

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

ITERATIVE SCHEMA-BASED SEMANTIC MATCHING

Pavel Shvaiko

December 2006

Technical Report # DIT-06-102

.

PhD Dissertation

International Doctorate School in Information and
Communication Technology

DIT - University of Trento

ITERATIVE SCHEMA-BASED

SEMANTIC MATCHING

Pavel Shvaiko

Advisor:

Prof. Fausto Giunchiglia

Università degli Studi di Trento

November 2006

Abstract

An ontology typically provides a vocabulary that describes a domain

of interest and a specification of the meaning of terms used in the vo-

cabulary. Depending on the precision of this specification, the notion of

ontology encompasses several data and conceptual models, for example,

classifications, database schemas, fully axiomatized theories. Ontologies

tend to be put everywhere. They are viewed as the silver bullet for many

applications, such as information integration, peer-to-peer systems, elec-

tronic commerce, semantic web services, social networks, and so on. They,

indeed, are a practical means to conceptualize what is expressed in a com-

puter format. However, in open or evolving systems, such as the semantic

web, different parties would, in general, adopt different ontologies. Thus,

just using ontologies does not reduce heterogeneity: it raises heterogeneity

problems to a higher level.

Ontology matching is a promising solution to the semantic heterogeneity

problem. It finds correspondences between semantically related entities of

the ontologies. These correspondences can be used for various tasks, such

as ontology merging, query answering, data translation, or for navigation

on the semantic web. Thus, matching ontologies enables the knowledge and

data expressed in the matched ontologies to interoperate. This dissertation

focuses only on the task of discovering correspondences between various

forms of ontologies with a particular consideration of classifications.

Many various solutions of matching have been proposed so far. This

work concentrates on a schema-based solution, namely a solution exploiting

only the schema information, and not considering instance information.

To ground the choice of the solution, this thesis provides a comprehensive

coverage of the schema-based approaches used in ontology matching as well

as their applications by reviewing state of the art in the field in a uniform

way. It also points out how the approach developed in the thesis fits in

with existing work.

The thesis proposes the so-called semantic matching approach. This

approach is based on two key ideas. The first is that correspondences

are calculated between entities of ontologies by computing logical relations

(e.g., equivalence, subsumption, disjointness), instead of computing coef-

ficients rating match quality in the [0 1] range, as it is the case in many

other approaches. The second idea is that the relations are determined by

analyzing the meaning which is codified in the elements and the structures

of ontologies. In particular, labels at nodes, written in natural language,

are automatically translated into propositional formulas which explicitly

codify the labels’ intended meaning. This allows the translation of the

matching problem into a propositional validity problem, which can then

be efficiently resolved using sound and complete state of the art proposi-

tional satisfiability deciders.

The basic and iterative semantic matching algorithms as well as explana-

tions of the correspondences produced have been designed and developed.

The approach has been evaluated on various real world test cases with

encouraging results, thus, proving empirically its benefits.

Keywords

Ontology matching, schema matching, ontology alignment, semantic het-

erogeneity, semantic matching, iterative semantic matching

ii

Acknowledgments

I am extremely grateful to Fausto Giunchiglia, my scientific advisor,

for many lessons on how to do research and write articles, for being very

supportive in my work, for guiding my entrance into AI domain and life in

general. Specifically, I am thankful for the countless hours he spent with

me in teaching how to shape the early ideas with the help of examples,

turn hard research problems into fun and how to follow the high standards

of scholarship, precision and technical depth in a research work. Also, I

am thankful for his insightful suggestions that helped me made the right

strategic choices at many crucial decision points along these years.

I am grateful to external thesis committee members, Alessandro Artale,

Jérôme Euzenat, Nicola Guarino and Stefano Spaccapietra for the time and

energy they have spent in reviewing my thesis and their detailed technical

feedback.

I thank all my friends and everyone who have contributed to this thesis

through many fruitful discussions, technical advice, encouraging words and

in many other ways.

Finally, I everlastingly thank my parents, Larysa and Leonid, who have

given love, support and understanding over all of these years. I owe very

special thanks to my beloved Marlene for accepting my style of living during

these years. Her inspiration and love have been an endless source of energy

that invaluably helped me in completing this thesis.

iii

Contributions and publications

This work has been developed in collaboration with various people

(as the publications indicate) and in particular with: Fausto Giunchiglia,

Jérôme Euzenat, Deborah L. McGuinness, Paulo Pinheiro da Silva, and

Mikalai Yatskevich.

This thesis makes the following contributions:

• An overview of the ontology matching applications and requirements

these applications pose towards a plausible solution;

• A detailed survey of state of the art schema-based ontology matching

approaches and systems under a uniform framework;

• Design and development of a new approach to ontology matching,

called semantic matching;

• Design and development of the algorithms for semantic matching;

• Creation of a real world data set from the cultural heritage domain

for the evaluation of quality results of matching systems;

• Empirical evaluation of the semantic matching approach on various

data sets;

• An overview of future trends in the ontology matching field.

Part of the material of the thesis has been published in various confer-

ences, journals and books (in order of appearance):

iv

• [96]: Fausto Giunchiglia and Pavel Shvaiko. Semantic matching. In

Proceedings of the Workshop on Ontologies and Distributed Systems at

the International Joint Conference on Artificial Intelligence (IJCAI),

2003.

• [97]: Fausto Giunchiglia and Pavel Shvaiko. Semantic matching. The

Knowledge Engineering Review, 18(3), 2003.

• [98]: Fausto Giunchiglia, Pavel Shvaiko, and Mikalai Yatskevich. S-

Match: an algorithm and an implementation of semantic matching.

In Proceedings of the European Semantic Web Symposium (ESWS),

2004.

• [213]: Pavel Shvaiko. A classification of schema-based matching ap-

proaches. In Proceedings of the Meaning Coordination and Negotiation

Workshop at the International Semantic Web Conference (ISWC),

2004.

• [154]: Deborah L. McGuinness, Pavel Shvaiko, Fausto Giunchiglia,

and Paulo Pinheiro da Silva. Towards explaining semantic matching.

In Proceedings of the International Workshop on Description Logics

(DL) at the International Conference on the Principles of Knowledge

Representation and Reasoning (KR), 2004.

• [215]: Pavel Shvaiko, Fausto Giunchiglia, Paulo Pinheiro da Silva, and

Deborah McGuinness. Web explanations for semantic heterogeneity

discovery. In Proceedings of the European Semantic Web Conference

(ESWC), 2005.

• [134]: Alan Léger, Lyndon Nixon, Pavel Shvaiko, and Jean Charlet.

Semantic web applications: Fields and business cases. The industry

challenges the research. In Proceedings of the International Conference

on Industrial Applications of Semantic Web (IASW), 2005.

v

• [99]: Fausto Giunchiglia, Pavel Shvaiko, and Mikalai Yatskevich. Se-

mantic schema matching. In Proceedings of the International Confer-

ence on Cooperative Information Systems (CoopIS), 2005.

• [133]: Alain Léger, Lyndon Nixon, and Pavel Shvaiko. On identifying

knowledge processing requirements. In Proceedings of the Interna-

tional Semantic Web Conference (ISWC), 2005.

• [214]: Pavel Shvaiko and Jérôme Euzenat. A survey of schema-based

matching approaches. Journal on Data Semantics (JoDS), IV, 2005.

• [238]: Anna Zhdanova and Pavel Shvaiko. Community-driven ontol-

ogy matching. In Proceedings of the European Semantic Web Confer-

ence (ESWC), 2006.

• [132]: Alain Léger, Johannes Heinecke, Lyndon Nixon, Pavel Shvaiko,

Jean Charlet, Paola Hobson and François Goasdoué. The semantic

web from an industry perspective. Tutorial at Reasoning Web, Second

International Summer School, Springer, 2006.

• [74]: Jérôme Euzenat, Malgorzata Mochol, Pavel Shvaiko, Heiner

Stuckenschmidt, Ondřej Šváb, Vojtěch Svátek, Willem Robert van

Hage, and Mikalai Yatskevich. Results of the ontology alignment eval-

uation initiative 2006. In Proceedings of the International Workshop

on Ontology Matching (OM) at the International Semantic Web Con-

ference (ISWC), 2006.

• [100]: Fausto Giunchiglia, Pavel Shvaiko, and Mikalai Yatskevich. Dis-

covering missing background knowledge in ontology matching. In Pro-

ceedings of the European Conference on Artificial Intelligence (ECAI),

2006.

vi

• [103]: Fausto Giunchiglia, Mikalai Yatskevich, and Pavel Shvaiko. Se-

mantic matching: algorithms and implementation. Journal on Data

Semantics (JoDS), IX, 2006. to appear.

• [75]: Jérôme Euzenat and Pavel Shvaiko. Ontology matching. Springer-

Verlag, Heidelberg (DE), 2007. to appear.

Whenever results of any of these works are reported, proper citations

are made in the body of the thesis.

vii

viii

Contents

Introduction xix

I The matching problem 1

1 Applications 3

1.1 Ontology evolution . 4

1.2 Information integration . 5

1.3 Peer-to-peer

information sharing . 10

1.4 Web service composition 12

1.5 Agent communication . 13

1.6 Query answering on the web 15

1.7 Summary . 16

2 The matching problem 21

2.1 Vocabularies,

schemas and ontologies . 22

2.2 Types of heterogeneity . 26

2.3 Problem statement . 28

2.4 Summary . 32

ix

II State of the art:

ontology matching approaches 33

3 Ontology matching

techniques 35

3.1 Matching dimensions . 36

3.2 A classification of

matching techniques . 38

3.3 Other classifications . 56

3.4 Matching strategies . 58

3.5 Summary . 59

4 Overview of

matching systems 61

4.1 Schema-based systems . 62

4.2 Mixed systems . 73

4.3 Summary . 78

III Schema-based

semantic matching 83

5 Semantic matching 85

5.1 Generic and general

matching . 86

5.2 Semantic matching:

the idea . 88

5.3 Semantic matching:

the algorithm . 96

5.4 Summary . 107

x

6 Semantic matching

with attributes 109

6.1 The idea of the approach 109

6.2 Exploiting datatypes . 110

6.3 Ignoring datatypes . 112

6.4 Summary . 113

7 Iterative

semantic matching 115

7.1 Motivation:

lack of knowledge . 116

7.2 The iterative tree

matching algorithm . 118

7.3 The critical points

discovery algorithm . 121

7.4 The critical points

resolution algorithm . 123

7.5 Summary . 125

8 Explaining

semantic matching 127

8.1 Justifications . 128

8.2 Explaining semantic

matching: the approach 130

8.3 Implementation details . 137

8.4 Summary . 139

xi

IV Evaluation 141

9 Evaluation setup 143

9.1 Evaluation measures . 144

9.2 Test cases . 148

9.3 Systems used

for evaluation . 154

9.4 Summary . 158

10 Evaluation results 159

10.1 Evaluation of

semantic matching . 159

10.2 Evaluation of

iterative semantic matching 162

10.3 Evaluation of

explanations . 165

10.4 Lessons learned . 167

10.5 Summary . 169

V Conclusions 171

11 Summary 173

12 Future trends

in the field 177

12.1 Trends in theories

and methods . 179

12.2 Trends in tools . 185

12.3 Trends in applications . 187

xii

Bibliography 189

xiii

List of Figures

1 Two XML schemas . xxi

1.1 Ontology evolution scenario 5

1.2 A general (centralized) information integration scenario . . 6

1.3 P2P query answering . 12

1.4 Web service composition 13

1.5 Agent communication . 14

1.6 Distribution of some applications with regard to their dy-

namics . 17

2.1 Various forms of ontologies ordered by their expressivity

(adapted from [109, 225]). 22

2.2 The matching process . 29

3.1 A retained classification of elementary schema-based match-

ing techniques . 41

5.1 Simple catalog matching problem 90

5.2 Analysis of siblings . 92

5.3 Analysis of ancestors. Case 1 92

5.4 Analysis of ancestors. Case 2 93

5.5 Two XML schemas and some of the mapping elements . . 96

7.1 Analytical comparative evaluation 117

7.2 Fragments of Google and Looksmart 118

xv

8.1 Default explanation in English 132

8.2 Source metadata information 133

8.3 A graphical explanation of the unit clause rule 136

8.4 Inference Web infrastructure overview 138

9.1 Two alignments as sets of correspondences and relations be-

tween them . 145

9.2 Manual matching with BizTalk Mapper 151

10.1 Evaluation results: Product schemas (Figure 5.5), test case

#2 . 160

10.2 Evaluation results: Yahoo Finance vs Standard, test case #3 160

10.3 Evaluation results: Cornell vs Washington, test case #4 . . 161

10.4 Evaluation results: CIDX vs Excel, test case #5 161

10.5 Evaluation results (absolute values), test cases #6,7,8 . . . 163

10.6 Experimental results for explanations, test cases #1,2,3 . . 166

12.1 Dynamics of publications devoted to matching 178

xvi

List of Tables

1.1 Summary of applications requirements 19

4.1 Basic matchers used by different systems 80

5.1 The matrix of semantic relations holding between atomic

concepts of labels . 103

5.2 The matrix of semantic relations holding between concepts

at nodes (the matching result) 105

6.1 Attributes: the matrix of semantic relations holding between

concepts at nodes (the matching result) 113

7.1 Recomputed cNodesMatrix: relations among concepts at

nodes . 120

7.2 cLabsMatrix: relations holding among atomic concepts of

labels . 122

7.3 cNodesMatrix: relations holding among concepts at nodes 123

9.1 Some indicators of the complexity of the test cases 148

9.2 Final sizes of three parts of correspondences used for the

data set construction . 154

10.1 Some element level matchers used in the iterative semantic

matching and their evaluation results 164

xvii

10.2 Preliminary evaluation results: Iconclass vs Aria, test case

#9 . 165

xviii

Introduction

Ontology matching

An ontology typically provides a vocabulary describing a domain of inter-

est and a specification of the meaning of terms used in the vocabulary.

Depending on the precision of this specification, the notion of ontology

encompasses several data and conceptual models, including classifications,

database schemas, fully axiomatized theories. Ontologies tend to be put

everywhere. They are viewed as the silver bullet for many applications,

such as database integration, peer-to-peer systems, e-commerce, semantic

web services, social networks [81]. They, indeed, are a practical means

to conceptualize what is expressed in a computer format [37]. However,

in open or evolving systems, such as the semantic web, different parties

would, in general, adopt different ontologies. Thus, merely using ontolo-

gies, like using XML, does not reduce heterogeneity: it raises heterogeneity

problems to a higher level.

This thesis is devoted to ontology matching as a solution to the seman-

tic heterogeneity problem faced by computer systems. Ontology matching

aims at finding correspondences between semantically related entities of

different ontologies. These correspondences may stand for equivalence as

well as other relations, such as subsumption, or disjointness, between on-

tology entities. Ontology entities, in turn, are usually the named entities

of ontologies, such as classes, properties or individuals. However, these

xix

entities can also be more complex expressions, such as formulas, concept

definitions or term building expressions. Ontology matching results, called

alignments, can thus express with various degrees of precision the relations

between the ontologies under consideration.

Alignments can be used for various tasks, such as ontology merging, data

translation, or for query answering the web. Matching ontologies enables

the knowledge and data expressed in the matched ontologies to interoper-

ate. It is thus of utmost importance for the above mentioned applications

whose interoperability is jeopardized by heterogeneous ontologies.

Many different matching solutions have been proposed so far from var-

ious viewpoints, including databases, information systems, and artificial

intelligence. They take advantage of various properties of ontologies, e.g.,

labels, structures or data instances, and use techniques from different fields,

e.g., linguistics, automated reasoning, statistics and data analysis, machine

learning. These solutions share some techniques and tackle similar prob-

lems, but differ in the way they combine and exploit their results.

