Risk Analysis as part of
the Requirements Engineering Process

Yudistira Asnar (yudis.asnar@dit.unitn.it)
Paolo Giorgini (paolo.giorgini@dit.unitn.it)

March 2007

Technical Report # DIT-07-014
Risk Analysis as part of the Requirements Engineering Process

Abstract

In software engineering, risk is usually considered and analyzed during, or even after, the system design. Countermeasures are elaborated and then accommodated as a refinement of the design, when a limited number of changes are still possible and they may introduce the problem of revisiting the initial requirements. In this paper, we propose a goal-oriented approach for modeling and reasoning about risk during the requirements analysis process. Risks are introduced and analyzed along the stakeholders’ goals and countermeasures are introduced as part of the system’s requirements. The approach extends the Tropos formal framework with new concepts and qualitative risk reasoning mechanisms. We use a case study on loan origination process to illustrate the proposal.

1 Introduction

Traditionally, in software engineering risk analysis is used to identify the high risk elements of a project and provide ways of documenting the impact of risk mitigation strategies [26]. Risk analysis has been also shown important in the software design phase to evaluate criticality of the system [4], where risks are analyzed and necessary countermeasures are introduced. Usually, countermeasures correspond to a design/system fine-tuning and then with a limited margin of change. However, it may happen that the risk reduction results in the revision of the entire design and possibly of the initial requirements, introducing thus extra costs for the project.

Considering risk since the early phases of the software development process can be useful to prevent such problems and, as effect, to contain costs [9]. Particularly, analyzing risk along stakeholders’ needs and objectives, namely before requirements elicitation, can introduce good and valuable criteria to evaluate and choose among different alternative requirements.

Goal-oriented requirement engineering is an emerging research area where the concept of goal is used to model early requirements and non-functional requirements for a software system. The use of goals facilitates the analyst to understand the objectives of stakeholders and then motivate within the organizational setting the system’s requirements. KAOS [10], i* [36], GBRAM [2] and Tropos [5] are examples of goal-oriented methodologies and frameworks that have recently gained popularity in the community.

Particularly, Tropos is a requirement-driven development methodology based on the i* modeling framework. Tropos proposes an early requirements analysis phase, where the analyst identifies the relevant stakeholders and models them as social actors, who depend on one another for goals to be fulfilled, tasks to be performed, and resources to be furnished. Through these dependencies, one can answer why questions, besides what and how, regarding system functionalities/requirements. Answers
to why questions ultimately link system functionalities to stakeholders’ needs, preferences and objectives. Moreover, the methodology analyzes goals by a refinement process in which each goal is decomposed into subgoals and positive/negative contributions are established among goals. For example, in the case of a loan origination process the goal of **assess loan applications** can be OR-decomposed in **assessed by in-house** and **assessed by Credit Bureau**\(^1\), while the goal **receive electronic application** may help (i.e., contributes positively) to **verify loan application**, the bank can indeed validate automatically the application with appropriated agencies.

Through goal models, the analyst can analyze alternative ways for the satisfaction of stakeholders’ goals and choose among them on the base on specific criteria, like for example minimum-cost [28]. However, Tropos, as well as other goal-oriented approaches, does not consider risk within its requirements analysis process, and it may happen that the cheapest alternative corresponds to the most risky one. For instance, suppose that in order to **receive loan application** the bank can either **receive electronic application** or **receive hard-copy application**. Although, the electronic solution can economize the loan originating process, it can introduce a high level of risk due, for example, to the forgery of the application by external hackers or even by internal employees.

In this paper, we propose a goal-oriented approach for modeling and reasoning about risk at requirements level. The approach is based on Tropos methodology and proposes and extension of the original Tropos goal modeling and reasoning framework introducing a three layers model: goal, event, and treatment. Goals are AND/OR-decomposed and related to external events that can influence negatively (risk) their satisfaction. Treatments are then introduced to mitigate the effects of such events. We propose qualitative risk reasoning techniques to support the analyst in evaluating and choose among different possible sub-goals-trees.

The rest of the paper is organized as follows. In Section 2, we present the related work and our main contribution. Section 3 introduces the Loan Origination Process case study that is used to describe the goal-risk analysis framework (Section 4). The risk analysis process and algorithms for qualitative reasoning are presented in Section 5, while in Section 6 we describe the developed CASE tool along some experimental results. Finally, we conclude the paper with a final discussion in Section 7.

2 Background

2.1 Related Work

Related work lies on three major areas: requirement engineering, secure and dependable engineering, and risk analysis.

In **requirement engineering**, Dardenne et al. [10] propose KAOS, a goal-oriented requirements engineering methodology aiming at modeling not only what and how aspect of requirements but also why, who, and when. KAOS introduces also the concept of **obstacles** [35] and **anti-goal** [34] which can be seen as boundaries in requirement analysis. An obstacle is defined as an undesirable behavior to strategic interests of stakeholders, and an anti-goal defines a goal that belongs to an attacker that obstructs the fulfillment of stakeholders’ goals. In other word, obstacles can be seen as unintentional-risk, since risk is an undesirable behavior, and anti-goals are threats or intentional risks. These features make KAOS suitable for analyzing requirements of

\(^1\)The company that provides credit information and assesses loan applications

2
secure and dependable system. In [35], van Lamswerde and Latier demonstrate how to derive obstacles and guarantee their completeness from a goal structure and the analyst’s knowledge about the system.

Mayer et al. [23] extend the i^* conceptual framework [36] to analyze risk and security issues during the development process of IT systems, requirement analysis in particular. The framework models the business assets (i.e., goals) of an organization and assets of its IT system (i.e., architecture, design decisions). Countermeasures to mitigate risks are then selected in such a way that the risks do not affect these assets. Liu et al. [20] propose a methodological framework for security requirements analysis based on i^*. They use the NFR framework [8] to support the formal analysis of threats, vulnerabilities, and countermeasures.

