
tion (equivalence, abstraction or refinement) being coeghutlotice that the costs for
estimating abstraction() and refinementX) relations in AME have to be adjusted
according to their definitions. In particular the tree ediemtions corresponding to
abstraction/refinement operations that are not allowedhégefinition of the given re-
lation have to be prohibited by assigning to them an infinitst cNotice also that, we
do not give any preference to a particular type of abstragdinement operations. Of
course this strategy can be changed to satisfy certain aospacific requirements.

Table 2. Costs of the abstraction/refinement (tree edit) operations, exploitedrfoputation of
equivalence(ost=), abstractionostc) and refinement{osto) relations holding among the
terms.

Abstraction/refinement (tree edit) operafi6wst=|Costc [Cost
t1 Jpa t 1 00 1
t1 Jp t2 1 oo 1
t1 gp to 1 oo 1
t1 Cpa ta 1 1 00
t1 Cp to 1 1 00
t1 EP to 1 1 [0.9]

Consider, for example, the first line in Table 2. The cost &f titee edit distance
operation that correspond to the propositional abstra¢tioD p4 t2) is equal to 1 when
used for the computation of equivalencegolst=) and abstraction({ost5) relations in
AME. It is equal toco when used for the computation of refinemefibét) relation.

Eq. 3 can now be used for computation of the tree edit distanoee. However,
when comparing two web service descriptions we are intedesdther in similarity
than in distance. We exploit the following equation to catiee distance produced by



an edit distance algorithm into the similarity score:

: 1 Cost @)
sim=1—
maz(number _of _nodesy, number_of nodesy)

wherenumber_of nodes; andnumber_of_nodes, stand for the number of nodes in
the trees. Note that for the special cas€oktequal toco the similarity score is esti-
mated to 0.

Many existing tree edit distance algorithms allow to keepkrof the nodes to which
a replace operation is applied. Therefore, as a result thay & obtain not only the
minimal tree edit cost but also a minimal cost mapping amegniodes of the trees.
According to [25] this minimal cost mapping is (i) one-toeyr(ii) horizontal order
preserving between sibling nodes; and (iii) vertical ongiesserving. For example, the
mapping depicted in Figure 1 complies to all these requirgmehile the mapping
depicted in Figure 2 violates (ii). In particular the thiidlgrg Price on the left tree is
mapped to the third siblinGoston the right tree while the fourth siblingolor on the
right tree is mapped to the second siblidglour on the left tree.

For the tree edit distance operations depicted in Table 1raweqgse to keep track
of nodes to which the tree edit operations derived from tipdace operation are ap-
plied. In particular we consider the operations that cqoes to predicate and domain
abstraction/refinementy( Jpg, t1 Cpa, t1 Ip, t1 Cp). This allows us to obtain a
mapping among the nodes of the term trees with the desirqukgies (i.e., there is
only one-to-one correspondences in the mapping). Moreibwamplies to the struc-
ture preserving matching requirements namely functioestaapped to functions and
variables are mapped to variables. This is the case beaapsedicate and domain ab-
straction/refinement operations do not convert, for examglfunction into a variable
and (i) the tree edit distance operations, as from Tablae la one-to-one correspon-
dence with abstraction/refinement operations.

At the same time a mapping returned by a tree edit distanceitdm preserves the
horizontal order among the sibling nodes, but this is noirdble property for the data
translation purposes. This is the case because the congespoes that do not comply
to the horizontal order preservation requirements, likedhe holding betwee@olour
and Color on Figure 2, are not included in the mapping. However, as flaive 1,
the tree edit operations corresponding to predicate anchloabstraction/refinement
(t1 Jpa,t1 Epg, t1 dp, t1 Ep) can be applied only to those nodes of the trees whose
labels are either generalizations or specializations oh edher, as computed by the
node matching algorithm. Therefore, given the mapping peed by the node matching
algorithm we can always recognize the cases when the hoaizunder between sibling
nodes is not preserved and change the ordering of the sitidgs to make the mapping
horizontal order preserving. For example, swapping thees@astand Colour in the
right tree depicted on Figure 2 does not change the meanitigg @orresponding term
while allows the correspondence holding betw&eour andColor on Figure 2 to be
included in the mapping produced by a tree edit distancertgo



6 The approximate structure matching algorithm

As from above our goal is to find ‘good enough’ services [9ldffect are not available.
We start by providing a definition of the approximate stroetmatching as the basis
for the algorithm.

We say that two nodes; andns in the treesl’; andT, approximately match iff
c@Qn; R c@ny holds given the available background knowledge, wh@re; andc@n,
are the concepts at nodesraf andns, and whereR € {=,C, O, A, L, not related}.