Motivating example

To motivate the matching problem, let us use two simple XML schemas

that are shown in Figure 1 and exemplify one of the possible situations

which arise, for example, when resolving a schema integration task.

Suppose an e-commerce company needs to finalize a corporate acquisi-

tion of another company. To complete the acquisition we have to integrate

databases of the two companies. The documents of both companies are

stored according to XML schemas O1 and O2, respectively. Numbers in

boxes are the unique identifiers of the XML elements. A first step in in-

tegrating the schemas is to identify candidates to be merged or to have

taxonomic relationships under an integrated schema. This step refers to

xx

Figure 1: Two XML schemas

a process of schema matching. For example, the elements with labels Of-

fice Products in O1 and in O2 are the candidates to be merged, while the

element with label Digital Cameras in O2 should be subsumed by the el-

ement with label Photo and Cameras in O1. Once the correspondences

between two schemas have been determined, the next step has to gener-

ate query expressions that automatically translate data instances of these

schemas under an integrated schema.

Solution

Many various solutions of matching have been proposed so far. This work

concentrates on a schema-based solution, namely a matching approach

exploiting only the schema information, thus not considering instances.

It proposes the so-called semantic matching approach. This approach

is based on two key ideas. The first is that correspondences are calcu-

lated between entities of ontologies by computing logical relations (e.g.,

equivalence, subsumption, disjointness), instead of computing coefficients

rating match quality in the [0 1] range, as it is the case of many other

xxi

approaches. The second idea is that the relations are determined by an-

alyzing the meaning which is codified in the entities and the structures

of ontologies. In particular, labels at nodes, written in natural language,

are automatically translated into propositional formulas which explicitly

codify the labels’ intended meaning. This allows the translation of the

matching problem into a propositional validity problem, which can then

be efficiently resolved using sound and complete propositional satisfiability

deciders.

Structure of the thesis

The thesis is organized in five parts.

Part one is dedicated to the motivation and the definition of the on-

tology matching problem. The motivation is given in Chapter 1 through

a number of applications that can take advantage of matching ontologies

and the presentation of how matching contributes to these applications.

In Chapter 2, the ontology matching problem is technically defined in var-

ious instances of ontology matching occurring in different contexts, such

as classifications, databases, XML schemas and finally formal ontologies.

It technically defines the ontology matching process and its result: the

alignment.

Part two provides a comprehensive coverage of the schema-based ap-

proaches used for ontology matching. Chapter 3 defines a classification

of the matching approaches, presents some basic methods and matching

strategies used for designing an ontology matching system. Chapter 4

presents a large number of state of the art schema-based matching sys-

tems, discussed in light of the classifications, methods and strategies of the

previous chapter. It also points out how the approach further developed

in this thesis fits in with existing work.

xxii

Part three is devoted to the semantic matching approach proposed in

this thesis. Chapter 5 introduces basic notions and motivations behind the

approach. It also discusses the main macro steps realizing the semantic

matching algorithm. Chapter 6 discusses how attributes are handled within

the semantic matching settings. Chapter 7 presents an extension of the

semantic matching approach to deal in a fully automated way with the lack

of background knowledge in matching tasks by using semantic matching

iteratively. Chapter 8 describes an extension of the semantic matching

approach that enables explanation of the answers it produces, thus making

the matching result intelligible.

Part four is devoted to the evaluation of ontology matching and semantic

matching in particular. Chapter 9 discusses the evaluation criteria for

ontology matching approaches as well as the settings in which we ran our

experiments. Chapter 10 reports the results of the conducted experiments.

Finally, part five concludes. Chapter 11 summarizes the work done in

the thesis. Chapter 12 outlines future trends in the ontology matching

field.

xxiii

Part I

The matching problem

Chapter 1

Applications

Matching metadata models is an important operation in traditional ap-

plications, such as ontology integration, schema integration, data ware-

houses. Typically, these applications are characterized by heterogeneous

structural models that are analyzed and matched either manually or semi-

automatically at design time. In such applications matching is a prerequi-

site of running the actual system.

A line of applications that can be characterized by their dynamics, e.g.,

agents, peer-to-peer systems, web services, is emerging. Such applications,

contrary to traditional ones, require (ultimately) a run time matching op-

eration and take advantage of more explicit conceptual models.

Material presented in this chapter has been developed in collaboration

with Jérôme Euzenat and published in [214, 75]. Also some lines of work on

the topic of this chapter have been supported by the FP6 Knowledge Web1

Network of Excellence and the FP6 Open Knowledge2 specific targeted

research project, with some results reported in [133, 216].

1http://knowledgeweb.semanticweb.org/
2http://openk.org/

3

1.1. ONTOLOGY EVOLUTION CHAPTER 1. APPLICATIONS

In this chapter we first present some well-known applications where

matching has been recognized as a plausible solution for a long time.

These are ontology evolution (§1.1) and information integration, including

schema integration, catalog integration, data warehouses and data inte-

gration (§1.2). Then, we discuss some recently emerged applications, such

as peer-to-peer information sharing (§1.3), web service composition (§1.4),

agent communication (§1.5), and query answering on the web (§1.6).

1.1 Ontology evolution

It is natural that domains of interest, application requirements and the

way in which knowledge engineers conceptualize those by means of ontolo-

gies undergo changes and evolve over time. Also, ontology development,

similar to software code development, is often performed in a distributed

and collaborative manner. Therefore, multiple versions of the same ontol-

ogy often exist. Some applications keep their ontologies up to date, while

others may continue to use old ontology versions and update them on their

own. These situations arise because knowledge engineers and developers

usually do not have a global view of how and where the ontologies have

changed. In fact, change logs may not always be available (which is often

the case in distributed ontology development). Therefore, developers need

to manage and maintain the different versions of their ontologies.

The matching operation is of help here, see Figure 1.1. Its main focus is

on discovering the differences, e.g., what ontology entities have been added,

deleted or renamed, between two ontology versions [202, 178, 182, 183].

In this scenario it is useful to: (i) find the correspondences between the

old version (x) and the new version (x + 1) of the ontology, (ii) generate

a transformation by using these correspondences and (iii) transform the

underlying data instances.

4

CHAPTER 1. APPLICATIONS 1.2. INFORMATION INTEGRATION

Figure 1.1: Ontology evolution scenario

1.2 Information integration

Information integration is one of the oldest classes of applications where

matching is viewed as a plausible solution. Under the information in-

tegration heading, we gather here such problems as schema integration

[11, 212, 219, 192], data warehousing [26], data integration (also known

as enterprise information integration, EII) [44, 233, 65, 114], and catalog

integration [1, 121, 31, 99].

A general information integration scenario is presented in Figure 1.2:

given a set of local information sources (Local Ontology 1, Local Ontology 2)

potentially storing their data in different formats, e.g., SQL DDL, XML,

or RDF, provide users with a uniform query interface via the mediated (or

global) ontology Common Ontology to all the local information sources.

This allows users to avoid querying the local information sources one by

one, and obtain a result from them just by querying a common ontology.

For example, if a user poses the query find a book about ontology match-

ing to a common ontology, then, an information integration system commu-

nicates with local information sources, e.g., www.amazon.com, www.bn.com,

5

1.2. INFORMATION INTEGRATION CHAPTER 1. APPLICATIONS

Figure 1.2: A general (centralized) information integration scenario

and returns a reconciled result to the user based on the input provided by

those sources. In general, there are a number of macro steps that the

information integration system has to perform. These include:

• interpret (rewrite) the query in terms of the common ontology;

• identify the correspondences between semantically related entities of

the local information sources and the common ontology;

• translate the relevant data instances of the local information sources

(involved in handling the user’s request) into a knowledge representa-

tion formalism of the information integration system;

• reconcile the results obtained from multiple local information sources,

namely detecting and eliminating, e.g., redundancies, duplications,

6

CHAPTER 1. APPLICATIONS 1.2. INFORMATION INTEGRATION

before returning the final answer.

Most often a step of identifying the correspondences between seman-

tically related entities of the local information sources and the common

ontology is referred to as matching. Let us limit our vision of matching to

the description above for the moment. We will expand it to some extent

in the next sections.

In some concrete information integration scenarios, the common ontol-

ogy can be either physically existing or virtual. Below, we discuss these

scenarios in some detail.

1.2.1 Schema integration

Schema integration is the oldest scenario [11, 212, 221, 220, 192]. Suppose,

two (or more) enterprises want to perform either a merger or an acqui-

sition among them. Ultimately, these enterprises have to integrate their

databases into a single one. Usually, a first technical step is to identify cor-

respondences between semantically related entities of the schemas. This

step is known as matching. Then, by using the identified correspondences,

merging the databases is performed. The matching step is still required

even if the databases to be integrated are coming from the same domain of

interest, e.g., book selling, car rentals. This is because the schemas have

been designed and developed independently. In fact, humans follow diverse

modeling principles and patterns, even if they have to encode the same real

world object. Finally, the schemas to be integrated might have been de-

veloped according to different business goals. This makes the matching

problem even harder.

Under the schema integration heading we can classify some other scenar-

ios. For example, (tightly-coupled) federated databases [212]. These typ-

ically have one global schema providing a unified access to the federation

7

1.2. INFORMATION INTEGRATION CHAPTER 1. APPLICATIONS

of component databases. Component databases, in turn, are autonomous.

Thus, in this application when, for example, one component schema of the

federated database is changed, the federated (global) schema has conse-

quently to be also reconsidered. Matching can help in identifying those

changes.

Finally, it is worth noting the applications which we are not discussing

here, e.g., distributed database systems [185]. These are usually designed

in a centralized way, e.g., by a database administrator, and therefore, se-

mantic heterogeneity does not exist there by construction [70].

1.2.2 Catalog integration

In Business-to-Business (B2B) applications, trade partners store informa-

tion about their products in electronic catalogs. Typical examples of cat-

alogs are product directories of electronic sales portals, such as Amazon

or eBay . In order for a merchant to participate in the marketplace, e.g.,

eBay , it has to determine correspondences between entries of its catalogs

and those of a single catalog of a marketplace. This process of finding

correspondences among entries of the catalogs is referred to as the cata-

log matching problem [31]. Notice that if we look at this problem from a

merchant viewpoint, matching has to be performed for each marketplace it

would like to participate. Having identified the correspondences between

the entries of the catalogs, they are further analyzed in order to generate

query expressions that automatically translate data instances between the

catalogs. Finally, having matched the catalogs, users of a marketplace have

a unified access to the products which are on sale. The above described

scenario involving interactions between marketplaces and merchants can be

viewed as a typical example of integrating local data sources into a data

warehouse, see also [26].

Another catalog integration scenario deals with (typically large-scale)

8

CHAPTER 1. APPLICATIONS 1.2. INFORMATION INTEGRATION

product classifications, such as UNSPSC 3 (The United Nations Standard

Products and Services Code) and eCl@ss4 (Standardized Material and Ser-

vice Classification). In a sense, we can view this scenario as one which en-

ables interoperability among multiple B2B marketplaces, thus, facilitating

product exchange schemas between the enterprises subscribing to different

product classifications [207]. This is to be achieved by establishing the

correspondences between semantically related entities of the standardized

product classifications, which is a matching operation as well.

1.2.3 Data integration

Data integration is an approach where integration of information coming

from multiple local sources is performed without first loading their data

into a central warehouse [114]. This allows interoperation across multiple

local sources having access to the up-to-date data. Notice that in the

above considered catalog integration scenario, merchants are those who

have to perform updates of the central warehouse of the marketplace. In

this scenario the data integration system provides this functionality.

The scenario is as follows. First, local information sources participating

in the application, e.g., bookstore, cultural heritage, are identified. Then,

a virtual common ontology is built. Queries are posed over the virtual

common ontology, and are then reformulated into queries over the local

information sources, e.g., in the cultural heritages application, these might

be catalogs of museums. In order to enable semantics-preserving query

answering, correspondences between semantically related entities of the

local information sources and the virtual ontology are to be established.

Establishing these correspondences is known as a matching step.

Query answering is then performed by using these correspondences (map-

3http://www.unspsc.org
4http://www.eclass.de

9

1.3. PEER-TO-PEER
INFORMATION SHARING CHAPTER 1. APPLICATIONS

pings) within the Local-as-View (LAV), Global-as-View (GAV), or Global-

Local-as-View (GLAV) settings [135]. In the LAV approach, local schemas

are defined in terms of the global schema, i.e., the mapping is specified

by defining each local schema construct as a view over global schema con-

structs. Queries are processed by means of an inference mechanism that

re-expresses the atoms of the global schema in terms of atoms of the local

schemas. In GAV, a global schema is defined in terms of the local schemas,

i.e., the mapping is specified by writing a definition of each global schema

construct as a view over local schema constructs. Queries are processed by

means of unfolding, i.e., by expanding the atoms according to their defini-

tions (so as to come up with local schema relations). GLAV, in turn, is a

mixed approach. We can think of it as a variation of the LAV approach

that allows the head of the view definition to contain any query on the

local schema.

1.3 Peer-to-peer

information sharing

Peer-to-peer (P2P) is a distributed communication model in which parties

(also called peers) have equivalent functional capabilities in providing each

other with data and services [236]. P2P networks became popular through

a file, e.g., pictures, music, videos, books, sharing paradigm. There exist a

number of industry-strength P2P file sharing systems, e.g., Kazaa, Edon-

key , and BitTorrent . These applications describe file contents by a simple

schema (set of attributes, such as title of a song, its author, etc.) to which

all the peers in the network have to subscribe. These schemas cannot be

modified locally by a single peer. Therefore, in the above mentioned sys-

tems the semantic heterogeneity problem (at the schema level) does not

exist by construction.

10

CHAPTER 1. APPLICATIONS
1.3. PEER-TO-PEER

INFORMATION SHARING

The use of a single system schema violates the total autonomy of peers.

Although industry-strength P2P systems allow peers to connect to and

disconnect from the network at any time, thereby respecting some forms

of peers autonomy, such as participation autonomy, they still restrict the

design autonomy of peers, in matters such as how to describe the data,

what constraints to use on the data [236].

If peers are meant to be totally autonomous, they may use different

terminologies and metadata models in order to represent their data, even

if they refer to the same domain of interest. Thus, in order to establish

(meaningful) information exchange between peers, one of the steps is to

identify and characterize relationships between their ontologies. This is a

matching operation. Having identified the relationships between ontolo-

gies, these can be used for the purpose of query answering, e.g., using

techniques applied in data integration systems, see §1.2.

Following the argument of total autonomy of peers, more advanced P2P

systems relax the homogeneity requirement of classical P2P systems: they

allow peers to use independent schemas and ontologies [236, 122, 173, 203],

see Figure 1.3. In this scenario, it is useful to: (i) match relevant parts of

the ontologies, (2) generate a mediator for translating queries and some-

times for translating answers.

Such applications pose additional requirements on matching solutions.

In P2P settings which respect total autonomy of peers, an assumption

that all the peers rely on one global schema, as in data integration, cannot

be made because the global schema may need to be updated any time

the system evolves [104]. While in the case of data integration schema

matching can be performed at design time, in P2P applications peers need

to coordinate their databases on-the-fly, therefore ultimately requiring run

time schema matching. Finally, incomplete and approximate answers, as

long as they are good enough for the application, are also acceptable in

11

1.4. WEB SERVICE COMPOSITION CHAPTER 1. APPLICATIONS

Figure 1.3: P2P query answering

such settings. This is the case because some mappings involved in query

answering may become temporarily unavailable or invalid [216].