In the area of secure and dependable system, the most used frameworks are the classical ones, namely Fault Tree Analysis (FTA) [32], Failure Modes, Effects, and Criticality Analysis (FMECA) [1]. In security engineering, approaches like attack tree and threat tree [15, 27] are similar to the FTA, while others proposals like UMLSec [17], SecureUML [21], Abuse Case [24], and Misuse Case [31] are funded on UML as modeling language. However, the most relevant work for our purpose is Defect Detection and Prevention (DDP) by Feather et al. [12] has been developed and applied in Jet Propulsion Lab of NASA. DDP consists of a three layers model: Objectives, Risks, and Mitigation. Each objective has a weight to represent its importance, each risk has a likelihood of occurrence, while mitigation has a cost for its accomplishment (mainly resource consumption). Severity of a risk can be represented by an impact relation between the objective and the risk. Moreover, a DDP model specifies how to compute the level of objectives achievement and the cost of mitigations. This calculation allows one to evaluate the impact of taken countermeasures and then support the decision making process. Finally, a DDP model can be integrated with other quantitative frameworks (e.g., FMECA, FTA) in order to model and assess risks/failures [12].

Lee et al. [19] propose a framework for modeling critical systems (particularly, socio-technical systems) which is based on a standard developed by US Department of Defense (US-DoD), called DoD Information Technology Security Certification and Accreditation Process (DITSCAP) [33]. The DITSCAP framework assesses the risk caused by vulnerabilities and threats of a system by evaluating the implementation of security requirements.

In the area of risk analysis, uncertain events (i.e., threats and failures) are quantified with two attributes: likelihood and severity. Probabilistic Risk Analysis (PRA) [3] is widely used for quantitatively risk assessment, while approaches like FMECA [1] quantify risk into qualitative values: frequent, reasonable probable, occasional, remote, and extremely unlikely. Basically, events are prioritized using the notion of “expectancy loss” which is a multiplication between the likelihood of events and its severity. This priority represents the criticality of an event. When resources are limited, an analyst can decided to adopt countermeasures for mitigating events on the basis of their priority. However, identification of probabilities is not necessarily precise, and typically it strongly depends on expert judgments. Approaches like Multi-Attribute Risk Assessment [30] can improve the risk analysis process by considering multi-attributes. Many factors like reliable, available, safety and confidentiality can result critical for a system and each of them has its own risk value. This introduces the need for the analyst to find the right trade-off among these factors. For instance, an Air Traffic Management system is required to be always available and safe. Certain conditions (e.g., radar noise) can affect the normal behavior of the system and consequently
its safety. In many cases, the best solution is to restart the system. This, however, reduces the availability of the system. In [6], Butler presents how to choose cost-effective countermeasures to deal with existing security threats by using multi-attribute risk assessment.

Finally, CORAS [11] is aiming at developing a framework for risk analysis of security critical systems. The CORAS risk management consists of the following steps: context identification, risk identification, risk analysis, risk evaluation, and risk treatment.

2.2 Paper Contribution

Though, the literature offers a variety of contributions in the area of risk analysis, a lot must still be done to fully integrate these approaches in the software development process. Our aim in this paper is to propose a framework to analyze risk since the initial phases of the software analysis, particularly when the analyst needs to analyze not only the system-to-be but also the organizational setting in which it will operate. We strongly believe that an accurate risk analysis in this phase can improve the quality of the entire software project. Moreover, most of the frameworks presented in literature are mainly modeling frameworks without any, or a limited, capacity of reasoning and automated analysis. In this paper, we extend the Tropos goal model [13, 28] with concepts of risk and mitigation and we propose qualitative reasoning mechanisms to consider risk as an evaluation criterion during the requirement analysis process.

3 Case Study

The case study we use in this paper originated within the European project SERENITY2 and focuses on a typical Loan Origination Process (LOP) that starts with the receiving a loan application and ends, possibly, with the loan approval. When the bank receives the application, it starts the process of verifying the data and calculating the credit rating. The rating can be obtained either by an internal rating (in-house assessment) or external rating (Credit Bureau). After the calculation, the bank defines the loan schema, namely it defines the loan cap and its interest. We assume that the loan schema is initially proposed by the customer, but is the bank that takes the final decision. The bank is, of course, also interested in ensuring the repayment of the loan and having more income.

Several uncertain events (i.e., threats and un/intentional events) can affect the success of the whole process. For example, forgery of the loan application, fake the identification document, ignorance of Credit Bureau about the bank condition, etc. Some of these events are considered unacceptable and must be avoided. To do this, it is needed to introduce some additional measures aiming at reducing the likelihood or the effects of these events. However, these measures imply extra costs for the whole process and they should be analyzed carefully before their adoption.

4 Tropos Goal Risk Framework

Tropos is a software development methodology that adopts the concept of agent and its related mentalistic notions (e.g., goals, tasks, and resources) along all the phases of

2http://www.serenity-project.org/
the development process [5]. The methodology spans from early requirements analysis up to implementation and uses goal models to represent agent (or more general actor) mental states [14]. The key role of early requirements analysis is to model the system-to-be together with the organizational setting where the system operates. In the following we extend the Tropos goal modeling framework [13, 28] by introducing constructs and relations specific for analyzing risk.

A Goal-Risk (GR) model is represented as a graph $\langle N, R \rangle$, where N are nodes and R are relations (see Fig. 1). N is comprised of goals, plans, and events. Goals (depicted as ovals) are strategic interests that actors intend to achieve. Events (depicted as pentagons) are uncertain circumstances which is out of the control of actors that can have an impact (positively or negatively) on the fulfillment of goals. Tasks (depicted as hexagons) are sequences of actions used to achieve goals or to treat the events.