We say that two tre€s; andT, match iff there is at least one node; in 77 and a
nodens; in T such that

— ny; approximately matches, ;
— all ancestors of1; are approximately matched to the ancestorsgf

The approximate structure matching algorithm exploits ribde matching algo-
rithm presented in Section 3. First the approximate streawatching algorithm esti-
mates the similarity of two terms by application of a treet @itance algorithm with
the tree edit operations and costs modified as describedctinBge 4 and 5. The sim-
ilarity scores are computed for equivalence, abstractimhrafinement relations. For
each of these cases the tree edit distance operation cestsaalified as depicted on
Table 2. The relation with the highest similarity score asslemed to hold among the
terms. If the similarity score exceeds a given thresholdntia@pings connecting the
nodes of the term trees, as computed by the tree edit distdgaethm, are returned by
the matching routine what allows for further data tranetlati

Figure 5 illustrates approximate structure matching afigor.

AME struct of
Tree of Nodes source;
Tree of Nodes target;
String relation;
doubl e approxi mati onScor e;

1. Mappi ngEl ement[] approxi nat eStruct ur eMat ch
(Tree of Nodes source, target, double threshol d)
Mappi ngEl enent[] result;
appr oxi mat eTr eeMat ch(source, target,result);
AME ane=anal yzeM smat ches(source, target,result);

apwn

or (getRelation(ane)==">")
if (getApproxinationScore(ane)>threshol d)
return result;
return null;

oNe

Fig. 5. Pseudo code for approximate structure matching algorithm

approximateStructureMatch takes as input theourceand target term trees and a
thresholdvalue.approximate TreeMatch fills the resultarray (line 3) which stores the
mappings holding between the nodes of the trees. In contrastactTreeMatchin
Figure 3approximateTreeMatch considers the semantic relations other than equiva-
lence. An AMEameis computed (line 4) byanalyzeMismatches If amestands for
equivalence, abstraction or refinement relations (linens) ihan approximationScore
exceedshreshold(line 6) the mappings calculated approximateTreeMatch are re-
turned (line 7)analyzeMismatchesalculates the aggregate score of tree match quality
by exploiting a tree edit distance algorithm as describesation 5.



7 Evaluation

We have implemented the algorithms described in the prevémgctions in Java. In
the implementation we have exploited a modification of serpée edit distance al-
gorithm from Valiente’s work [27]. We have evaluated the ohétg quality of the al-
gorithms on 132 pairs of first order logic terms. Half of therpavere composed of
the equivalent terms (e.ggurnal(periodical-publication)and magazine (periodical-
publication) while the other half were composed from similar but not eglant terms
(e.g.,web-reference(publication-referena)dthesis-reference (publication-referenge)
The terms were extracted from different versions of the &tesh Upper Merged Ontol-
ogy (SUMO} and the Advance Knowledge Transfer (ARTntologies. We extracted
all the differences between versions 1.50 and 1.51, and dnfi11.52 of the SUMO
ontology and between versions 1, 2.1 and 2.2 of the AKT-partd AKT-support on-
tologie$. These are both first order ontologies, so many of thesereliftees mapped
well to the potential differences between terms that werarestigating. However, some
of them were more complex, such as differences in inferemles ror consisted of on-
tological objects being added or removed rather than atened had no parallel in our
work. These pairs of terms were discarded and our tests warerr all remaining dif-
ferences between these ontologies. Therefore, we havéasedhe situation when the
service descriptions are defined exploiting the two vessimfithe same ontology.

In our evaluation we have exploited the commonly accepteasomes of matching
quality, namely precision, recall, and F-measure. Precisaries in the [0,1] range;
the higher the value, the smaller the set of incorrect cpmedences (false positives)
which have been computed. Precision is a correctness need®ecall varies in the
[0,1] range; the higher the value, the smaller the set ofembrcorrespondences (true
positives) which have not found. Recall is a completenesasore. F-measure varies
in the [0,1] range. The version computed here is the harmmeian of precision and
recall. It is a global measure of the matching quality, iasieg as the matching quality
improves. While computing precision and recall we have aw®reid the correspon-
dences holding among first order terms rather than the ndde derm trees. Thus,
for instance journal(periodical-publication)=magazine(periodical-publication was
considered as single correspondence rather than two porrdsnces, namelypur-
nal=magazineindperiodical-publication=periodical-publication. The evaluation was
performed on a Pentium 4 computer with 512 Mb of RAM.