1.4 Web service composition

Web services are processes that expose their interface to the web so that

users can invoke them. Semantic web services provide a richer and more

precise way to describe the services through the use of knowledge repre-

sentation languages and ontologies. Web service discovery and integration

is the process of finding a web service able to deliver a particular service

and composing several services in order to achieve a particular goal, see

[191, 157, 184, 82]. However, semantic web services descriptions have no

reasons to be expressed by reference to exactly the same ontologies. Hence-

forth, both for finding the adequate service and for interfacing services it

12

CHAPTER 1. APPLICATIONS 1.5. AGENT COMMUNICATION

is necessary to establish the correspondences between the terms of the

descriptions. This can be provided through matching the corresponding

ontologies, see Figure 1.4. For instance, if some service provides its output

description in some ontology and another service uses a second ontology for

describing its input, matching both ontologies will be used for (i) checking

that what is delivered by the first service matches what is expected by

the second one, (ii) verifying preconditions of the second service, and (iii)

generating a mediator able to transform the output of the first service in

order to be input to the second one.

Figure 1.4: Web service composition

1.5 Agent communication

Agents are computer entities characterized by autonomy and capacity of in-

teraction. They communicate through speech-act inspired languages, such

as the FIPA Agent Communication Language [84, 83], which determine the

“envelope” of the messages and enable agents to position them within a

particular interaction context. The actual content of messages is expressed

13

1.5. AGENT COMMUNICATION CHAPTER 1. APPLICATIONS

in knowledge representation languages and often refer to some ontology. As

a consequence, when two autonomous and independently designed agents

meet, they have the possibility of exchanging messages, but little chance

to understand each others if they do not share the same content language

and ontology. Thus, it is necessary to provide the possibility for these

agents to match their ontologies in order to either translate their messages

or integrate bridge axioms in their own models, see [228, 234, 129]. One

solution to this problem is to have an ontology alignment protocol that can

be interleaved with any other agent interaction protocol and which could

be triggered upon receiving a message expressed in a foreign ontology. As a

consequence, agents meeting each other for the first time and using different

ontologies would be able to negotiate the matching of terms in their respec-

tive ontologies and to translate the content of the message they exchange

with the help of the alignment, see Figure 1.5. In this scenario it is useful,

for example, to: (i) match relevant parts of the ontologies used by each of

the agents, (ii) generate a message translator from Local Ontology 1 to

Local Ontology 2 and (iii) apply this translator to the message.

Figure 1.5: Agent communication

14

CHAPTER 1. APPLICATIONS 1.6. QUERY ANSWERING ON THE WEB

1.6 Query answering on the web

In some of the above considered scenarios, e.g., schema integration, data

integration, it was assumed that queries were specified by using the termi-

nology of a global schema. In the scenario under consideration, we discard

this assumption, and therefore users are free to pose queries by using their

own terminology. Then, an information integration system has to interpret

(rewrite) the terms used in the query, into the predefined ontology entities

of the system, for instance. This rewriting can be viewed as matching. The

rest of the query answering process usually proceeds in a similar way as

discussed in the previous scenarios. Let us now consider a slight variation

of this scenario in distributed settings with the help of examples of the

AquaLog and PowerAqua systems [140, 139].

As an example, suppose that a query answering system such as AquaLog

[140] is aware of an ontology about academic life which has been populated

to describe knowledge related to some university [204]. Also, let us suppose

that the following query is posed to the system: Which projects are related

to researchers working with ontologies? To answer this query, Aqualog

needs to interpret it in terms of entities available in the system ontol-

ogy. For this, Aqualog first translates this query into the following triples:

〈projects, related to, researchers〉 and 〈researchers, working, ontologies〉.
Then it attempts to match these triples to the concepts of the underlying

ontology. For example, the term projects should be identified to refer to

the ontology concept Project and ontologies is assumed equivalent to the

ontologies instance of the Research-Area concept.

Currently, the scope of AquaLog is limited by the amount of knowledge

encoded in the ontology of the system. A new version of AquaLog, called

PowerAqua [139], extends its predecessor, as well as some other systems

with similar goals, such as Observer [162], towards “open” query answer-

15

1.7. SUMMARY CHAPTER 1. APPLICATIONS

ing. PowerAqua aims to select and aggregate information derived from

multiple heterogeneous ontologies on the web. Matching constitutes the

core of this selection task. Notice that, unlike AquaLog, matching is now

performed between the triples and many on-line ontologies (not just the

single ontology of the system). It is not necessary to match all query triples

within one ontology. When no ontology concept is found for an element of

a triple, the use of more general concepts is also acceptable. Also, it is not

necessary to try to match the whole ontology against the query, but only

the relevant fragments.

1.7 Summary

The above considered scenarios suggest that matching metadata models is a

major issue. Moreover, a need for matching is not limited to one particular

application. In fact, it exists in any application that communicates through

ontologies. Thus, it is natural that in future more examples of applications

requiring matching will appear, e.g., ontology repair [155].

Since semantic heterogeneity is an intrinsic problem of any application

involving more than one party, it is reasonable to consider ontology match-

ing as a unified object of study. However, there are notable differences in

the way these applications use matching. The application related differ-

ences must be clearly identified in order to provide the best suited solution

in each case.

These applications can be ordered according to their dynamics, namely

autonomy of parties participating in an application and rate of changes in

an application (see Figure 1.6).

For example, Figure 1.6 shows that agent communication and query

answering have a more dynamic profile compared to the other applications.

In fact, agents, besides having the ability to enter or leave the network or

16

CHAPTER 1. APPLICATIONS 1.7. SUMMARY

Figure 1.6: Distribution of some applications with regard to their dynamics

to change their ontologies at any moment (as in the peer-to-peer case), are

also able to negotiate the alignments and potential mismatches.

Data integration and merchant catalog matching, due to multiple new

merchants being willing to participate in marketplaces, have a higher dy-

namics than schema integration, where typically only a small and limited

number of parties participate. Finally, the two bottom classes of appli-

cations represent traditional applications, while the three top classes of

applications can be considered as dynamic applications. The uneven step

in the middle of the dynamics axis in Figure 1.6 is used to stress the above

mentioned distinction.

Another dimension along which these applications differ is the purpose

for which they perform matching:

• schema integration requires the ability to merge the schemas under

consideration into a single schema (the transformations apply at the

ontological level and instances translation apply at the data level);

17

1.7. SUMMARY CHAPTER 1. APPLICATIONS

• data integration requires the ability to translate data instances resid-

ing in multiple local schemas according to a global schema definition

in order to enable query answering over the global schema;

• peer-to-peer systems and more generally query answering systems re-

quire bidirectional mediators able to translate queries (ontological

level) and translate back answers (data level).

• agent communication requires translators for messages sent from one

agent to another, which apply at the data level; similarly, semantic

web services require one-way data translations for composing services.

This leads to different requirements for different applications. We sum-

marize what we have found to be the most important requirements to

matching solutions according to the applications considered in this chap-

ter, see Table 1.1.

These general requirements concern:

• the type of available input a matching system can rely on, such as

schema or instance information. There are cases when data instances

are not available, for instance due to security reasons [46] or when

there are no instances given beforehand. Therefore, these applications

require only a matching solution able to work without instances (here

schema-based method).

• some specific behaviour of matching, such as requirements of (i) being

automatic, i.e., not relying on user feed-back; (ii) being correct, i.e.,

not delivering incorrect matches; (iii) being complete, i.e., delivering

all the matches; and (iv) being performed at run time.

• the use of the matching result as described above. In particular, how

the identified alignment is going to be processed, e.g., by merging the

18

CHAPTER 1. APPLICATIONS 1.7. SUMMARY

Application in
st

an
ce

s

ru
n

ti
m

e

au
to

m
at

ic

co
rr

ec
t

co
m

p
le

te

op
er

at
io

n

Ontology evolution (§1.1)
√ √ √

transformation
Schema integration (§1.2)

√ √ √
merging

Catalog integration (§1.2)
√ √ √

data translation
Data integration (§1.2)

√ √ √
query answering

P2P information sharing (§1.3)
√

query answering
Web service composition (§1.4)

√ √ √
data mediation

Multi-agent communication (§1.5)
√ √ √ √

data translation
Query answering (§1.6)

√ √
query reformulation

Table 1.1: Summary of applications requirements

data or conceptual models under consideration or by translating data

instances among them.

Some of these hard requirements can be derived into comparative (or

non-functional) requirements, such as speed, degree of correctness or com-

pleteness. These requirements are useful for comparing solutions on a scale

instead of with absolute requirements such as mentioned before. Moreover,

they allow to trade a requirement, e.g., completeness, for another more im-

portant one, e.g., speed.

As an overview of this chapter indicates, there are many different appli-

cations which can take advantage of matching ontologies. However, in spite

of a common need for matching, the application matching requirements are

quite different.

19

1.7. SUMMARY CHAPTER 1. APPLICATIONS

20

Chapter 2

The matching problem

In a distributed and open system, such as the semantic web and in many

other applications presented in the previous chapter, heterogeneity cannot

be avoided. Different actors have different interests and habits, use different

tools and knowledge, and most often, at different levels of detail. These

various reasons for heterogeneity lead to diverse forms of heterogeneity,

and, therefore, should be carefully taken into consideration.

Material presented in this chapter has been developed in collaboration

with Jérôme Euzenat and published in [214, 75]. Also some work on the

topic of this chapter has been supported by the FP6 Knowledge Web1

Network of Excellence.

In this chapter we first present various existing ways of expressing knowl-

edge that are found in diverse applications (§2.1). We introduce several

justifications for heterogeneity (§2.2). These should help the design of a

matching strategy as a function of the kind of heterogeneity that has to be

addressed. Finally, we define the ontology matching problem (§2.3).

1http://knowledgeweb.semanticweb.org/

21

2.1. VOCABULARIES,
SCHEMAS AND ONTOLOGIES CHAPTER 2. THE MATCHING PROBLEM

2.1 Vocabularies,

schemas and ontologies

So far we have considered ontologies without being precise about their

meaning. An ontology can be viewed as a set of assertions that are meant to

model some particular domain. Usually, the ontology defines a vocabulary

used by a particular application. In various areas of computer science

there are different data and conceptual models that can be thought of as

ontologies. These are, for instance, database schemas, entity-relationship

models, directories, thesauri, XML schemas and formal ontologies (see [235,

110, 111] for an in-depth discussion of what is considered to be a proper

ontology). These and other examples are given in decreasing order of

formality in Figure 2.1.

Figure 2.1: Various forms of ontologies ordered by their expressivity (adapted from [109,
225]).

Thus, a top level ontology is supposed to have an explicit well defined se-

mantics, whereas the interpretation of directories in a file system is mostly

implicit. In fact, it depends only on what its creator had in mind, i.e., the

22

CHAPTER 2. THE MATCHING PROBLEM
2.1. VOCABULARIES,

SCHEMAS AND ONTOLOGIES

meaning of labels, the background knowledge, and the context in which

those labels occur are all implicit, and therefore, these are not a part of a

directory specification.

We provide below a number of examples of various forms of ontologies

of Figure 2.1 and exemplify some heterogeneity problems encountered in

these forms.

2.1.1 Classifications

A taxonomy is a partially ordered set of taxons (classes) in which one

taxon is greater than another one only if what it denotes includes what is

denoted by the other. Classifications or directories are taxonomies that are

used by companies for presenting products on sale, by libraries for storing

books, or by individuals to classify files on a personal computer. Some well-

known examples of classifications include those of DMOZ 2, Google3 and

Yahoo4. These classifications are hierarchies of folders identified by labels

and containing items, such as bookmarks, or products. The semantics of

these folders is given by the items they ultimately contain [95]. Obviously,

each independent entity tends to develop its own directory based on its

own needs and tastes.

Finally, there exist some consensus classifications. In library science, the

Dewey classification has been used for more than a century for classifying

books by topics [42]. In natural sciences, the principled classification of

species represents another example [206].

2http://dmoz.org
3http://www.google.com/dirhp
4http://www.yahoo.com

23

2.1. VOCABULARIES,
SCHEMAS AND ONTOLOGIES CHAPTER 2. THE MATCHING PROBLEM

2.1.2 Relational database schemas

Relational databases require the data to be organized in a predefined way

as tables or relations. A relational schema specifies the names of the tables

as well as their types: the names and types of the columns of each table.

The relational model also includes the notion of a key for each table: a

subset of the columns that uniquely identifies each row. Finally, a column

in a table may be specified as a foreign key pointing to a column in another

table. This is used to keep referential constraints among various entities.

Finally, it is worth mentioning widely used languages for specifying rela-

tional schemas, such as Structured Query Language (SQL) as well as some

of its recent versions, e.g., SQL:1999 and SQL:2003. These support many

modeling capabilities, such as user-defined types, aggregation, generaliza-

tion, etc.

2.1.3 XML schemas

Document Type Definition (DTD) and XML schemas have been introduced

for specifying the structure of XML documents. The main ingredients of

XML schemas include elements, attributes, and types. In turn, elements

can be either complex for specifying nested sub-elements, or simple for

specifying built-in datatypes, such as string, for an element or attribute.

XML schemas are rather complementary to classifications: instead of de-

scribing how things are classified, they describe how things are made from

the inside. Even if element definitions can be extended or restricted as

sub-categories of a classification, the emphasis is on their structure: the

extension of an element is made by providing the elements which are mod-

ified in this structure. The sequential aspect of XML documents is part of

the element specification, though it can be overruled.

In fact, these schemas are a shape according to which future documents

24

CHAPTER 2. THE MATCHING PROBLEM
2.1. VOCABULARIES,

SCHEMAS AND ONTOLOGIES

are to be created, as opposed to an ontology, which is a description of

existing, external objects. The specialization hierarchy in XML schema is

a type hierarchy that defines which kind of elements can occupy the place

of another kind, e.g., if a shelf contains books, then putting a biography on

this shelf is authorized. In principle, this classification structure does not

have to correspond to any natural classification of the objects expressed

themselves.

2.1.4 Conceptual models

Often database researchers do not consider directly the relational schema

but are rather concerned with the underlying entity-relationship model

[145]. Conceptual models cover what was properly described as such in [37],

as well as entity-relationship models [45] that aim at abstracting databases,

and UML [27] models that aim at abstracting object-oriented programs.

A spatio-temporal aspect of conceptual models is addressed in [194].

These models offer a rich way of expressing entities which in this case can

be meant as entities of some modeled domain, like people in a database or

specification of entities to be created like programs. They offer constructors

for organizing classes in a hierarchy as well as constructors for describing

the internal structure of objects. They thus offer the best of both worlds:

classifications and databases.

2.1.5 Ontologies

It is nowadays common to see classifications or conceptual models to be

promoted as ontologies. Ontologies contain most of the features of entity-

relationship models, and thus, most parts of the kind of schemas considered

above.

The distinctive feature of ontologies is the existence of a model theoretic

25

2.2. TYPES OF HETEROGENEITY CHAPTER 2. THE MATCHING PROBLEM

semantics: ontologies are logic theories, see for details [108]. Thus, their

interpretation is not left to the users that read the diagrams or to the

database management systems implementing them, it is specified explicitly

by set of equations. The semantics provides the rules for interpreting the

syntax. It does not provide the meaning directly but constrains the possible

interpretations of what is declared.

Ontologies are expressed in an ontology language. There are a large

variety of languages for expressing ontologies [222], for example, OWL

[217, 52], an ontology language recommended by the W3C. Fortunately,

most of these languages share the same kinds of entities, often with different

names but comparable interpretations.