Each construct has two attributes: SAT - $\text{Sat}(G)$ and DEN - $\text{Den}(G)$. Such attributes represent respectively the value of evidence that the construct will be satisfied or denied. In the probability theory, if $\text{Prob}(A) = 0.1$ than we can infer that probability of $\neg A$ is 0.9 (i.e., $P(\neg A) = 1 - P(A)$). Conversely, based on the idea of Dempster-Shafer theory [29] the evidence of the goal being denied (DEN) can not be inferred from the satisfaction evidence (SAT) and vice versa. For instance, the bank has the goal verify loan application, and the goal is affected by the event of having fake

Figure 1: Goal-Risk Model

In this paper, we use hexagon only to denote an event treatment, and not to define as means to achieve a goal.
identity document. The only conclusion, we can infer, is the goal has DEN which is introduced from the event, while we can not say anything about SAT because there is no piece of information that can be categorized as satisfaction evidence. These attribute values are qualitatively represented in the range of $(F)ull, (P)artial, (N)one$, with the intended meaning $F > P > N$. Full (Partial, None) evidence for the satisfaction of a goal means that there is (at least) “sufficient” (“some”, “no”) evidence to support the goal to be fulfilled. Analogously, Fall (Partial, None) evidence for the denial of a goal means that there is (at least) “sufficient” (“some”, “no”) evidence to support the goal to be denial.

Relations \mathcal{R} are represented as $(N_1, \ldots, N_n) \xrightarrow{r} N$, where r is the type of the relation, N_1, \ldots, N_n are called source nodes and N is the target node. r consists of AND/OR-decomposition, contribution, alleviation, and impact relations. AND/OR decomposition relations are used to refine goals, tasks, and events in order to produce a finer structure. Contribution relations are used to model the impacts of a node over another node. Basically, Tropos distinguishes 4 types of contribution relations: $++, +-, -+$, and $--$. Each type can propagate either evidence for SAT or DEN or both. For instance, the “$++$” contribution relation indicates that the relation propagates both SAT and DEN evidence, and the “$+g$” contribution relation means the relation only propagates SAT evidence towards target nodes. The same intuition is applied for the other types of contribution in delivering DEN evidence. However, the “$--$” and “$-+$” propagate the crossing evidence. For instance, “$--$” propagates the SAT value of the source node to the DEN value of the target node, and vice versa. Alleviation relations are used to model the severity reduction of events. Essentially, alleviation relations are the same of contribution relations (i.e., $++, +-, -+$), but with a different semantic (see later for the formal definition). Finally, an impact relation (depicted as dash line-arrows) represents the severity of an uncertain event in affecting the goal layer. This relation is categorized as part of \mathcal{N} and \mathcal{R} in $\langle \mathcal{N}, \mathcal{R} \rangle$. The detail of this relation and the reason why it is categorized as a vertex instead of only an edge is detailed in the next event layer subsection.

In the following subsections, we describe the three layers of the GR model through the loan origination process case study.

4.1 Goal Layer

The goal layer is adopted from Tropos goal model [13] which analyzes strategic interests of the stakeholders. As shown in Fig. 2, the modeling starts with identifying top goals of stakeholders (e.g., bank management) which are earn more income (G_1), receive loan application (G_4), ensure repayment of loan (G_7), and handle loan application (G_{10}).

Each top goal is refined using AND/OR decomposition into subgoals. For example, G_1 is OR-decomposed into earn from loan interest (G_2) or charge high fee for loan origination (G_3). This can be seen as a way to model an alternative, indeed to achieve G_1, one can either fulfill G_2 or G_3. In Tab. 1 the rules used to propagate evidence trough AND/OR relations are presented (first two rows of the table). Thus, $Sat(G_1)$ is calculated on the base of maximum value among SAT values of all its subgoals (e.g., G_2 and G_3). Conversely, $Den(G_1)$ is defined as the minimum value between DEN values of its subgoals. However, G_{10} is refined (AND) into verify loan application (G_{11}), assess application (G_{12}), define loan schema (G_{15}), and approve loan application (G_{18}). It means that to achieve G_{10}, all its subgoals (i.e., $G_{11}, G_{12}, G_{15},$ and G_{18}) must be satisfied. This decomposition process continues until
all leaf goals are tangible (i.e., there is an actor that can fulfill it).

The next step is to model interrelations among goals using contribution relations. For instance, the goal receive electronic application (G6) supports the goal verify loan application (G11) (i.e., G6 $\xrightarrow{+}$ G11) because it promotes the possibility of doing automatic verification. As presented in Tab. 1, "++" and "−−" relation propagates at most Partial evidence from source nodes, while "++" and "−−" may propagates at most Full evidence. Differently, from [13] in GR model the goal layer may effect other layers. This allows us to model situations where a goal fulfillment increases/reduces the occurrence of an event or a goal fulfillment supports/prevents countermeasures accomplishment. These two inter-layer relations are modeled using contribution relations.

4.2 Event Layer

In the GR framework we adopt the WordNet⁴ definition for event:

- something that happens at a given place and time;
- a special set of circumstances;
- a phenomenon located at a single point in space-time;
- a consequence; i.e., a phenomenon that follows and is caused by some previous phenomena.

Essentially, the notion of event, here, is slightly different from threat [25] in computer security and hazardous condition in reliability engineering [22]. Those concepts are only defined as a potential circumstance that could cause harm or loss and not specifying the notion of likelihood.

⁴http://wordnet.princeton.edu/
Table 1: Evidence Propagation Rules for (AND/OR) Decomposition and Contribution Relations

<table>
<thead>
<tr>
<th>Relation</th>
<th>$Sat(N_1)$</th>
<th>$Den(N_1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(N_2, N_3) \xrightarrow{\text{and}} N_1$</td>
<td>$min { Sat(N_2), Sat(N_3) }$</td>
<td>$max { Den(N_2), Den(N_3) }$</td>
</tr>
<tr>
<td>$(N_2, N_3) \xrightarrow{\text{or}} N_1$</td>
<td>$max { Sat(N_2), Sat(N_3) }$</td>
<td>$min { Den(N_2), Den(N_3) }$</td>
</tr>
<tr>
<td>$N_2 \xrightarrow{+g} N_1$</td>
<td>$min { Sat(N_2), P }$</td>
<td>N</td>
</tr>
<tr>
<td>$N_2 \xrightarrow{\text{and}} N_1$</td>
<td>N</td>
<td>$min { Den(N_2), P }$</td>
</tr>
<tr>
<td>$N_2 \xrightarrow{-p} N_1$</td>
<td>N</td>
<td>$Den(N_2)$</td>
</tr>
<tr>
<td>$N_2 \xrightarrow{-s} N_1$</td>
<td>N</td>
<td>$Sat(N_2)$</td>
</tr>
<tr>
<td>$N_2 \xrightarrow{-d} N_1$</td>
<td>$min { Den(N_2), P }$</td>
<td>N</td>
</tr>
<tr>
<td>$N_2 \xrightarrow{-d} N_1$</td>
<td>$Den(N_2)$</td>
<td>N</td>
</tr>
</tbody>
</table>