Interestingly enough our exact structure matching algoritvas able to find 36
correct correspondences what stands for 54% of Recall Wifl#dlPrecision. All mis-
matches (or correct correspondences not found by the #iggrcorresponded to struc-
tural differences among first order terms which exact stimeciatching algorithm is
unable to capture. The examples of correctly found cormedgoces are given below:

nmeet i ng- att endees( has- ot her - agent s-i nvol ved)
nmeet i ng- att endee( has- ot her - agent s-i nvol ved)

“http://ontol ogy.teknow edge. cont

Shttp://ww. aktors. org

Sseehttp://dreaminf.ed. ac. uk/ proj ect s/ dor/ for full versions of these on-
tologies and analysis of their differences



r&d-institute(Learning-centred-organization)
r-and-d-institute(Learning-centred-organi zati on)

pi ece(Pure2, M xture)
part (Pure2, M xture)

has-affiliatied-peopl e(Affiliated-person)
has-affilil ated-person(affiliated-person)

The first and the second example illustrate the minor syiotdifferences among
the terms, while the third and fourth examples illustrate gbmantic heterogeneity in
the various versions of the ontologies.

Figure 6 presents the matching quality measures dependitigeacut-off threshold
value for approximate structure preserving matching dgaor. As from Figure 6, the

o, -

auwh

70% T72% 2%
60% 9
50% A
40%
30% A
20%
10% 1
0% T T T T T T T 1
02 03 04 05 06 07 08B 0.9 1
Threshold

|+ Precision —=— Recall —— F-Measure |

Fig. 6. The matching quality measures depending on threshold value for apyatexstructure
matching algorithm

algorithm demonstrates high matching quality on the wideyeaof threshold values.
In particular, F-Measure values exceed 70% for the givegeamable 3 summarizes
the time performance of the matching algorithm. It presémsaverage time taken by

Table 3. Time performance of approximate structure matching algorithm (agevadl32 term
matching tasks)

Node matchingNode matchingStructure matching
Step1and 2| Step3and4
Time, ms 134.1 3.3 0.9

the various steps of the algorithm on 132 term matching tas&$rom the table, Step
1 and 2 of the node matching algorithm significantly slow ddwa whole process.
However these steps correspond to the linguistic prepsamgshat can be performed
once offline [8]. Given that the terms can be automaticallycated with the linguistic
preprocessing results [8] once when changed, the overdlhma is reduced to 4.2 ms,
which corresponds roughly to 240 term matching tasks pemskc



8 Conclusion and Related Work

We have presented an exact and an approximate structurbingagdgorithms that im-
plement thestructure preserving matabperator. We have implemented the algorithms
and applied them to the web service matchmaking scenarie.eVhluation results,
though preliminary, show the efficiency and effectivendssup approach.

Future work includes further investigations on the cosigassent for the abstrac-
tion/refinement operations. In the version of the algoritwesented in the paper no
preference is given to the particular abstraction/refirgnoperation and all allowed
operations are assigned a unit cost. One may argue, for éxathpt the semantic
distance betweeoat andmammalis less then the semantic distance betwesrand
animal Therefore, the operation abstracticaf to mammalhave to be less costly than
the operation abstractingat to animal

The problem of location of web services on the basis of thals#ifies that they
provide (often referred as matchmaking problem) recerdly teceived a considerable
attention. Most of the approaches to the matchmaking pnobkefar employed a single
ontology approach (i.e., the web services are assumed tedmibled by the concepts
taken from the shared ontology). See [14, 15, 21] for exaniiebably the most sim-
ilar to ours is the approach taken in METEOR-S [1] and in [20jeve the services
are assumed to be annotated with the concepts taken froousarntologies. Then the
matchmaking problem is solved by the application of the matg algorithm. The al-
gorithm combines the results of atomic matchers that rqugdirespond to the element
level matchers exploited in the Step 3 of the node matchiggrethm in Section 3. In
contrast to this work we exploit a more sophisticated maighéchnique that allows us
to utilize the context provided by the first order term.

Many diverse solutions to the ontology matching problemehlagen proposed so
far. See [23] for a comprehensive survey and [5,18,16,4@2,12, 17, 24] for in-
dividual solutions. However most of efforts were devotedamputation of the corre-
spondences holding among the classes of description lo¢iidagiies. Recently several
approaches allowed computation of correspondences lgosditong the object prop-
erties (or binary predicates) [13, 26]. The approach takdi1] allows to find corre-
spondences holding among parts of description logic ogitetoor subgraphs extracted
from the ontology graphs. In contrast to these approachesloxe the computation of
correspondences holding among first order terms.
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