2.2 Types of heterogeneity

The goal of matching ontologies is to reduce heterogeneity between them.

Heterogeneity does not lie solely in the differences of ultimate goals of

the applications according to which they have been designed or in the

expression formalisms in which ontologies have been encoded. There have

been many different classifications to types of heterogeneity [11, 212, 36,

127, 106, 120, 125, 14, 233, 128, 71, 48, 115, 93, 29]. Some of them focus

on mismatches [128], others rather mention interoperability levels [71]. We

consider here the most obvious types of heterogeneity:

Syntactic heterogeneity occurs when two ontologies are not expressed

in the same ontology language. This obviously happens when compar-

ing, for instance, a classification with a conceptual model. This also

happens when two ontologies are modeled by using different knowl-

edge representation formalisms, for instance, OWL and F-logic. This

kind of mismatch is generally tackled at the theoretical level when

one establishes equivalences between constructs of different languages.

26

CHAPTER 2. THE MATCHING PROBLEM 2.2. TYPES OF HETEROGENEITY

Thus, it is sometimes possible to translate ontologies between different

ontology languages while still preserving the meaning [76].

Terminological heterogeneity occurs due to variations in names when

referring to the same entities in different ontologies. This can be

caused by the use of different natural languages, e.g., Paper vs Artic-

ulo, different technical sublanguages, e.g., Paper vs Memo, the use of

synonyms, e.g., Paper vs Article, etc.

Conceptual heterogeneity, also called semantic heterogeneity in [71]

and logical mismatch in [128], stands for the differences in model-

ing the same domain of interest. This can happen due to the use of

different (and, sometimes, equivalent) axioms for defining concepts or

due to the use of totally different concepts, e.g., geometry axioma-

tized with points as primitive objects or geometry axiomatized with

spheres as primitive objects. Also, as noted in [128] and [231], there is

a difference between the conceptualization mismatch, which relies on

the differences between modeled concepts, and the explicitation mis-

match, which relies on the way these concepts are expressed. Finally,

in the context of conceptual differences, [15] identifies three important

reasons for these to hold, namely difference in coverage, difference in

granularity and difference in perspective.

Semiotic heterogeneity, also called pragmatic heterogeneity in [29], is

concerned with how entities are interpreted by a human. Indeed, en-

tities which have exactly the same interpretation are often interpreted

by humans with regard to the context, for instance, of how they are

ultimately used. This kind of heterogeneity is difficult for the com-

puter to detect and even more difficult to solve, because it is out of

its reach. The intended use of entities has a great impact on their

interpretation, therefore, matching entities which are not meant to be

27

2.3. PROBLEM STATEMENT CHAPTER 2. THE MATCHING PROBLEM

used in the same context is often error-prone. Given the limited grasp

that a computer can have on these issues, we do not deal with semiotic

heterogeneity here.

Usually, several types of heterogeneity occur together. This thesis is

only concerned with reducing the terminological and (to a certain extent)

conceptual types of heterogeneity, which are both often referred to as se-

mantic heterogeneity.

2.3 Problem statement

There have been different formalizations of matching and its result, see,

for example, [23, 135, 123, 29, 239]. We provide here a general definition,

following the work in [214].

The matching operation determines the alignment A′ for a pair of on-

tologies O1 and O2. There are some other parameters which can extend

the definition of the matching process, namely: (i) the use of an input

alignment A, which is to be completed by the process; (ii) the matching

parameters, p, e.g., weights, thresholds; and (iii) external resources used

by the matching process, r, e.g., common knowledge and domain specific

thesauri. Technically, this process can be defined as follows.

The matching process can be viewed as a function f which, from a pair of

ontologies O1 and O2 to match, an input alignment A, a set of parameters

p and a set of oracles and resources r, returns a new alignment A′ between

these ontologies:

A′ = f(O1, O2, A, p, r)

This can be schematically represented as illustrated in Figure 2.2.

It can be useful to specifically consider the matching of many ontologies

within the same process. We call this multiple matching.

28

CHAPTER 2. THE MATCHING PROBLEM 2.3. PROBLEM STATEMENT

Figure 2.2: The matching process

The multiple matching process can be viewed as a function f which, from

a set of ontologies to match {O1, . . . On}, an input multi-alignment A, a

set of parameters p and a set of oracles and resources r, returns a new

multi-alignment A′ between these ontologies:

A′ = f(O1, . . .On, A, p, r)

The matching process is the main subject of this thesis. However, before

discussing its internals, let us first consider what it provides: the alignment.

Alignments express the correspondences between entities belonging to

different ontologies. We focus here on matching between two ontologies.

In case of multiple matching, the definitions can be straightforwardly ex-

tended by using n-ary correspondences. A correspondence must express

the two corresponding entities and the relation that is supposed to hold

between them. We provide the definition of the alignment following the

work in [73, 29].

Given two ontologies, a correspondence is a 5-tuple:

〈id, e1, e2, n, R〉,

such that

• id is a unique identifier of the given correspondence;

29

2.3. PROBLEM STATEMENT CHAPTER 2. THE MATCHING PROBLEM

• e1 and e2 are the entities (e.g., tables, XML elements, properties,

classes) of the first and the second ontology, respectively;

• n is a confidence measure (typically in the [0 1] range) holding for the

correspondence between the entities e1 and e2;

• R is a relation (e.g., equivalence (=), more general (�), disjointness

(⊥), overlapping (�)) holding between the entities e1 and e2.

The correspondence 〈id, e1, e2, n, R〉 asserts that the relation R holds

between the ontology entities e1 and e2 with confidence n. The usage of

confidences is that the higher the degree, the most likely the relation holds.

Given two ontologies O1 and O2, an alignment is made up of a set of

correspondences between pairs of entities belonging to O1 and O2, respec-

tively.

For example, in Figure 1 (p.xxi), according to some matching algorithm

based on linguistic and structure analysis, the confidence measure (for

the fact that the equivalence relation holds) between entities with labels

Photo and Cameras in O1 and Cameras and Photo in O2 could be 0.67.

Suppose that this matching algorithm uses a threshold of 0.55 for deter-

mining the resulting alignment, i.e., the algorithm considers all the pairs of

entities with a confidence measure higher than 0.55 as correct correspon-

dences. Thus, our hypothetical matching algorithm should return to the

user the following correspondence:

〈id5,4, Photo and Cameras, Cameras and Photo, 0.67, =〉.

However, the relation between the same pair of entities, according to

another matching algorithm which is able to determine that both entities

mean the same thing, could be exactly the equivalence relation (without

computing the confidence measure). Thus, returning to the user

30

CHAPTER 2. THE MATCHING PROBLEM 2.3. PROBLEM STATEMENT

〈id5,4, Photo and Cameras, Cameras and Photo, n/a, =〉.

By analogy with mathematical functions, it is useful to define some

properties of the alignments. These apply when the only considered rela-

tion is equality (=). One can ask for a total alignment with regard to one

ontology, i.e., all the entities of one ontology must be successfully mapped

to the other one. This property is purposeful whenever thoroughly tran-

scribing knowledge from one ontology to another is the goal: there is no

entity that cannot be translated.

One can also require the mapping to be injective with regard to one

ontology, i.e., all the entities of the other ontology is part of at most one

correspondence. Injectivity is useful in ensuring that entities that are dis-

tinct in one ontology remain distinct in the other one. In particular, this

contributes to the reversebility of alignments.

Usual mathematical properties apply to these alignments. In particular,

a total alignment from O1 to O2 is a surjective alignment from O2 to O1.

A total alignment from both O1 and O2 which is injective from one of

them is a bijection. In mathematical English, an injective function is said

to be one-to-one and a surjective function to be onto. Due to the wide

use among matching practitioners of the term one-to-one for a bijective,

i.e., both injective and surjective, alignment, we will only use one-to-one

for bijective.

In conceptual models and databases, the terms multiplicity or cardinal-

ity denote the constraints on a relation. Usual notations are 1:1, 1:m, n:1

or n:m. If we consider only total and injective property, denoted as 1 for

injective and total, ? for injective, + for total and * for none, and the two

possible orientations of the alignments, from O1 to O2 and from O2 to O1,

the multiplicities become: ?:?, ?:1, 1:?, 1:1, ?:+, +:?, 1:+, +:1, +:+, ?:*,

:?, 1:, *:1, +:*, *:+, *:* [72].

31

2.4. SUMMARY CHAPTER 2. THE MATCHING PROBLEM

2.4 Summary

In this chapter, we have first described different kinds of data and con-

ceptual models and observed an expressivity hierarchy of them. Although,

there are differences between these forms of ontologies, we believe that

techniques developed for matching each of them can be of a mutual bene-

fit. In fact, on the one side, for example, schema matching is usually per-

formed with the help of techniques trying to guess the meaning encoded

in the schemas. On the other side, ontology matching systems primarily

try to exploit knowledge explicitly encoded in the ontologies. In real world

applications, schemas and ontologies usually have both well defined and

obscure terms, and contexts in which they occur, therefore, solutions from

both problems would be mutually beneficial.

Then, we focused on identifying what semantic heterogeneity is and why

it requires matching. We have presented various reasons why mismatches

can occur between ontologies. Their variety and the fact that they often

occur together constrains to develop multiple approaches for matching on-

tologies. Finally, we have defined the action of matching ontologies and its

result: the alignment.

32

Part II

State of the art:

ontology matching approaches

Chapter 3

Ontology matching

techniques

Having defined what the matching problem is, we overview some classifi-

cations of the techniques that can be used for solving this problem. In par-

ticular, surveys on the topic through the recent years have been provided

in [198, 233, 123]; while the major contributions of the previous decades

are presented in [11, 130, 219, 124, 192]. The work presented in [123] fo-

cuses on current state of the art in ontology matching. Authors review

recent approaches, techniques and tools. The survey of [233] concentrates

on approaches to ontology-based information integration and discusses gen-

eral matching approaches that are used in information integration systems.

However, none of the above mentioned works provide a comparative review

of the existing ontology matching techniques and systems. On the contrary,

the survey of [198] is devoted to a classification of database schema match-

ing approaches and a comparative review of matching systems. Notice that

these three works address the matching problem from different perspectives

(artificial intelligence, information systems, databases) and analyze disjoint

sets of systems. [214] have attempted at considering the above mentioned

works together, focusing on schema-based matching methods, and aiming

to provide a common conceptual basis for their analysis.

35

3.1. MATCHING DIMENSIONS
CHAPTER 3. ONTOLOGY MATCHING

TECHNIQUES

Material presented in this chapter has been developed in collaboration

with Jérôme Euzenat and published in [214, 75]. Also a part of work on

the topic of this chapter has been supported by the FP6 Knowledge Web1

Network of Excellence.

In this chapter we first consider various dimensions on which a classifi-

cation of matching techniques can be elaborated (§3.1). We then present

our classification based on several of these dimensions (§3.2). We also dis-

cuss some alternative classifications of matching approaches that have been

proposed so far in the literature (§3.3). Finally, we outline a number of

plausible matching strategies used in building a matching system (§3.4).

3.1 Matching dimensions

There are many independent dimensions along which algorithms can be

classified. Following the definition of the matching process in Figure 2.2

(p.29), we may primarily classify algorithms according to (i) the input of

the algorithms, (ii) the characteristics of the matching process, and (iii) the

output of the algorithms. The other characteristics, such as parameters,

resources, and input alignments, are considered less important. Let us

discuss these three main aspects in turn.

3.1.1 Input dimensions

These dimensions concern the kind of input on which algorithms operate.

As a first dimension, algorithms can be classified depending on the data

or conceptual models in which ontologies are expressed. For example, the

Artemis system [39] (see §4.1.5) supports the relational, object-oriented,

and entity-relationship models; Cupid [146] (see §4.1.9) supports XML and

relational models; QOM [69] (see §4.2.3) supports RDF and OWL mod-

1http://knowledgeweb.semanticweb.org/

36

CHAPTER 3. ONTOLOGY MATCHING
TECHNIQUES 3.1. MATCHING DIMENSIONS

els. A second possible dimension depends on the kind of data that the

algorithms exploit: different approaches exploit different information in

the input ontologies. Some of them rely only on schema-level information,

e.g., Cupid [146] (see §4.1.9), COMA [58] (see §4.1.10); others rely only

on instance data, e.g., GLUE [62]; and others exploit both schema- and

instance-level information, e.g., QOM [69] (see §4.2.3). Even with the same

data models, matching systems do not always use all available constructs,

e.g., the approach presented in this thesis (see Chapter 6), when dealing

with attributes discards information about datatypes, e.g., string or inte-

ger, and uses only the attributes names. In general, some algorithms focus

on the labels assigned to the entities, some consider their internal structure

and the types of their attributes, and others consider their relations with

other entities (see next section for details).

3.1.2 Process dimensions

A classification of the matching process could be based on its general prop-

erties, as soon as we restrict ourselves to formal algorithms. In particular,

it depends on the approximate or exact nature of its computation. Exact

algorithms compute the absolute solution to a problem; approximate al-

gorithms sacrifice exactness to performance (e.g., [69]). All the techniques

discussed in the remainder of the thesis can be either approximate or exact.

Another dimension for analyzing the matching algorithms is based on the

way they interpret the input data. We identify three large categories based

on the intrinsic input, external resources, or some semantic theory of the

considered entities. We call these three categories syntactic, external, and

semantic, respectively; and discuss them in detail in the next section.

37

3.2. A CLASSIFICATION OF
MATCHING TECHNIQUES

CHAPTER 3. ONTOLOGY MATCHING
TECHNIQUES

3.1.3 Output dimensions

Apart from the information that matching systems exploit and how they

manipulate it, the other important class of dimensions concerns the form of

the result they produce. The form of the alignment might be of importance:

is it a one-to-one alignment between the ontology entities? Has it to be a

final correspondence? Is any relation suitable?

Other significant distinctions in the output results have been indicated

in [97]. One dimension concerns whether systems deliver a graded answer,

e.g., that the correspondence holds with 98% confidence or 4/5 probabil-

ity; or an all-or-nothing answer, e.g., that the correspondence definitely

holds or not. In some approaches correspondences between ontology enti-

ties are determined using distance measures. This is used for providing an

alignment expressing equivalence between these entities. Another dimen-

sion concerns the kind of relations between entities a system can provide.

Most of the systems focus on equivalence (=), while a few other are able

to provide a more expressive result, e.g., equivalence, subsumption (),

incompatibility (⊥), see for details [31, 97, 98].

There are many dimensions that can be taken into account when at-

tempting at classifying matching methods. In the next section we present

a classification of elementary techniques that draws simultaneously on sev-

eral such criteria.

3.2 A classification of

matching techniques

In this section we discuss only schema-based elementary matchers. There-

fore, only schema level information is considered, not instance data2. The

2Prominent solutions of instance-based ontology matching can be found in [60, 63].

38

CHAPTER 3. ONTOLOGY MATCHING
TECHNIQUES

3.2. A CLASSIFICATION OF
MATCHING TECHNIQUES

exact/approximate opposition has not been used because each of the meth-

ods described below can be implemented as exact or approximate algo-

rithm, depending on the goals of the matching system. To ground and

ensure a comprehensive coverage for our classification we have analyzed

state of the art approaches used for schema-based matching. The bibli-

ography part reports a partial list of works which have been scrutinized

pointing to (some of) the most important contributions. We have used the

following guidelines for building our classification:

Exhaustivity. The extension of categories dividing a particular category

must cover its extension (i.e., their aggregation should give the com-

plete extension of the category);

Disjointness. In order to have a proper tree, the categories dividing one

category should be pairwise disjoint by construction;

Homogeneity. In addition, the criterion used for further dividing one

category should be of the same nature (i.e., should come from the

same dimension). This usually helps guaranteeing disjointness;

Saturation. Classes of concrete matching techniques should be as specific

and discriminative as possible in order to provide a fine grained dis-

tinction between possible alternatives. These classes have been iden-

tified following a saturation principle: they have been added/modified

till the saturation was reached, namely taking into account new tech-

niques did not require introducing new classes or modifying them.