Following the Probabilistic Risk Assessment (PRA) approach [3], the GR framework characterizes events with two properties: likelihood and severity. Likelihood is modeled as a property of an event, whereas severity is denoted as the sign (negative/positive) of an impact relation. This representation allows us to model situations where an event impacts on more than a single goal. For instance, in Fig. 2 the event collusion between customer and clerk (E_{10}) obstructs the satisfaction of the goal defined by bank (G_{17}) in defining loan schema because the officer may not be objective. On the other hand, it also obstructs the goal assessed by in-house (G_{14}) since it can compromise the integrity of the employees that assess the loan application. Moreover, an event becomes a risk when it produces a negative effect, alternatively an opportunity when it produces positive effects. This flexibility allows an analyst to model an event which acts as a risk and an opportunity at the same time. For instance, in Fig. 2 the event increase interest rate of loan (E_1) can be seen as a risk for the goal ensure repayment of loan (G_7) and as an opportunity for the goal earn from loan interest (G_2). The analyst should realize that it is not convenient to eliminate totally the risk, since the event introduces also advantages, but rather it is better to mitigate its negative effects.

The identification of the events can be realized using different approaches, such as obstacle analysis [35], anti-goal [34], hazard analysis [18], misuse case [31], abuse case [24], taxonomy-base risk identification [7], or risk in finance [16]. Afterwards, each event is decomposed into sub-events until each leaf event can be easily assessed and paying attention to ensure that sub-events are disjoint events. To model dependency among events, one can use contribution relations, such as $E_{12} \xrightarrow{+g} E_{11}$ in the case study.

As we have already said an event can be characterized by two properties: likelihood and severity. In our framework, we calculate the likelihood of an event ($\lambda(E)$) from the level of evidence that supports (SAT) and prevents (DEN) the occurrence of the event. The likelihood is represented qualitatively with the following values: (L)ikely, (O)ccasional, (R)are, and (U)nlikely, with intended meaning $L > O > R > U$. Tab. 2 defines the calculation rules of likelihood from SAT and DEN values. An event
Table 2: Likelihood Calculation based on Evidence Values

<table>
<thead>
<tr>
<th>$Sat(E) \land Den(E)$</th>
<th>$\lambda(E)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F N</td>
<td>L</td>
</tr>
<tr>
<td>F P</td>
<td>O</td>
</tr>
<tr>
<td>P N</td>
<td>O</td>
</tr>
<tr>
<td>F F</td>
<td>R</td>
</tr>
<tr>
<td>P F</td>
<td>R</td>
</tr>
<tr>
<td>P P</td>
<td>R</td>
</tr>
<tr>
<td>N PP/N</td>
<td>U</td>
</tr>
</tbody>
</table>

Table 3: Evidence Propagation Rules for Impact Relation

<table>
<thead>
<tr>
<th>Impact Relation</th>
<th>$Sat(G)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E \rightarrow G$</td>
<td>$E \rightarrow G$</td>
</tr>
<tr>
<td>$E \rightarrow G$</td>
<td>$F P P P N$</td>
</tr>
</tbody>
</table>

with full evidence of being satisfied and no evidence of denial implies a likely event. Consequently, an event without any evidence of satisfaction results to be an unlikely event, no matter the value of denial evidence.

By severity, we mean the influence of an event to the goal fulfillment. This definition is similar with the one in FMECA [1] or impact given in DDP [12]. This property is classified as follows:

- **Strong Positive**$(++)$ - the event occurrence produces a strong contribution to the goal satisfaction;
- **Positive**$(+)$ - the event occurrence produces a fair contribution to the goal satisfaction;
- **Negative**$(-)$ - the event occurrence produces a fair contribution to the goal denial;
- **Strong Negative**$(- -)$ - the event occurrence produces a strong contribution to the goal denial.

This classification is encoded as the sign of an impact relation which connect the event layer with the goal layer. Impact relations introduce new evidence for the goal layer, and the value of new evidence depends on the likelihood of the event and the sign of impact relation (Tab. 3). The rule specifies that an event propagates full evidence of satisfaction to the goal layer if its likelihood is likely and connected by “$++$” impact relation (called an opportunity). Conversely, an event produces partial evidence of denial, when connected by “$--$” and has occasional/rare likelihood, or in the case it is connected by “$-$” with likely/occasional likelihood (called risk).

Impact relation is a hybrid construct in $\langle N, R \rangle$. In other word, it is categorized as a relation in R, but it is also a node in N. Analogously, we introduce another relation, called alleviation, that connects a treatment with the impact relation. This allows us to model a treatments as a mitigation for the reduction of the severity (e.g., $-- \rightarrow -$).
We can treat the impact relation as an end node of the alleviation relation. The detail about alleviation relations will explain in the next subsection.

4.3 Treatment Layer

Once the goal and event layers have been analyzed, the analyst identifies and analyzes the countermeasures to be adopted in order to mitigate risks in the GR model. Treatments/countermeasures can be analyzed using (AND/OR) decomposition and contribution relations. Essentially, the mitigation operates in two different ways: reducing the *likelihood* or reducing the *severity*. To reduce the likelihood, a countermeasure is modeled using a contribution relation which introduces denial evidence to the event. For instance, the treatment *employ intrusion detection system* \(T_4 \) adds denial evidence for the risk *forgery from external attack* \(E_3 \), and consequently applying rules of Tab. 2 it results a less likely event.

To reduce the impact, we introduce the *alleviation* relation, as mention before. This relation intends to reduce the severity of the *impact* sign; in Fig. 2 for example, the relation between the treatment *use digital signature* \(T_1 \) to the impact relation between the event *Forge Electronic Application* \(E_2 \) and goal *receive electronic application* \(G_6 \). This relation is not intended to reduce the likelihood, but rather to reduce the severity of the risk \(E_2 \) (i.e., \(T_1 \rightarrow \overrightarrow{E_2} \rightarrow \overrightarrow{G_6} \)) by rewriting \(E_2 \rightarrow \overrightarrow{G_6} \) into \(E_2 \rightarrow \overrightarrow{G_6} \). The production rules for this relation are presented in Tab. 4. For the sake of simplicity, we just consider whether the treatment is selected or not and we do not take the treatment evidence into account. Alleviation relations reduce only the “negative” impact relations, and \(\emptyset \) indicates there is no impact between the event and the goal.

In our model, we also allow for relations between the treatment layer and the goal layer. This is useful to model situations where a countermeasure adopted to mitigate a risk has also a contribution (especially negative) to some goal. For instance, the countermeasure *use digital signature* can mitigate the event *forge of electronic application*, but it also introduces new additional costs that can be seen as denial evidence for the goal *have low cost loan origination process*.

5 Risk Analysis Process

In this section, we describe the methodological process and qualitative risk reasoning techniques used to analyze and evaluate alternative goal models. Particularly, the problem we focus on is to find and evaluate all possible ways to satisfy top goals with an acceptable level of risk. In other words, given a GR model, each OR decomposition introduces alternative modalities for top goals satisfaction, namely different sets of leaves.
goals that can satisfy top goals. Each of these alternative solutions may have a different cost and may introduce a different level of risk. Risk can be mitigated with appropriate countermeasures, which, however, introduce extra costs that have to be added to the cost of the solution.

The analysis process is described in the Algorithm 1 and consists of the following three steps:

1. find alternative solutions (line 2-3),
2. evaluate each alternative against relevant risks (line 5-6)
3. assess the countermeasures to mitigate risks (line 9-15).

The process starts taking in input the GR model, a set of desired satisfaction values for top goals (desired_labels), acceptable risk values (acc_risks), and a number of goals as possible candidates for the final solution (input_goals). For instance, we might desire to have full evidence for satisfaction of goals G_4 and G_{10} (i.e., $\text{Sat}(G_4) = F$ and $\text{Sat}(G_{10}) = F$), while we do not care about goals G_1 and G_7 admitting partial evidence for their satisfaction (i.e., $\text{Sat}(G_1) = P$ and $\text{Sat}(G_7) = P$). We might be also interested to not run any risk for G_1 and G_7 (i.e., $\text{Den}(G_1) = N$ and $\text{Den}(G_7) = N$) while we can admit partial evidence for the denial of G_4 and G_{10} (i.e., $\text{Den}(G_4) = P$ and $\text{Den}(G_{10}) = P$). As input_goals, we may want to consider the set \{ G_2, G_3, G_5, G_6, G_8, G_9, G_{11}, G_{13}, G_{14}, G_{16}, G_{17}, G_{19}, G_{20} \}.

Algorithm 1 Risk Analysis Process

Require: $\text{goal}_\text{model} (\mathcal{N}, \mathcal{R})$, $\text{label}_\text{array}$ top_goals, node_array input_goals, $\text{label}_\text{array}$ events

1: solution_array $\leftarrow \text{Backward Reasoning}(\mathcal{N}, \mathcal{R})$, desired_labels, nil, input_goals

2: candidate_solution $\leftarrow \text{Select_Can_Solution}(\text{solution}, \text{alt_solution})$

3: for all $S_i \in \text{candidate_solution}$ do

4: if $\text{Satisfy}(\mathcal{N}, \mathcal{R})$, desired_labels, acc_risks, (events, nil) then

5: add(solution, (S_i, nil, Calc_Cost(S_i, nil)))

else

6: max_labels $\leftarrow \text{Backward Reasoning}(\mathcal{N}, \mathcal{R})$, desired_labels, acc_risks, goals(S_i)

7: cur_labels $\leftarrow \text{Forward Reasoning}(\mathcal{N}, \mathcal{R})$, (S_i, events, nil)

8: rel_treatments $\leftarrow \text{Find_Treatments}(\mathcal{N}, \mathcal{R})$, cur_labels, max_labels

9: for all $C_j \in \text{rel_treatments}$ do

10: if $\text{Satisfy}(\mathcal{N}, \mathcal{R})$, desired_labels, acc_risks, (S_i, events, C_j) then

11: add(solution, (S_i, C_j, Calc_Cost(S_i, C_j)))

end if

12: end for

13: end if

14: end for

15: end if

16: end for

17: end for

Backward Reasoning (line 2) generates a set of possible assignment values of evidence for the input goals that satisfy the desired values (desired_labels). Essentially, *Backward Reasoning* is the top-down reasoning mechanism proposed in [28], where goal models are encoded into satisfiability formulas and then SAT solvers are used to find which input-goals can satisfy top goals. The use of the standard Tropos
backward reasoning is limited to the goal layer (i.e., not considering the relations with the other two layers), and without specifying any constraints. So for instance, in order to achieve desired_labels in our case study we have 8 alternative solutions (see Tab. 5) as follows:

- S1=G2, G5, G6, G8, G9, G11, G13, G16, G19, G20
- S2=G3, G5, G6, G8, G9, G11, G13, G16, G19, G20
- S3=G2, G6, G8, G9, G11, G13, G16, G19, G20
- S4=G3, G6, G8, G9, G11, G13, G16, G19, G20
- S5=G2, G5, G6, G8, G9, G11, G14, G16, G19, G20
- S6=G3, G5, G6, G9, G11, G14, G16, G19, G20
- S7=G2, G6, G8, G9, G11, G14, G16, G19, G20
- S8=G3, G6, G8, G9, G11, G14, G16, G19, G20

with full SAT evidence for all goals except for G2, G3, G8, and G9 which might be partial SAT. Among these solutions, the analyst chooses one of them candidate_solution (line 3) on the basis of a certain criterion, like for example minimum-cost [28]. Suppose, the analyst decides to choose alternatives with a cost less than 30 (S4, S7, and S8 in our case – see Tab. 5).