Notice that disjointness and exhaustivity of the categories ensures stability

of the classification, namely new techniques will not occur in between two

categories. Classes of matching techniques represent the state of the art.

Obviously, with appearance of new techniques, they might be extended

and further detailed.

39

3.2. A CLASSIFICATION OF
MATCHING TECHNIQUES

CHAPTER 3. ONTOLOGY MATCHING
TECHNIQUES

We build on the previous work of classifying automated schema match-

ing approaches of [198]. The classification of [198] distinguishes between

elementary (individual) matchers and combinations of matchers3. Ele-

mentary matchers comprise instance-based and schema-based, element- and

structure-level, linguistic- and constrained-based matching techniques. Also

cardinality and auxiliary information (e.g., thesauri, global schemas) can

be taken into account.

For classifying elementary schema-based matching techniques, we intro-

duce two synthetic classifications (see Figure 3.1), based on what we have

found the most salient properties of the matching dimensions. These two

classifications are presented as two trees sharing their leaves. The leaves

represent classes of elementary matching techniques and their concrete ex-

amples. Two synthetic classifications are:

• Granularity/Input Interpretation classification is based on (i) granu-

larity of match, i.e., element- or structure-level, and then (ii) on how

the techniques generally interpret the input information;

• Kind of Input classification is based on the kind of input which is used

by elementary matching techniques.

The overall classification of Figure 3.1 can be read both in descending

(focusing on how the techniques interpret the input information) and as-

cending (focusing on the kind of manipulated objects) manner in order to

reach the Basic Techniques layer. Let us discuss in turn Granularity/Input

Interpretation, Basic Techniques, Kind of Input layers together with sup-

porting arguments for the categories/classes introduced at each layer.

Elementary matchers are distinguished by the Granularity/Input inter-

pretation layer according to the following classification criteria:

3Combinations of matchers are discussed in §3.4

40

CHAPTER 3. ONTOLOGY MATCHING
TECHNIQUES

3.2. A CLASSIFICATION OF
MATCHING TECHNIQUES

 S
ch

em
a-

ba
se

d
M

at
ch

in
g

Te
ch

ni
qu

es

El
em

en
t-l

ev
el

St
ru

ct
ur

e-
le

ve
l

Sy
nt

ac
tic

Se
m

an
tic

Ex
te

rn
al

St
rin

g-
ba

se
d

Co
ns

tra
in

t-
ba

se
d

G
ra

ph
-

ba
se

d
Ta

xo
no

m
y-

ba
se

d
Li

ng
ui

st
ic

re
so

ur
ce

M
od

el
-

ba
se

d

- N
am

e
sim

ila
rit

y
- D

es
cr

ip
tio

n
 s

im
ila

rit
y

- G
lo

ba
l

na
m

es
pa

ce
s

- T
yp

e
 s

im
ila

rit
y

- K
ey

 p
ro

pe
rti

es

- L
ex

ico
ns

- T
he

sa
ur

i
- G

ra
ph

 m
at

ch
in

g
- P

at
hs

- C
hi

ld
re

n
- L

ea
ve

s

- T
ax

on
om

ic
 s

tru
ct

ur
e

- P
ro

po
sit

io
na

l S
AT

-D
L-

ba
se

d

La
ng

ua
ge

-
ba

se
d

-T
ok

en
iza

tio
n

-L
em

m
at

iza
tio

n
- M

or
ph

ol
og

ica
l

 a
na

lys
is

- E
lim

in
at

io
n

A
lig

nm
en

t
re

us
e

-
En

tir
e

sc
he

m
a/

on

to
lo

gy
-

Fr
ag

m
en

ts

Te
rm

in
ol

og
ic

al
St

ru
ct

ur
al

Sy
nt

ac
tic

Li
ng

ui
st

ic
In

te
rn

al
R

el
at

io
na

l

Se
m

an
tic

Sc
he

m
a-

ba
se

d
M

at
ch

in
g

Te
ch

ni
qu

es

G
ra

nu
la

rit
y

/
In

pu
t I

nt
er

pr
et

at
io

n
La

ye
r

Ba
si

c
Te

ch
ni

qu
es

La
ye

r

Ki
nd

 o
f I

np
ut

La
ye

r

U
pp

er
 le

ve
l

fo
rm

al
on

to
lo

gi
es

,
do

m
ai

n
sp

ec
ifi

c
on

to
lo

gi
es

-
SU

M
O

,
DO

LC
E

Ex
te

rn
al

R
ep

os
ito

ry
 o

f
st

ru
ct

ur
es

-
St

ru
ct

ur
e'

s
m

et
ad

at
a

-
FM

A

F
ig

u
re

3.
1:

A
re

ta
in

ed
cl

as
si

fi
ca

ti
on

of
el

em
en

ta
ry

sc
h
em

a-
b
as

ed
m

at
ch

in
g

te
ch

n
iq

u
es

41

3.2. A CLASSIFICATION OF
MATCHING TECHNIQUES

CHAPTER 3. ONTOLOGY MATCHING
TECHNIQUES

• Element-level vs structure-level. Element-level matching techniques

compute correspondences by analyzing entities in isolation, ignoring

their relations with other entities. Structure-level techniques com-

pute correspondences by analyzing how entities appear together in a

structure. This criterion is the same as first introduced in [198].

• Syntactic vs external vs semantic. The key characteristic of the syn-

tactic techniques is that they interpret the input as a function of its

sole structure following some clearly stated algorithm. External are

the techniques exploiting auxiliary (external) resources of a domain

and common knowledge in order to interpret the input. These re-

sources might be human input or some thesaurus expressing the rela-

tionships between terms. The key characteristic of the semantic tech-

niques is that they use some formal semantics (e.g., model-theoretic

semantics) to interpret the input and justify their results. In case

of a semantic based matching system, exact algorithms are complete

(i.e., they guarantee a discovery of all the possible alignments) while

approximate algorithms tend to be incomplete.

To emphasize the differences with the initial classification of [198], the

new categories/classes are marked in bold face. In particular, in the Gran-

ularity/Input Interpretation layer we detail further (with respect to [198]),

the element- and structure-level of matching by introducing the syntactic vs

semantic vs external criteria. The reasons of having these three categories

are as follows. Our initial criterion was to distinguish between internal

and external techniques. By internal we mean techniques exploiting infor-

mation which comes only with the input ontologies. External techniques

are as defined above. Internal techniques can be further detailed by dis-

tinguishing between syntactic and semantic interpretation of input, also as

defined above. However, only limited, the same distinction can be intro-

42

CHAPTER 3. ONTOLOGY MATCHING
TECHNIQUES

3.2. A CLASSIFICATION OF
MATCHING TECHNIQUES

duced for the external techniques. In fact, we can qualify some oracles, e.g.,

WordNet [163], SUMO [174], DOLCE [88], as syntactic or semantic, but

not a user input. Thus, we do not detail external techniques any further

and we omit in Figure 3.1 the theoretical category of internal techniques

(as opposed to external). Notice that we also omit in further discussions

element-level semantic techniques, since semantics is usually given in a

structure, and, hence, there are no element-level semantic techniques.

Distinctions between classes of elementary matching techniques in the

Basic Techniques layer of our classification are motivated by the way a

matching technique interprets the input information in each concrete case.

In particular, a label can be interpreted as a string (a sequence of let-

ters from an alphabet) or as a word or a phrase in some natural lan-

guage, a hierarchy can be considered as a graph (a set of nodes related

by edges) or a taxonomy (a set of concepts having a set-theoretic inter-

pretation organized by a relation which preserves inclusion). Thus, we in-

troduce the following classes of elementary ontology matching techniques

at the element-level: string-based, language-based, based on linguistic re-

sources, constraint-based, alignment reuse, and based on upper level and

domain specific formal ontologies. At the structure-level we distinguish

between: graph-based, taxonomy-based, based on repositories of structures,

and model-based techniques.

The Kind of Input layer classification is concerned with the type of input

considered by a particular technique:

• The first level is categorized depending on which kind of data the

algorithms work on: strings (terminological), structure (structural)

or models (semantics). The two first ones are found in the ontology

descriptions, the last one requires some semantic interpretation of the

ontology and usually uses some semantically compliant reasoner to

deduce the correspondences.

43

3.2. A CLASSIFICATION OF
MATCHING TECHNIQUES

CHAPTER 3. ONTOLOGY MATCHING
TECHNIQUES

• The second level of this classification decomposes further these cate-

gories if necessary: terminological methods can be string-based (con-

sidering the terms as sequences of characters) or based on the interpre-

tation of these terms as linguistic objects (linguistic). The structural

methods category is split into two types of methods: those which

consider the internal structure of entities (e.g., attributes and their

types) and those which consider the relation of entities with other

entities (relational).

Notice that following the above mentioned guidelines for building a classi-

fication the terminological category should be divided into linguistic and

non-linguistic techniques. However, since non-linguistic techniques are all

string-based, this category has been discarded.

We discuss below the main classes of the Basic Techniques layer (also

indicating in which matching systems they are exploited) according to the

above classification in more detail. The order follows that of the Granular-

ity/Input Interpretation classification and these techniques are divided in

two sections concerning element-level techniques (§3.2.1) and structure-

level techniques (§3.2.2). Finally, in Figure 3.1, techniques which are

marked in italic (techniques based on upper level ontologies) have not been

implemented in any matching system yet. However, we are arguing why

their appearance seems reasonable in the near future.

3.2.1 Element-level techniques

String-based techniques

These techniques are often used in order to match names and name de-

scriptions of ontology entities. They consider strings as sequences of letters

in an alphabet. They are typically based on the following intuition: the

more similar the strings, the more likely they denote the same concepts.

44

CHAPTER 3. ONTOLOGY MATCHING
TECHNIQUES

3.2. A CLASSIFICATION OF
MATCHING TECHNIQUES

A comparison of different string matching techniques, from distance like

functions to token-based distance functions can be found in [47]. Usually,

distance functions map a pair of strings to a real number, where a smaller

value of the real number indicates a greater similarity between the strings.

Some examples of string-based techniques which are extensively used in

matching systems are prefix, suffix, edit distance, and n-gram:

• Prefix. This test takes as input two strings and checks whether the

first string starts with the second one. Prefix is efficient in matching

cognate strings and similar acronyms (e.g., int and integer), see, for

example [146, 58, 159, 99]. This test can be transformed in a smoother

distance by measuring the relative size of the prefix and the ratio.

• Suffix. This test takes as input two strings and checks whether the

first string ends with the second one (e.g., phone and telephone), see,

for example [146, 58, 159, 99].

• Edit distance. This distance takes as input two strings and computes

the edit distance between the strings. That is, the number of inser-

tions, deletions, and substitutions of characters required to transform

one string into another, normalized by the length of the longest string.

For example, the edit distance between NKN and Nikon is 0.4. Some

of matching systems exploiting the given technique are discussed in

[58, 181, 99].

• N-gram. This test takes as input two strings and computes the number

of common n-grams (i.e., sequences of n characters) between them.

For example, trigram(3) for the string nikon are nik , iko, kon. Thus,

the distance between nkon and nikon would be 1/3. Some of matching

systems exploiting the given test are discussed in [58, 99].

45

3.2. A CLASSIFICATION OF
MATCHING TECHNIQUES

CHAPTER 3. ONTOLOGY MATCHING
TECHNIQUES

Language-based techniques

These techniques consider names as words in some natural language (e.g.,

English). They are based on Natural Language Processing (NLP) tech-

niques exploiting morphological properties of the input words.

• Tokenization. Names of entities are parsed into sequences of tokens

by a tokenizer which recognizes punctuation, cases, blank charac-

ters, digits, etc. For example, Hands-Free Kits becomes 〈hands, free,

kits〉 [99].

• Lemmatization. The strings underlying tokens are morphologically

analyzed in order to find all their possible basic forms. For example,

Kits becomes Kit [99].

• Elimination. The tokens that are articles, prepositions, conjunctions,

and so on, are marked (by some matching algorithms, e.g., [146]) to

be discarded.

Usually, the above mentioned techniques are applied to names of entities

before running string-based or lexicon-based techniques in order to improve

their results. However, we consider these language-based techniques as a

separate class of matching techniques, since they can be naturally extended,

for example, in a distance computation (by comparing the resulting strings

or sets of strings).

Constraint-based techniques

These are algorithms which deal with the internal constraints being applied

to the definitions of entities, such as types, cardinality of attributes, and

keys. We omit here a discussion of matching keys as these techniques

appear in our classification without changes with respect to the original

46

CHAPTER 3. ONTOLOGY MATCHING
TECHNIQUES

3.2. A CLASSIFICATION OF
MATCHING TECHNIQUES

publication [198]. However, we provide a different perspective on matching

datatypes and cardinalities.

• Datatypes comparison involves comparing the various attributes of a

class with regard to the datatypes of their value. Contrary to objects

that require interpretations, the datatypes can be considered objec-

tively and it is possible to determine how a datatype is close to an-

other (ideally this can be based on the interpretation of datatypes as

sets of values and the set-theoretic comparison of these datatypes, see

[226, 227]). For instance, the datatype day can be considered closer to

the datatype workingday than the datatype integer . This technique

is used in [78].

• Multiplicity comparison attribute values can be collected by a partic-

ular construction (set, list, multiset) on which cardinality constraints

are applied. Again, it is possible to compare the so constructed

datatypes by comparing (i) the datatypes on which they are con-

structed and (ii) the cardinality that are applied to them. For in-

stance, a set of between 2 and 3 children is closer to a set of 3 people

than a set of 10-12 flowers (if children are people). This technique is

used in [78].

Linguistic resources

Linguistic resources, such as common knowledge or domain specific the-

sauri are used in order to match words (in this case names of ontology

entities are considered as words of a natural language) based on linguistic

relations between them (e.g., synonyms, hyponyms).

• Common knowledge thesauri. The approach is to use common knowl-

edge thesauri to obtain meaning of terms used in ontologies. For

47

3.2. A CLASSIFICATION OF
MATCHING TECHNIQUES

CHAPTER 3. ONTOLOGY MATCHING
TECHNIQUES

example, WordNet [163, 80] is an electronic lexical database for En-

glish (and other languages [4, 232]), where various senses (possible

meanings of a word or expression) of words are put together into sets

of synonyms. Relations between ontology entities can be computed in

terms of bindings between WordNet senses, see, for instance [97, 31].

For example, in Figure 1 (p.xxi), a sense-based matcher may learn

from WordNet (with a prior morphological preprocessing of labels

performed) that Camera in O1 is a hypernym for Digital Camera in

O2, and, therefore conclude that entity Digital Cameras in O2 should

be subsumed by the entity Photo and Cameras in O1. Another type

of matchers exploiting thesauri is based on their structural properties,

e.g., WordNet hierarchies. In particular, hierarchy-based matchers

measure the distance, for example, by counting the number of arcs

traversed, between two concepts in a given hierarchy, see [101]. Sev-

eral other distance measures for thesauri have been proposed in the

literature, e.g., [200, 197].

• Domain specific thesauri. These thesauri usually store some specific

domain knowledge, which is not available in the common knowledge

thesauri, (e.g., proper names) as entries with synonym, hypernym and

other relations. For example, in Figure 1, entities NKN in O1 and

Nikon in O2 are treated by a matcher as synonyms from a domain

thesaurus look up: syn key - “NKN:Nikon = syn” [146].