Each candidate_solution is now evaluated against risk and possibly necessary countermeasures are introduced (line 4-17). First, the analyst checks whether the candidate_solution (e.g., S4), together with risks in the event layer (events), still can obtain the desired values of evidence for top goals. To do this, Satisfy uses the Forward_Reasoning mechanism adapted from [13] which propagates evidence values of inputs throughout the goal model. Final evidence values for top goals are compared with those initially desired. If DEN values for top goals are equal/less than the maximum risk admitted (acc_risks) and SAT values for top goals are equal/great than the desired values (desired_labels), then the candidate_solution is added directly to the solution and its cost is calculated (line 6). Otherwise, countermeasures must be introduced in the candidate_solution (line 10-15). The adaptation of Forward_Reasoning will detail at the end of this section.

In order to define countermeasures, the analyst calculates the maximum DEN values of input goals (max_labels) that produce acceptable DEN values for top goals. This means we need to find a set of countermeasures able to mitigate risk, so that we have at most the acceptable risk level (acc_risks). We calculate max_labels values using Backward_Reasoning (line 8) and specifying the goals of the candidate_solution as input goal and acc_risks as a constraint for the DEN value of input goals. Forward_Reasoning (line 9) propagates evidence values of the candidate_solution and events throughout the model, so that the evidence values of all goals are defined (cur_labels). By having two set of values (i.e., cur_labels and max_labels), we can find treatments to mitigate risks.

To this end, we propose Find_Treatments (Algorithm 2) which enumerates all the possible set of treatments that may mitigate risks. By comparing DEN in the max_labels and the cur_labels, one can identify which goals are overvalued. For instance, given S4 (Tab. 5) the goal G6 in max_labels is defined as Den(G6) = P, whereas in cur_labels is Den(G6) = F (see Tab. 6 column Event-Out). Afterwards,
Algorithm 2 Find_Treatments

Require: goal_model \(\langle N, R \rangle\), label_array current, label_array max
1: array rel_events, rel_alleviations, rel_treatments
2: for all \(c_i \in \text{current} \land \text{isGoal}(c_i)\) do
3: if \(c_i\.den > \text{max}[i].den\) then
4: tmp_events ← \text{related}(\langle N, R \rangle, c_i) \{find all related events of goal \(c_i\}\}
5: add(rel_events, tmp_events)
6: for \(e_j \in \text{tmp_events}\) do
7: tmp_alleviations ← \text{related}(\langle N, R \rangle, R_k) \{find all relevant alleviation relations of goal \(c_i\}\}
8: add(rel_alleviation, tmp_alleviation)
9: end for
10: end for
11: end if
12: end for
13: end for
14: tmp ← \text{related}(\langle N, R \rangle, e_i) \{find all possible treatments for reducing likelihood of related events\}
15: add(rel_treatments, tmp)
16: for all \(a_i \in \text{rel_alleviation}\) do \{find all possible treatments for reducing severity of related events\}
17: for all \(R_j \in \langle N, R \rangle\) s.t. \(R_j = a_i\) do
18: add(rel_treatments, [source(R_j)])
19: end for
20: end for
21: return treatments

we need to define the related events that may cause this level of risk\(^5\). In our case, the relevant events for \(G_6\) are \(E_2\), \(E_3\), and \(E_4\). Once we have identified the rel_events, we can find the treatments (rel_treatments) that can mitigate these events (line 14-22). As we discuss before, the mitigation operates reducing likelihood and severity. In the case of \(E_2\), \(E_3\), and \(E_4\), the treatments that reduces the severity are \(T_2\) and \(T_3\), while \(T_4\) and \(T_5\) reduce likelihood.

However, it could be the case that some treatment in rel_treatments has an overlapped effect in reducing risks with other treatments. Thus, we evaluate each subset of rel_treatments whether it is adequate to mitigate the risks, such that they (i.e., candidate_solution, subset of rel_treatments) satisfy the evidence values specified in desired_labels and acc_risks. Then, the treatments and the input goals can be added to the solution and the cost is calculated (Algorithm 1 line 13).

Forward_Reasoning (Algorithm 3), essentially, is the adaptation of the one proposed in [13]. The algorithm consists of two main loops. The first loop propagates the input evidence throughout the GR model updating the nodes’ labels without considering alleviation relations (line 5-10). \text{Update_Label} (Algorithm 4) updates SAT and DEN following the relation defined in Tab. 1 (for decomposition and contribution relations line 6-7) and Tab. 3 (for impact relation line 3-4). Based on this result and looking at the evidence values, we can identify which treatments are adopted. Thus, using \text{Apply_Alleviation} (Algorithm 5) we rewrite the sign of impact relations that are mitigated by treatments – the rules (Tab. 4) are encoded in the line 3 of the algorithm. Afterwards, the rewritten GR model (\(\langle N, R \rangle\)) is again evaluated in the second loop. Here, the final values for all nodes are calculated using all relations, including the alleviation ones.

\(^5\)Related is meant to enumerate all the nodes that is reachable from a certain node in \(\langle N, R \rangle\)
Algorithm 3 Forward_Reasoning

Require: goal_model \(\langle N, R \rangle \), label_array initial
1: label_array current, old
2: current \leftarrow initial
3: \(i \leftarrow 0 \)
4: repeat
5: while \(\text{old \neq current} \) do
6: old \leftarrow current
7: for all \(N_i \in N \wedge \neg \text{is_Impact}(N_i) \) do
8: \(\text{current}[i] \leftarrow \text{Update_Label}(i, \langle N, R \rangle, \text{old}) \)
9: end for
10: end while
11: if \(i = 0 \) then
12: \(\text{Apply_Alleivation}(\langle N, R \rangle, \text{current}) \)
13: \(\text{old} \leftarrow \text{nil} \)
14: end if
15: \(i \leftarrow i + 1 \)
16: until \(i = 2 \)
17: return current

Algorithm 4 Update_Label

Require: int \(i \), goal_model \(\langle N, R \rangle \), label_array old
1: for all \(R_j \in R \text{ s.t. target}(R_j) = N_i \) do
2: if is_Impact\((R_j) \) then
3: \(\text{sat}_{ij} \leftarrow \text{Apply_Imp_Sat}(N_i, R_j, \text{Old}) \)
4: \(\text{den}_{ij} \leftarrow \text{Apply_Imp_Den}(N_i, R_j, \text{Old}) \)
5: else \{decomposition and contribution relations\}
6: \(\text{sat}_{ij} \leftarrow \text{Apply_Rules_Sat}(N_i, R_j, \text{Old}) \)
7: \(\text{den}_{ij} \leftarrow \text{Apply_Rules_Den}(N_i, R_j, \text{Old}) \)
8: end if
9: end for
10: return \(\{ \max(\max_{array}(\text{sat}_{ij}), \text{Old}[i].\text{sat}), \max(\max_{array}(\text{den}_{ij}), \text{Old}[i].\text{den}) \} \)

Algorithm 5 Apply_Alleivation

Require: goal_model \(\langle N, R \rangle \), label_array current
1: for all \(N_k \in N \wedge \rightleftharpoons \text{\#Life}(N_k) \) do
2: for all \(R_l \in R \wedge \rightleftharpoons \text{\#Life}(N_k) \) do
3: \(N_k \leftarrow \text{Update_Sign}(R_l, \text{current}) \)
4: end for
5: end for
6 GR-Tool and Experimental Results

The tool we have developed is an extension of the Goal Reasoning Tool\(^6\) (GR-Tool) developed within the Tropos project. Basically, the tool (Fig. 3) is a graphical tool in which it is possible to draw GR models and run algorithms presented in the previous section. The algorithms have been fully implemented in JAVA and are embedded in the tool.

To test our approach and its implementation, we run a number of experiments with the loan origination process case study that we summarize briefly in the following.

Let’s start from the situation where we are interested to obtain partial evidence for the satisfaction of top-goals earn more income \((G_1)\) and ensure repayment of loan \((G_7)\), while full evidence for top-goals receive loan application \((G_4)\) and handle loan application \((G_{10})\). Suppose also, that the maximum level of risk we are willing to run is \(\text{Den}(G_4) = P\), \(\text{Den}(G_{10}) = P\), \(\text{Den}(G_1) = N\), and \(\text{Den}(G_7) = N\). Given these inputs, the set of possible solutions is reported in Tab. 5. Note that these solutions do not consider risk for the moment. The total cost of each solution is calculated summing up the cost of each leaf goal (input goal). Among these solutions,

\(^6\)http://sesa.dit.unitn.it/goaleditor/
suppose we decide to focus on solutions with a cost lesser than 30, that are S4, S6, S7, and S8. Particularly, let’s consider S4 with the initial assignment for input goals as reported in Tab. 6 (column “Goal-In”). This assignment satisfies the desired values for top-goals (column “Goal-Out”). Now if we introduce the assignment to events reported in column “Event-In”, the desired values for top goals are not anymore satisfied (“Event-Out”). For instance, G4 has full DEN evidence, while the acceptable value was at most partial. This happens since goal receive loan application (G4) is satisfied by receive electronic application (G6) goal, which has full DEN evidence (i.e., Den(G6) = F). We have a similar situation for G7 and G10. To make S4 acceptable, possible sets of treatments are C1, C2, C3, and C4 in Tab. 7. As reported in column “Treat-Out” in Tab. 6, C1 satisfies again the desired values for top-goals (DEN values for G4 and G10 are now partial, while goal G7 has no evidence for denial). However, the adoption of C1 introduces an additional cost for S4 that is now 30+13=43.