Alignment reuse

These techniques represent an alternative way of exploiting external re-

sources, which record alignments of previously matched ontologies. For

instance, when we need to match ontology o′ and o′′, given the alignments

between o and o′, and between o and o′′ from the external resource, storing

48

CHAPTER 3. ONTOLOGY MATCHING
TECHNIQUES

3.2. A CLASSIFICATION OF
MATCHING TECHNIQUES

previous match operations results. The alignment reuse is motivated by

the intuition that many ontologies to be matched are similar to already

matched ontologies, especially if they are describing the same applica-

tion domain. These techniques are particularly promising when dealing

with large ontologies consisting of hundreds and thousands of entities. In

these cases, first, large match problems are decomposed into smaller sub-

problems, thus generating a set of ontology fragments matching problems.

Then, reuse of previous match results can be more effectively applied at

the level of ontology fragments rather than at the level of entire ontologies.

The approach was first introduced in [198] and later was implemented as

two matchers, i.e., (i) reuse alignments of entire ontologies, or (ii) their

fragments [58, 8, 199].

Upper level and domain specific formal ontologies

These techniques use as external sources of knowledge upper level and

domain specific formal ontologies. Examples of the upper level ontologies

are the Suggested Upper Merged Ontology (SUMO) [174] and Descriptive

Ontology for Linguistic and Cognitive Engineering (DOLCE) [88]. The

key characteristic of these ontologies is that they are logic-based systems,

and therefore, matching techniques exploiting them can be based on the

analysis of interpretations. Thus, these are semantic techniques. For the

moment, we are not aware of any matching systems which use these kind of

techniques. However, it is quite reasonable to assume that this will happen

in the near future. In fact, for example, the DOLCE ontology aims at

providing a formal specification (axiomatic theory) for the top level part of

WordNet. Therefore, systems exploiting WordNet now in their matching

process (and aware of some of its limitations [89]) might also consider using

DOLCE as a potential extension.

49

3.2. A CLASSIFICATION OF
MATCHING TECHNIQUES

CHAPTER 3. ONTOLOGY MATCHING
TECHNIQUES

Domain specific formal ontologies can also be used as external sources

of background knowledge. Such ontologies are focusing on a particular

domain and use terms in a sense that is relevant only to this domain and

which is not related to similar concepts in other domains. For example,

in the anatomy domain, an ontology such as The Foundational Model of

Anatomy (FMA)4 can be used as the context for the other medical ontolo-

gies to be matched (as long as it is known that the reference ontology covers

the ontologies to be matched). This can be particularly useful for providing

the missing structure when matching poorly structured resources [2].

3.2.2 Structure-level techniques

Graph-based techniques

These are graph algorithms which consider the input as labeled graphs.

The applications (e.g., database schemas, or ontologies) are viewed as

graph-like structures containing terms and their inter-relationships. Find-

ing the correspondences between elements of such graphs corresponds to

solving a form of the graph homomorphism problem [91]. Usually, the

similarity comparison between a pair of nodes from the two ontologies is

based on the analysis of their positions within the graphs. The intuition

behind is that, if two nodes from two ontologies are similar, their neigh-

bors might also be somehow similar. Below, we present some particular

matchers representing this intuition.

• Graph homomorphism. There have been done a lot of work on graph

(tree) matching in graph theory and also with respect to ontology

matching applications, see, for example, [210, 211]. Graph homo-

morphism is a combinatorial problem that can be computationally

expensive. It is usually solved by approximate methods. In ontology

4http://sig.biostr.washington.edu/projects/fm/AboutFM.html

50

CHAPTER 3. ONTOLOGY MATCHING
TECHNIQUES

3.2. A CLASSIFICATION OF
MATCHING TECHNIQUES

matching, the problem is encoded as an optimization problem (find-

ing the graph matching minimizing some distance like the dissimilar-

ity between matched objects) which is further resolved with the help

of a graph matching algorithm. This optimization problem is solved

through a fix-point algorithm (improving gradually an approximate

solution until no improvement is made). Examples of such algorithms

are given in [159] and [78]. Some other (particular) matchers han-

dling directed acyclic graphs (DAGs) and trees are children, leaves,

and relations.

• Children. The (structural) similarity between inner nodes of the graphs

is computed based on similarity of their children nodes, that is, two

non-leaf schema elements are structurally similar if their immediate

children sets are highly similar. A more complex version of this

matcher is implemented in [58].

• Leaves. The (structural) similarity between inner nodes of the graphs

is computed based on similarity of leaf nodes, that is, two non-leaf

schema elements are structurally similar if their leaf sets are highly

similar, even if their immediate children are not [146, 58].

• Relations. The similarity computation between nodes can also be

based on their relations. For example, in one of the possible ontology

encodings of schemas of Figure 1 (p.xxi), if class Photo and Cameras

relates to class NKN by relation hasBrand in one ontology, and if

class Digital Cameras relates to class Nikon by relation hasMarque

in the other ontology, then knowing that classes Photo and Cameras

and Digital Cameras are similar, and also relations hasBrand and has-

Marque are similar, we can infer that NKN and Nikon may be similar

too [143].

51

3.2. A CLASSIFICATION OF
MATCHING TECHNIQUES

CHAPTER 3. ONTOLOGY MATCHING
TECHNIQUES

Taxonomy-based techniques

These are also graph algorithms which consider only the specialization rela-

tion. The intuition behind taxonomic techniques is that is-a links connect

terms that are already similar (being a subset or superset of each other),

therefore their neighbors may be also somehow similar. This intuition can

be exploited in several different ways:

• Bounded path matching. Bounded path matchers take two paths with

links between classes defined by the hierarchical relations, compare

terms and their positions along these paths, and identify similar terms,

see, for instance [181]. For example, in Figure 1 (p.xxi), given that

element Digital Cameras in O2 should be subsumed by the element

Photo and Cameras in O1, a matcher would suggest FJFLM in O1

and FujiFilm in O2 as an appropriate match.

• Super(sub)-concepts rules. These matchers are based on rules captur-

ing the above stated intuition. For example, if super-concepts are the

same, the actual concepts are similar to each other. If sub-concepts

are the same, the compared concepts are also similar [55, 69].

Repository of structures

Repositories of structures store ontologies and their fragments together

with pairwise similarity measure, e.g., coefficients in the [0 1] range be-

tween them. Notice that unlike the alignment reuse, repository of struc-

tures stores only similarities between ontologies, not alignments. In the

following, to simplify the presentation, we call ontologies or their frag-

ments as structures. When new structures are to be matched, they are first

checked for similarity against the structures which are already available in

the repository. The goal is to identify structures which are sufficiently sim-

ilar to be worth matching in more detail, or reusing already existing align-

52

CHAPTER 3. ONTOLOGY MATCHING
TECHNIQUES

3.2. A CLASSIFICATION OF
MATCHING TECHNIQUES

ments, thus, avoiding the match operation over the dissimilar structures.

Obviously, the determination of similarity between structures should be

computationally cheaper than matching them in full detail. The approach

of [199], to matching two structures proposes to use some metadata de-

scribing these structures, such as structure name, root name, number of

nodes, maximal path length, etc. These indicators are then analyzed and

are aggregated into a single coefficient, which estimates similarity between

them. For example, two ontologies may be found as an appropriate match

if they both have the same number of nodes.

Model-based

These are algorithms which handle the input based on its semantic inter-

pretation (e.g., model-theoretic semantics). Thus, they are well grounded

deductive methods. Examples are propositional satisfiability (SAT) and

description logics (DL) reasoning techniques.

• Propositional satisfiability (SAT). This method is the core of the ap-

proach presented in this thesis. As from [31, 97, 98, 32], the approach

is to decompose the graph (tree) matching problem into the set of

node matching problems. Then, each node matching problem, namely

pairs of nodes with possible relations between them is translated into

a propositional formula of form:

Axioms→ rel(context1, context2),

and checked for validity. The Axioms part encodes background knowl-

edge (e.g., Digital Cameras → Cameras codifies the fact that Digi-

tal Cameras is less general than Cameras), which is used as premises

to reason about relations rel (e.g., =, 	, �, ⊥) holding between the

nodes context1 and context2 (e.g., node 7 in O1 and node 12 in O2 of

53

3.2. A CLASSIFICATION OF
MATCHING TECHNIQUES

CHAPTER 3. ONTOLOGY MATCHING
TECHNIQUES

Figure 1 (p.xxi)). A propositional formula is valid if and only if its

negation is unsatisfiable. The unsatisfiability is checked by using SAT

solvers. Notice that SAT deciders are correct and complete decision

procedures for propositional satisfiability, and therefore, they can be

used for an exhaustive check of all the possible correspondences.

• DL-based techniques. The SAT-based approach computes the satisfi-

ability of theory merging both ontologies along an alignment. Propo-

sitional language used for codifying matching problems into proposi-

tional validity problems is limited in its expressivity, namely it allows

for handling only unary predicates. Thus, it cannot handle, for ex-

ample, binary predicates, such as properties or roles. However, the

same procedure can be carried within description logics (expressing

properties). In description logics, the relations (e.g., =, 	, �, ⊥) can

be expressed as a function of subsumption [33]. In fact, first merging

two ontologies (after renaming) and then testing each pair of concepts

and roles for subsumption is enough for aligning terms with the same

interpretation (or with a subset of the interpretations of the others).

For instance, suppose that we have one ontology introducing classes

company , employee and micro-company as a company with at most

5 employees, and another ontology introducing classes firm, associate

and SME as a firm with at most 10 associates. If we know that all

associates are employees and we already have established that firm is

equivalent to company , then we can deduce that a micro-company is

a SME .

There are examples in the literature of DL-based techniques used in rel-

evant to ontology matching applications. For example, in spatio-temporal

database integration scenario, as first motivated in [193] and later devel-

oped in [218, 194] the inter-schema correspondences are initially proposed

54

CHAPTER 3. ONTOLOGY MATCHING
TECHNIQUES

3.2. A CLASSIFICATION OF
MATCHING TECHNIQUES

by the integrated schema designer and are encoded together with input

schemas in ALCRP(S2⊕T) language. Then, DL reasoning services are

used to check the satisfiability of the two source schemas and the set of

inter-schema correspondences. If some objects are found unsatisfied, then

the inter-schema correspondences should be reconsidered.

Another example, is when DL-based techniques are used in query pro-

cessing scenario [162]. The approach assumes that correspondences be-

tween pre-existing domain ontologies are already specified in a declarative

manner (e.g., manually). User queries are rewritten in terms of pre-existing

ontologies and are expressed in Classic [28], and further evaluated against

real world repositories, which are also subscribed to the pre-existing ontolo-

gies. An earlier approach for query answering by terminological reasoning

is described in [12].

Finally, a very similar problem to ontology matching is addressed within

the system developed for matchmaking in electronic marketplaces [54].

Demand D and supply S requests are translated from natural language

sentences into Classic [28]. The approach assumes the existence of a pre-

defined domain ontology T , which is also encoded in Classic. Matchmaking

between a supply S and a demand D is performed with respect to the pre-

defined domain ontology T . Reasoning is performed with the help of the

NeoClassic reasoner in order to determine the exact match (T |= (D 	 S))

and (T |= (S 	 D)), potential match (if D � S is satisfiable in T), and

nearly miss (if D � S is unsatisfiable in T). The system also provides a

logically based matching results rank operation.

55

3.3. OTHER CLASSIFICATIONS
CHAPTER 3. ONTOLOGY MATCHING

TECHNIQUES

3.3 Other classifications

Let us now consider some other available classifications of matching tech-

niques.

[66] introduced a classification based on two orthogonal dimensions.

These can be viewed as horizontal and vertical dimensions. The horizontal

dimension includes three layers that are built one on top of another:

Data layer: This is the first layer. Matching between entities is performed

here by comparing only data values of simple or complex datatypes.

Ontology layer: This is the second layer which, in turn, is further di-

vided, following the cake of [22], into four levels. These are semantic

nets, description logics, restrictions and rules. For example, at the

level of semantic nets, ontologies are viewed as graphs with concepts

and relations, and, therefore, matching is performed by comparing

only these. The description logics level brings a formal semantics ac-

count to ontologies. Matching at this level includes, for example, de-

termining taxonomic similarity based on the number of subsumption

relations separating two concepts. This level also takes into account

instances of entities, therefore, for example, assessing concepts to be

the same, if their instances are similar. Matching at the levels of re-

strictions and rules is typically based on the idea that if, e.g., similar

rules between entities exist, these entities can be regarded as similar.

This typically requires processing of higher order relations.

Context layer: Finally, this layer is concerned with the practical usage of

entities in the context of an application. Matching is performed here

by comparing the usages of entities in ontology-based applications.

One of the intuitions behind such matching methods is that similar

entities are often used in similar contexts.

56

CHAPTER 3. ONTOLOGY MATCHING
TECHNIQUES 3.3. OTHER CLASSIFICATIONS

The vertical dimension represents specific domain knowledge which can

be situated at any layer of the horizontal dimension. Here, the advantage

of external resources of domain specific knowledge, e.g., Dublin Core5 for

the bibliographic domain, is considered for assessing the similarity between

entities of ontologies.

[61] classifies matching techniques into (i) rule-based and (ii) learning-

based. Typically, rule-based techniques work with schema-level informa-

tion, such as entity names, datatypes and structures. Some examples of

rules are that two entities match if their names are similar or if they have

the same number of neighbor entities. Learning-based approaches often

work with instance-level information, thereby performing matching, for

example, by comparing value formats and distributions of data instances

underlying the entities under consideration. However, learning can also be

done at the schema-level and from the previous matches [59].

[237, 13] classify matching methods into three categories following the

cognitive theory of meaning and communication between agents:

Syntactic: This category represents methods that use purely syntactic

methods to compute alignments. Some examples of such methods

include string-based techniques, e.g., edit distance between strings

and graph-based techniques.

Pragmatic: This category represents methods that rely on comparison

of data instances underlying the entities under consideration in or-

der to compute alignments. Some examples of such methods include

automatic classifiers, e.g., Bayesian classifier [64, 149, 60] and formal

concepts analysis [90, 223].

Conceptual: This category represents methods that work with concepts

and compare their meanings in order to compute alignments. Some

5http://dublincore.org/

57

3.4. MATCHING STRATEGIES
CHAPTER 3. ONTOLOGY MATCHING

TECHNIQUES

examples of such methods include techniques exploiting external the-

sauri, such as WordNet, in order to compare meanings among the

concepts under consideration.

There were also some classifications mixing the process dimension of

matching together with either input dimension or output dimension. For

example, [56] extends the work of [198] by adding a reuse-oriented category

of techniques on top of schema-based vs. instance-based separation, mean-

ing that reuse-oriented techniques can be applied at schema and instance

level. However, these techniques can also include some input information,

such as user input or alignments obtained from previous match operations.

[97] classified matching approaches into syntactic and semantic. At the

matching process dimension these correspond to syntactic and conceptual

categories of [237] respectively. However, these have been also constrained

by a second condition dealing with the output dimension: syntactic tech-

niques return coefficients in the [0 1] range, while semantic techniques

return logical relations, such as equivalence and subsumption.

Finally, we notice that the more the ontology matching field progresses,

the wider the variety of techniques that come into use at different levels of

granularity.

3.4 Matching strategies

The basic techniques presented earlier in §3.2 are the building blocks on

which a matching solution is built. In particular, the following aspects of

building a working matching system have to be taken into account as well:

• How to organize the combination of various basic matching algorithms.