Table 5: Cost of Alternative Solutions

<table>
<thead>
<tr>
<th>Input Goal</th>
<th>Cost</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
<th>S8</th>
</tr>
</thead>
<tbody>
<tr>
<td>G02-Earn from Loan Interest</td>
<td>2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>G03-Charge High Fee for LOP</td>
<td>2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>G05-Receive Hard-copy App</td>
<td>5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>G08-Receive Electronic App</td>
<td>3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>G09-Monitor Usage of Loan</td>
<td>4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>G11-Verify Loan Application</td>
<td>3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>G12-Assessed by CB</td>
<td>10</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>G14-Assessed by In-house</td>
<td>8</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>G16-Proposed by Customer</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>G17-Defined by Bank</td>
<td>3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>G19-Approved by Clerk</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>G20-Approved by Manager</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Cost</td>
<td>33</td>
<td>32</td>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4: Comparison Total Risk and Total Cost among All Candidate Alternatives and Their Treatments
<table>
<thead>
<tr>
<th>Goal</th>
<th>Event</th>
<th>Treat</th>
</tr>
</thead>
<tbody>
<tr>
<td>In</td>
<td>Out</td>
<td>In</td>
</tr>
<tr>
<td>S01</td>
<td>Increase Interest Rate of Loan</td>
<td>-</td>
</tr>
<tr>
<td>S02</td>
<td>Forge Electronic Application</td>
<td>-</td>
</tr>
<tr>
<td>S03</td>
<td>Forgery from External Attack</td>
<td>-</td>
</tr>
<tr>
<td>S04</td>
<td>Forgery from Internal Breach</td>
<td>-</td>
</tr>
<tr>
<td>S05</td>
<td>Cust Fails to Fulfill Loan Sch</td>
<td>-</td>
</tr>
<tr>
<td>S06</td>
<td>Fake Identity Document</td>
<td>-</td>
</tr>
<tr>
<td>S07</td>
<td>Fake Application</td>
<td>-</td>
</tr>
<tr>
<td>S08</td>
<td>Credit Bureau Ignorance</td>
<td>-</td>
</tr>
<tr>
<td>S09</td>
<td>Mispredict Monetary Cond.</td>
<td>-</td>
</tr>
<tr>
<td>S10</td>
<td>Cust Unemployment</td>
<td>-</td>
</tr>
<tr>
<td>S11</td>
<td>Economic Crisis</td>
<td>-</td>
</tr>
<tr>
<td>G01</td>
<td>Earn More Income</td>
<td>-</td>
</tr>
<tr>
<td>G02</td>
<td>Earn from Loan Interest</td>
<td>-</td>
</tr>
<tr>
<td>G03</td>
<td>Charge High Fee for LOP</td>
<td>F</td>
</tr>
<tr>
<td>G04</td>
<td>Receive Loan Application</td>
<td>F</td>
</tr>
<tr>
<td>G05</td>
<td>Receive Hard-copy App.</td>
<td>F</td>
</tr>
<tr>
<td>G06</td>
<td>Receive Electronic App.</td>
<td>F</td>
</tr>
<tr>
<td>G07</td>
<td>Ensure Repayment of Loan</td>
<td>P</td>
</tr>
<tr>
<td>G08</td>
<td>Ask Mortgage</td>
<td>F</td>
</tr>
<tr>
<td>G09</td>
<td>Monitor Usage of Loan</td>
<td>P</td>
</tr>
<tr>
<td>G10</td>
<td>Handle Loan Application</td>
<td>F</td>
</tr>
<tr>
<td>G11</td>
<td>Verify Loan Application</td>
<td>F</td>
</tr>
<tr>
<td>G12</td>
<td>Assess Application</td>
<td>F</td>
</tr>
<tr>
<td>G13</td>
<td>Assessed by Credit Bureau</td>
<td>F</td>
</tr>
<tr>
<td>G14</td>
<td>Assessed by In-house</td>
<td>F</td>
</tr>
<tr>
<td>G15</td>
<td>Define Loan Schema</td>
<td>F</td>
</tr>
<tr>
<td>G16</td>
<td>Proposed by Customer</td>
<td>F</td>
</tr>
<tr>
<td>G17</td>
<td>Defined by Bank</td>
<td>F</td>
</tr>
<tr>
<td>G18</td>
<td>Approve Loan Application</td>
<td>F</td>
</tr>
<tr>
<td>G19</td>
<td>Approved by Clerk</td>
<td>F</td>
</tr>
<tr>
<td>G20</td>
<td>Approved by Manager</td>
<td>F</td>
</tr>
<tr>
<td>T01</td>
<td>Use Digital Signature</td>
<td>-</td>
</tr>
<tr>
<td>T02</td>
<td>Have Digital Signature Inf.</td>
<td>-</td>
</tr>
<tr>
<td>T03</td>
<td>Install Public Key Inf.</td>
<td>-</td>
</tr>
<tr>
<td>T04</td>
<td>Employ Intrusion Det. Sys.</td>
<td>-</td>
</tr>
<tr>
<td>T05</td>
<td>Employ Strict Access Control</td>
<td>-</td>
</tr>
<tr>
<td>T06</td>
<td>Hire Underwriter</td>
<td>-</td>
</tr>
<tr>
<td>T07</td>
<td>Verify ID doc with Gov. DB</td>
<td>F</td>
</tr>
<tr>
<td>T08</td>
<td>Assign Liaison Officer for CB</td>
<td>F</td>
</tr>
<tr>
<td>T09</td>
<td>Train Internal Actuary</td>
<td>F</td>
</tr>
<tr>
<td>T10</td>
<td>Assess App Anonymously</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 6: SAT-DEN Values of S4-alternative and C1-treatments
Table 7: Cost of Possible Treatments

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Cost</th>
<th>S4</th>
<th>S6</th>
<th>S7/S8</th>
</tr>
</thead>
<tbody>
<tr>
<td>T02</td>
<td>2</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>T03</td>
<td>2</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>T04</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>T05</td>
<td>2</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>T06</td>
<td>4</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>T07</td>
<td>3</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>T08</td>
<td>2</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>T09</td>
<td>3</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>T10</td>
<td>2</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

| Total Cost | 13 | 12 | 12 | 16 | 12 | 16 | 15 | 15 | 19 |

A similar analysis can be done for the other selected solutions S6, S7 and S8 (i.e., those with a cost lesser than 30). The set of treatments for S6 is C5, while for S7 and S8 can be either C6, C7, C8, or C9. Their costs are reported in Tab. 7.

Fig. 4 shows the comparison among costs and risks for all solutions and related treatments. The total risk is calculated assuming Null=1, Partial=2, and Full=3 and summing up the DEN values for all top goals. This means that for the acceptable risk level (i.e., $Den(G_1) = N$, $Den(G_4) = P$, $Den(G_7) = N$, and $Den(G_{10}) = P$), we can have at most the total risk $1+1+2+2=6$. Note that S6+C5 has a lower total risk w.r.t. the others (i.e., C6+C5 total risk=5) and is cheaper than the initial S4+C1 we considered. So S6+C5 seems to be the most convenient solution to be adopted. However, the consequence of adopting S6+C5 is that the customers cannot submit their loan application electronically, and the analyst should consider this in the choice.

7 Conclusions and Future Work

In this paper, we have presented a framework to model and reason about risk within the requirements engineering process. We have adopt and extended the Tropos goal modeling framework and proposed qualitative reasoning algorithms to analyze risk during the process of evaluation and selection of alternatives.

Our approach has some limitations that we would like to overcome in our future work. Particularly, the fact that we combine evidence values of satisfaction and denial using simple maximum and minimum metrics does not allow us to represent the difference among countermeasures that are adopted in the solution. For instance, the solution S4+C1 has the same level of risk of S4+C4, but S4+C4 adopts more treatments than the former. Moreover, even if the three qualitative values used for SAT and DEN can be extended including more intermediate values, as we done for Tropos goal models we would like to propose quantitative reasoning mechanisms where evidence is expressed in term of probability.

Acknowledgment

This work has been partly supported by the projects EU-SERENITY, FIRB-ASTRO, PAT-MOSTRO, PAT-STAMPS.
References