A natural way of composing the basic matchers consists of improving

the matching through the use of sequential composition [146, 39]. An-

other way to combine algorithms consists of running several different

58

CHAPTER 3. ONTOLOGY MATCHING
TECHNIQUES 3.5. SUMMARY

algorithms independently and aggregating their results: this is called

parallel composition [58, 69].

• How to involve the user in the loop. There are at least three areas in

which users can be involved in a matching solution: (i) obviously, by

providing initial alignments (and parameters) to the matchers, (ii) by

dynamically combining matchers [160, 8, 56], and (iii) by providing

feedback to the matchers in order for them to adapt their results [67,

25].

• How to extract the final alignment. This can be done by using various

thresholds, e.g., hard threshold (retains all the correspondence above

a given threshold) [58, 69], or graph matching algorithms [19, 141],

more precisely weighted bipartite graph matching or covering [87].

Besides the above mentioned aspects, development of a matching strat-

egy also covers the use of learning and probabilistic algorithms for learn-

ing from data the best method and the best parameters for matching

[60, 67, 205], dealing with circularities and developing a strategy for com-

puting these similarities in spite of cycles and non linearity in the con-

straints governing similarities [159, 78].

3.5 Summary

There is a variety of techniques that can be used for ontology matching.

The classification discussed in this chapter provides a common conceptual

basis, and, hence, can be used for comparing (analytically) different exist-

ing ontology matching systems as well as for designing a new one, taking

advantages of state of the art solutions. Also, classifications of match-

ing methods provide some guidelines which help in identifying families of

matching techniques.

59

3.5. SUMMARY
CHAPTER 3. ONTOLOGY MATCHING

TECHNIQUES

This chapter showed the difficulty of having a clear cut classification of

algorithms. We provided two such classifications based on granularity and

input interpretation on one side and the kind of input on the other side. We

also briefly outlined a number of issues to be addressed when assembling

components of a matching system. This indicated that the craft of ontology

matching systems is a delicate art of combining basic matchers in the most

advantageous way.

60

Chapter 4

Overview of

matching systems

This chapter is devoted to an overview of existing matching systems which

have emerged during the last decade. There have already been done some

comparisons of a number of matching systems, in particular in [193, 198,

57, 123, 176, 61, 214]. Our purpose here is not to compare them in full

detail, although we give some comparisons, but rather to show their variety,

in order to demonstrate in how many different ways the methods presented

in the previous chapter have been practically exploited. We present the

matching systems in light of the classifications of Chapter 3. We also point

to concrete basic matchers and matching strategies used in the considered

systems.

In order to facilitate the presentation we follow two rules. First, the

year of the system appearance is considered. Then, if there are some evo-

lutions of the system or very similar systems, these are discussed close to

each other. Since the main focus of this thesis is on schema-based match-

ing, instance-based systems (e.g., LSD [60], GLUE [63], Automatch [21],

sPLMap [175]) as well as meta-matching systems (APFEL [67], eTuner

[205]) were excluded from the consideration, see [75] for an overview. We

have also excluded from consideration the systems which assume that align-

61

4.1. SCHEMA-BASED SYSTEMS
CHAPTER 4. OVERVIEW OF

MATCHING SYSTEMS

ments have already been established, and use this assumption as a prereq-

uisite of running the actual system. These approaches include such in-

formation integration systems as: Tsimmis [44], Observer [162], SIMS [3],

Kraft [196], Picsel [105], DWQ [38], AutoMed [35], and InfoMix [136].

Material presented in this chapter has been developed in collaboration

with Jérôme Euzenat and published in [214, 75]. Also some work on the

topic of this chapter has been supported by the FP6 Knowledge Web1

Network of Excellence.

The structure of this chapter is as follows. We first describe systems

which focus on schema-level information (§4.1). Then, we present systems

which exploit both schema-level and instance-level information (§4.2).

4.1 Schema-based systems

Schema-based systems, according to the classification of Chapter 3, are

those which rely mostly on schema-level input information for performing

ontology matching.

4.1.1 Hovy (University of Southern California)

[119] describes a number of heuristics used to match large-scale ontologies,

such as Sensus and Mikrokosmos, in order to combine them in a single ref-

erence ontology. In particular, were used three types of matchers based on

(i) concept names, (ii) concept definitions, and (iii) taxonomy structure.

For example, the name matcher splits composite-word names into separate

words and then compares substrings in order to produce a similarity score.

Specifically, the name matcher score is computed as the sum of the square

of the number of letters matched, plus 20 points if words are exactly equal

or 10 points if end of match coincides. For instance, using this strategy,

1http://knowledgeweb.semanticweb.org/

62

CHAPTER 4. OVERVIEW OF
MATCHING SYSTEMS 4.1. SCHEMA-BASED SYSTEMS

the comparison between Free World and World results in 35 points score,

while the comparison between cuisine and vine results in 19 points score.

The definition matcher compares the English definitions of two concepts.

Here, both definitions are first separated into individual words. Then, the

number and the ratio of shared words in two definitions is computed in

order determine the similarity between them. Finally, results of all the

matchers are combined based on experimentally obtained formula. The

combined scores between concepts from two ontologies are sorted in de-

scending order and are presented to the user for establishing a cutoff value

as well as for approving or discarding operations, results of which are saved

for later reuse.

4.1.2 TransScm (Tel Aviv University)

TransScm [166] provides data translation and conversion mechanisms be-

tween input schemas based on schema matching. First, by using rules, the

alignment is produced in a semi-automatic way. Then, this alignment is

used to translate data instances of the source schema to instances of the

target schema. Input schemas are internally encoded as labeled graphs,

where some of the nodes may be ordered. Nodes of the graph represent

schema elements, while edges stand for the relations between schema ele-

ments or their components. Matching is performed between nodes of the

graphs top-down and in one-to-one fashion. Matchers are viewed as rules.

For example, (according to the identical rule) two nodes match if their

labels are found to be synonyms based on the built-in thesaurus; see for

a list of the available rules [240]. The system combines rules sequentially

based on their priorities. It tries to find for the source node a unique best

matching target node, or determine a mismatch. In case (i) there are a

number of matching candidates, among which the system cannot choose

the best one, or (ii) if the system cannot match or mismatch a source node

63

4.1. SCHEMA-BASED SYSTEMS
CHAPTER 4. OVERVIEW OF

MATCHING SYSTEMS

to a target node with the given set of rules, user involvement is required. In

particular, users with the help of a graphic user interface can add, disable

or modify rules to obtain the desired matching result. Then, instances of

the source schema are translated to instances of the target schema accord-

ing to the match rules. For the example of the identical rule, translation

includes copying the source node components.

4.1.3 DIKE (Università di Reggio Calabria,

Università di Calabria)

DIKE (Database Intensional Knowledge Extractor) is a system supporting

the semi-automatic construction of cooperative information systems (CISs)

from heterogeneous databases [189, 187, 188, 186]. It takes as input a set

of databases belonging to the CIS. It builds a kind of mediated schema

(called data repository or global structured dictionary) in order to pro-

vide a user-friendly integrated access to the available data sources. DIKE

focuses on entity-relationship schemas. The matching step is called the

extraction of inter-schema knowledge. It is performed in a semi-automatic

way. Some examples of inter-schema properties that DIKE can find are

terminological properties, such as synonyms, homonyms among objects,

namely entities and relationships, or type conflicts, e.g., similarities be-

tween different types of objects, such as entities, attributes, relationships;

structural properties, such as object inclusion; subschema similarities, such

as similarities between schema fragments. With each kind of property is

associated its plausibility coefficient in the [0 1] range. The properties

with a lower plausibility coefficient than a dynamically derived threshold

are discarded, whereas others are accepted. DIKE works by computing

sequentially the above mentioned properties. For example, synonyms and

homonyms are determined based on information from external resources,

such as WordNet, and by analyzing the distances of objects in the neigh-

64

CHAPTER 4. OVERVIEW OF
MATCHING SYSTEMS 4.1. SCHEMA-BASED SYSTEMS

borhood of the objects under consideration. Also, some weights are used to

produce a final coefficient. Then, type conflicts are analyzed and resolved

by taking as input the results of synonyms and hyponyms analysis.

4.1.4 SKAT and ONION (Stanford University)

SKAT (Semantic Knowledge Articulation Tool) is a rule-based system that

semi-automatically discovers mappings between two ontologies [169]. In-

ternally, input ontologies are encoded as graphs. Rules are provided by

domain experts and are encoded in first order logic. In particular, ex-

perts specify initially desired matches and mismatches. For example, a

rule President = Chancellor, indicates that we want President to be an

appropriate match to Chancellor. Apart from declarative rules, experts

can specify matching procedures that can be used to generate the new

matches. Thus, experts have to approve or reject the automatically sug-

gested matches, thereby producing the resulting alignment. Matching pro-

cedures are applied sequentially. Some examples of these procedures are:

string-based matching, e.g., two terms match if they are spelled similarly,

and structure matching, e.g., structural graph slices matching, such as con-

sidering nodes near the root of the first ontology against nodes near the

root of the second ontology.

ONION (ONtology compositION) is a successor system. It discovers

mappings between multiple ontologies semi-automatically. The ultimate

goal of matching is to enable a unified query answering over the involved

ontologies [170]. Input ontologies (the system handles RDF files) are in-

ternally represented as labeled graphs. The alignment is viewed as a set of

articulation rules. The semi-automated algorithm for resolving the termi-

nological heterogeneity of [168] forms the basis of the articulation genera-

tor, ArtGen, for the ONION system. ArtGen, in turn, can be viewed as an

evolution of the SKAT system with some added matchers. Thus, it exe-

65

4.1. SCHEMA-BASED SYSTEMS
CHAPTER 4. OVERVIEW OF

MATCHING SYSTEMS

cutes a set of matchers and suggests articulation rules to the user. A human

expert can either accept, modify or delete the suggestions. The expert can

also indicate the new matches that the articulation generator might have

missed. ArtGen works sequentially, first by performing linguistic matching

and then structure-based matching. During the linguistic matching phase,

concept names are represented as sets of words. The linguistic matcher

compares all possible pairs of words from any two concepts of both ontolo-

gies and assigns a similarity score in [0 1] to each pair. The matcher uses

a word similarity table generated by a thesaurus-based or corpus-based

matcher called the word relator to determine the similarity between pairs

of words. The similarity score between two concepts is the average of the

similarity scores (ignoring scores of zero) of all possible pairs of words in

their names. If this score is higher than a given threshold, ArtGen gener-

ates a match candidate. Structure-based matching is performed based on

the results of the linguistic matching. It looks for structural isomorphism

between subgraphs of the ontologies, taking into account some linguistic

clues (see also §4.1.9 for a similar technique). The structural matcher tries

to match only the unmatched pairs from the linguistic matching, thereby

complementing its results.

4.1.5 Artemis (Università di Milano,

Università di Modena e Reggio Emilia)

Artemis (Analysis of Requirements: Tool Environment for Multiple Infor-

mation Systems) [39] was designed as a module of the MOMIS mediator

system [18, 17] for creating global views. It performs affinity-based analysis

and hierarchical clustering of source schema elements. Affinity-based anal-

ysis represents the matching step: in a sequential manner it calculates the

name, structural and global affinity coefficients exploiting a common the-

saurus. The common thesaurus is built with the help of ODB-Tools [16],

66

CHAPTER 4. OVERVIEW OF
MATCHING SYSTEMS 4.1. SCHEMA-BASED SYSTEMS

WordNet or manual input. It represents a set of intensional and a set

of extensional relationships which depict intra- and inter-schema knowl-

edge about classes and attributes of the input schemas. Based on global

affinity coefficients, a hierarchical clustering technique categorizes classes

into groups at different levels of affinity. For each cluster it creates a set

of global attributes and the global class. Logical correspondence between

the attributes of a global class and source schema attributes is determined

through a mapping table.

4.1.6 H-Match (Università degli Studi di Milano)

H-Match [41] is an automated ontology matching system. It was designed

to enable knowledge discovery and sharing in the settings of open net-

worked systems, in particular within the Helios peer-to-peer framework

[40]. The system handles ontologies specified in OWL. Internally, these are

encoded as graphs using the H-model representation [40]. H-Match inputs

two ontologies and outputs (one-to-one or one-to-many) correspondences

between concepts of these ontologies with the same or closest intended

meaning. The approach is based on a similarity analysis through affinity

metrics, e.g., term to term affinity, datatype compatibility, and thresholds.

H-Match computes two types of affinities (in the [0 1] range), namely lin-

guistic and contextual affinity. These are then combined by using weighting

schemas, thus yielding a final measure, called semantic affinity. Linguistic

affinity builds on top of a thesaurus-based approach of the Artemis system

(§4.1.5). In particular, it extends the Artemis approach (i) by building

a common thesaurus involving such relations among WordNet synsets as

meronymy or coordinate terms, and (ii) by providing an automatic handler

of compound terms (i.e., those composed by more than one token) that are

not available from WordNet. Contextual affinity requires consideration of

the neighbor concepts, e.g., linked via taxonomical or mereological rela-

67

4.1. SCHEMA-BASED SYSTEMS
CHAPTER 4. OVERVIEW OF

MATCHING SYSTEMS

tions, of the actual concept.

One of the major characteristics of H-Match is that it can be dynami-

cally configured for adaptation to a particular matching task. Notice that

in dynamic settings complexity of a matching task is not known in ad-

vance. This is achieved by means of four matching models. These are:

surface, shallow, deep, and intensive, each of which involves different types

of constructs of the ontology. Computation of a linguistic affinity is a

common part of all the matching models. In case of the surface model,

linguistic affinity is also the final affinity, since this model considers only

names of ontology concepts. All the other three models take into account

various contextual features and therefore contribute to the contextual affin-

ity. For example, the shallow model takes into account concept properties,

whereas the deep and the intensive models extend previous models by in-

cluding relations and property values, respectively. Each concept involved

in a matching task can be processed according to its own model, inde-

pendently from the models applied to the other concepts within the same

task. Finally, by applying thresholds, correspondences with semantic (fi-

nal) affinity higher than the cut-off threshold value are returned in the final

alignment.

4.1.7 Anchor-Prompt (Stanford Medical Informatics)

Anchor-Prompt [181] is an extension of Prompt, also formerly known as

SMART, and is an ontology merging and alignment tool with a sophisti-

cated prompt mechanism for possible matching terms [179]. Prompt han-

dles ontologies expressed in such knowledge representation formalisms as

OWL and RDF Schema. Anchor-Prompt is a sequential matching algo-

rithm that takes as input two ontologies, internally represented as graphs

and a set of anchors-pairs of related terms, which are identified with the

help of string-based techniques, such as edit-distance, or defined by a user

68

CHAPTER 4. OVERVIEW OF
MATCHING SYSTEMS 4.1. SCHEMA-BASED SYSTEMS

or another matcher computing linguistic similarity. Then the algorithm

refines them by analyzing the paths of the input ontologies limited by the

anchors in order to determine terms frequently appearing in similar posi-

tions on similar paths. Finally, based on the frequencies and user feedback,

the algorithm determines matching candidates.

4.1.8 OntoBuilder (Technion Israel Institute of Technology)

OntoBuilder is a system for information seeking on the web [171]. A typical

situation the system deals with is, for example, when a user is searching for

a car to be rented. Obviously, the user would like to compare prices from

multiple providers in order to make an informed decision. Thus, the same

input information has to be typed in many times. OntoBuilder operates

in two phases, namely: (i) ontology creation (the so called training phase)

and (ii) ontology adaptation (the so called adaptation phase). During

the training phase an initial ontology (in which a user’s data needs are

encoded) is created by extracting it from a visited web-site of, e.g., AVIS

car rental company. The adaptation phase includes on-the-fly matching

and interactive merging operations of the related ontologies with the actual

(initial) ontology. Ontology creation is out of the scope of this thesis.

Hence, we concentrate only on the ontology adaptation phase. During

the adaptation phase the user suggests the web sites (s)he would like to

further explore, e.g., the Hertz car rental company. Each such a site goes

through the ontology extraction process, thus, resulting in a candidate

ontology, which is then merged into the actual ontology. To support this,

the best match for each existing term in the actual ontology (to terms from

the candidate ontology) is selected. Selection strategy employs thresholds.

The matching algorithm works in a term to term fashion. It sequentially

executes a number of matchers. Some examples of the matchers used here

are removing noisy characters and stop terms and substring matching. If

69

4.1. SCHEMA-BASED SYSTEMS
CHAPTER 4. OVERVIEW OF

MATCHING SYSTEMS

all else fails, a thesaurus look-up is performed. Finally, mismatched terms

are presented to the user for manual matching. Some further matchers

such as those for precedence matching were introduced in a later work in

[86]. Also top-k mappings as alternative for single best matching (i.e.,

top-1 category) was proposed in [85].

4.1.9 Cupid (University of Washington, Microsoft Corporation,

University of Leipzig)

Cupid [146] implements a sequential algorithm comprising linguistic and

structural schema matching techniques, and computing similarity coeffi-

cients with the assistance of domain specific thesauri. Input schemas are

encoded as graphs. Nodes represent schema elements and are traversed

in a combined bottom-up and top-down manner. The matching algorithm

consists of three phases and operates only with tree-structures, to which

non-tree cases are reduced. The first phase (linguistic matching) computes

linguistic similarity coefficients between schema element names (labels)

based on morphological normalisation, categorization, string-based tech-

niques, such as common prefix, suffix tests, and thesauri look-up. The

second phase (structural matching) computes structural similarity coeffi-

cients weighted by leaves which measure the similarity between contexts

in which elementary schema elements occur. The third phase (mapping

elements generation) aggregates the results of the linguistic and structural

matching through a weighted sum and generates a final alignment by choos-

ing pairs of schema elements with weighted similarity coefficients which are

higher than a threshold.

70

CHAPTER 4. OVERVIEW OF
MATCHING SYSTEMS 4.1. SCHEMA-BASED SYSTEMS

4.1.10 COMA and COMA++ (University of Leipzig)

COMA (COmbination of MAtching algorithms) [58] is a schema matching

tool based on parallel composition of matchers. It provides an extensi-

ble library of matching algorithms, a framework for combining obtained

results, and a platform for the evaluation of the effectiveness of the dif-

ferent matchers. As in [58], COMA contains six elementary matchers,

five hybrid (i.e., combinations of elementary methods) matchers, and one

reuse-oriented matcher. Most of them implement string-based techniques,

such as affix, n-gram, edit distance; others share techniques with Cupid

(thesauri look-up, etc.). Reuse-oriented is an original matcher, which tries

to reuse previously obtained results for entire new schemas or for its frag-

ments. Schemas are internally encoded as directed acyclic graphs, where

elements are the paths. This aims at capturing contexts in which the ele-

ments occur. Distinct features of the COMA tool in respect to Cupid are a

more flexible architecture and the possibility of performing iterations in the

matching process. It presumes interaction with users who approve obtained

matches and mismatches to gradually refine and improve the accuracy of

match. COMA++ is built on top of COMA by elaborating in more detail

the alignment reuse operation, provides a more efficient implementation of

the COMA algorithms and a graphical user interface [58, 56].

4.1.11 Similarity Flooding (Stanford University,

University of Leipzig)

The Similarity Flooding (SF) [159] approach is based on the ideas of sim-

ilarity propagation. Schemas are presented as directed labeled graphs;

grounding on the OIM specification [156]. The algorithm manipulates them

in an iterative fix-point computation to produce an alignment between the

nodes of the input graphs. The technique starts from string-based compar-

71

4.1. SCHEMA-BASED SYSTEMS
CHAPTER 4. OVERVIEW OF

MATCHING SYSTEMS

ison, such as common prefix, suffix tests, of the vertices labels to obtain an

initial alignment which is refined within the fix-point computation. The

basic concept behind the similarity flooding algorithm is the similarity

spreading from similar nodes to the adjacent neighbors through propaga-

tion coefficients. From iteration to iteration the spreading depth and a

similarity measure are increasing till the fix-point is reached. The result

of this step is a refined alignment which is further filtered to finalize the

matching process.

4.1.12 CtxMatch and CtxMatch2 (University of Trento,

ITC-IRST)

CtxMatch [31, 30, 33] represents the first instantiation of the semantic

matching approach [97], namely the approach developed in this thesis. It

translates the ontology matching problem into the logical validity problem

and computes logical relations, such as equivalence, subsumption between

concepts and properties. CtxMatch is a sequential system. At the element

level it uses only WordNet to find initial matches for classes as well as for

properties. At the structure level, it exploits description logic reasoners,

such as Pellet2 or FaCT3 to compute the final alignment in a way simi-

lar to what is presented in Chapter 3 when discussing methods based on

description logics.

4.1.13 DCM framework (University of Illinois at

Urbana-Champaign)

MetaQuerier [43] is a middleware system that assists users in finding and

quering multiple databases on the web. It exploits the Dual Correlation

Mining (DCM) matching framework to facilitate source selection according

2http://www.mindswap.org/2003/pellet/
3http://www.cs.man.ac.uk/∼horrocks/FaCT

72

CHAPTER 4. OVERVIEW OF
MATCHING SYSTEMS 4.2. MIXED SYSTEMS

to user search keywords [116]. Unlike other works, the given approach takes

as input multiple schemas and returns alignments between all of them. This

setting is called holistic schema matching. DCM automatically discovers

complex mappings, e.g., {author} corresponds to {first name, last name},
between attributes of the web query interfaces in the same domain of inter-

est, e.g., books. As the name (DCM) indicates, schema matching is viewed

as correlation mining. The idea is that co-occurrence patterns often sug-

gest complex matches. That is, grouping attributes, such as first name and

last name, tend to co-occur in query interfaces. Technically, this means

that those attributes are positively correlated. Contrary, attribute names

which are synonyms, e.g., quantity and amount , rarely co-occur, thus rep-

resenting an example of negative correlation between them. Matching is

performed in two phases. During the first phase (matching discovery), a

set of matching candidates is generated by mining first positive and then

negative correlations among attributes and attribute groups. Also, some

thresholds and a specific correlation measure such as the H -measure are

used. During the second phase (matching construction), by applying some

strategies of ranking, e.g., scoring function, rules, and selection, such as

iterative greedy selection, the final alignment is produced.

4.2 Mixed systems

The following systems take advantage of both schema-level and instance-

level input information if they are both available.

4.2.1 SEMINT (Northwestern University, NEC,

The MITRE Corporation)

SEMantic INTegrator (SEMINT) is a tool based on neural networks to

assist in identifying attribute correspondences in heterogeneous databases

73

4.2. MIXED SYSTEMS
CHAPTER 4. OVERVIEW OF

MATCHING SYSTEMS

[137, 138]. It supports access to a variety of database systems and utilizes

both schema- and instance-level information to produce rules for match-

ing corresponding attributes automatically. The approach works as fol-

lows. First, it extracts from two databases all the necessary information

(features or discriminators) which is potentially available and useful for

matching. This includes normalized schema information, e.g., field speci-

fications, such as datatypes, length, constraints, and statistics about data

values, e.g., character patterns, such as ratio of numerical characters, ratio

of white spaces, and numerical patterns, such as mean, variance, standard

deviation. Second, by using a neural network as a classifier (self-organizing

map algorithm), it groups the attributes based on similarity of the features

for a single (the first) database. Then, it uses a back-propagation neural

network for learning and recognition. Based on the previously obtained

clusters, the learning is performed. Finally, using a trained neural net-

work on the first database features and clusters, the system recognizes and

computes similarities between the categories of attributes from the first

database and the features of attributes from the second database, thus,

generating a list of match candidates, which are to be inspected and con-

firmed or discarded by a human user.

4.2.2 Clio (IBM Almaden, University of Toronto)

Clio is a system for managing and facilitating data transformation and inte-

gration tasks within heterogeneous environments [164, 165, 172, 113]. Clio

handles relational and XML schemas. As a first step, the system trans-

forms the input schemas into an internal representation, which is a nested

relational model. The Clio approach is focused on making the alignment

operational. It is assumed that the matching step (namely, identification of

the so-called value correspondences) is performed with the help of a schema

matching component or manually by the user. The built-in schema match-

74

CHAPTER 4. OVERVIEW OF
MATCHING SYSTEMS 4.2. MIXED SYSTEMS

ing algorithm of Clio combines in a sequential manner instance-based at-

tribute classification via a variation of a Naive Bayes classifier [107, 64, 149]

and string matching between elements names, e.g., by using edit distance

measure. Then, taking the n:m value correspondences (the alignment) to-

gether with constraints coming from the input schemas, Clio compiles these

into an internal query graph representation. In particular, an interpreta-

tion of the input correspondences is given. Thus, a set of logical mappings

with formal semantics is produced. To this end, Clio also supports map-

pings composition [79]. Finally, the query graph can be serialized into

different query languages, e.g., SQL, XSLT, XQuery, thus enabling actual

data to be moved from a source to a target, or to answer queries. The

system, besides trivial transformations, aims at discovering complex ones,

such as the generation of keys, references, join conditions.

4.2.3 NOM and QOM (University of Karlsruhe)

NOM (Naive Ontology Mapping) [69] and QOM (Quick Ontology Map-

ping) [68] are components of the FOAM framework [66].

NOM adopts the idea of parallel composition of matchers from COMA

(§4.1.10). Some innovations with respect to COMA are in the set of ele-

mentary matchers based on rules, exploiting explicitly codified knowledge

in ontologies, such as information about super- and sub-concepts, super-

and sub-properties, etc. At present the system supports 17 rules. For

example, a rule states that if super-concepts are the same, the actual con-

cepts are similar to each other. These rules use many terminological and

structural techniques.

QOM (Quick Ontology Mapping) [68] is a variation of the NOM system

dedicated to improve the efficiency of the system. The approach is based

on the idea that the loss of quality in matching algorithms is marginal (to a

standard baseline); however improvement in efficiency can be tremendous.

75

4.2. MIXED SYSTEMS
CHAPTER 4. OVERVIEW OF

MATCHING SYSTEMS

This fact allows QOM to produce correspondences fast, even for large-

size ontologies. QOM is grounded on matching rules of NOM. However,

for the purpose of efficiency the use of some rules, e.g., the rules that

traverse the taxonomy, have been restricted. QOM avoids the complete

pairwise comparison of trees in favor of a (n incomplete) top-down strategy,

thereby focusing only on promising matching candidates. The similarity

measures produced by basic matchers (matching rules) are refined by using

a sigmöıd function, thereby emphasizing high individual similarities and de-

emphasizing low individual similarities. They are then aggregated through

weighted average. Finally, with the help of thresholds, the final alignment

is produced.

4.2.4 OLA (INRIA Rhône-Alpes, Université de Montréal)

OLA (OWL Lite Aligner) [78] is an ontology matching system which is

designed with the idea of balancing the contribution of each of the compo-

nents that compose an ontology, e.g., classes, constraints, data instances.

OLA handles ontologies in OWL. It first compiles the input ontologies into

graph structures, unveiling all relationships between entities. These graph

structures produce the constraints for expressing a similarity between the

elements of the ontologies. The similarity between nodes of the graphs

follows two principles: (i) it depends on the category of node considered,

e.g., class, property, and (ii) it takes into account all the features of this

category, e.g., superclasses, properties.

The distance between nodes in the graph are expressed as a system of

equations based on string-based, language-based and structure-based sim-

ilarities. These distances are almost linearly aggregated (they are linearly

aggregated modulo local matches of entities). For computing these dis-

tances, the algorithm starts with base distance measures computed from

labels and concrete datatypes. Then, it iterates a fix-point algorithm until

76

CHAPTER 4. OVERVIEW OF
MATCHING SYSTEMS 4.2. MIXED SYSTEMS

no improvement is produced. From that solution, an alignment is gener-

ated which satisfies some additional criterion on the alignment obtained

and the distance between matched entities.

4.2.5 Corpus-based matching (University of Washington,

Microsoft Research, University of Illinois at

Urbana-Champaign)

[144] proposed an approach to schema matching which, besides input in-

formation available from schemas under consideration, also exploits some

domain specific knowledge via an external corpus of schemas and map-

pings. The intuition behind the approach is based on the use of corpus

in information retrieval, where similarity between queries and concepts is

determined based on analyzing large corpora of text. In schema matching

settings, such a corpus can be initialized with a small number of schemas

obtained, for example, by using available standard schemas in the domain

of interest (see, for instance, XML.org4 and OASIS.org5) and should even-

tually evolve in time with new matching tasks.

Since the corpus is intended to have a number of different represen-

tations of each concept in the domain, it should facilitate learning these

variations in the elements and their properties. The corpus is exploited

in two ways. First, to obtain an additional evidence about each element

being matched by including evidence from similar elements in the corpus.

Second, in the corpus, similar elements are clustered and some statistics

for clusters are computed, such as neighborhood and ordering of elements.

These statistics are ultimately used to build constraints that facilitate se-

lection of the correspondences in the resulting alignment.

The approach handles web forms and relational schemas and focuses on

4http://www.xml.org/
5http://www.oasis-open.org/

77

4.3. SUMMARY
CHAPTER 4. OVERVIEW OF

MATCHING SYSTEMS

one-to-one alignments. It works in two logical phases. Firstly, schemas

under consideration are matched against the corpus, thereby augmenting

these with possible variations of their elements based on knowledge avail-

able from the corpus. Secondly, augmented schemas are matched against

each other. In both cases the same set of matchers is applied. In particu-

lar, basic matchers, called learners, include: (i) a name learner, (ii) a text

learner, (iii) a data instance learner, and (iv) a context learner. These

matchers mostly follow the ideas of techniques used in LSD [59] and Cupid

(§4.1.9). For example, the name learner exploits names of elements. It

applies tokenization and n-grams to the names in order to create training

examples. The matcher itself is a text classifier, such as Naive Bayes. In ad-

dition, the name learner, in order to determine similarity between element

names string, uses edit distance. The data instance learner determines

whether the values of instances share common patterns, same words, etc.

Also, a matcher for an automatic combination of the results produced by

basic matchers, called metalearner, uses logistic regression with the help of

stacking technique [224] in order to learn its parameters. Finally, by using

constraints obtained based on the statistics from the corpus, some filtering

of the candidate correspondences is performed in order to produce the final

alignment.

4.3 Summary

The panorama of systems considered in this chapter has multiplied the di-

versity of basic techniques by the variety of strategies for combining them

introduced in the previous chapter. However, there are a number of con-

stant features that are shared by the majority of systems. Also, usually

each individual system innovates on a particular aspect. Let us summarize

some global observations concerning the presented systems:

78

CHAPTER 4. OVERVIEW OF
MATCHING SYSTEMS 4.3. SUMMARY

• Most of the systems under consideration deal with particular ontol-

ogy types, such as DTDs, relational schemas and OWL ontologies.

Only a small number of systems aim at being generic, i.e., handle

multiple types of ontologies. Some examples include Cupid (§4.1.9),

COMA and COMA++ (§4.1.10), Similarity Flooding (§4.1.11) and

the approach proposed in this thesis.

• Most of the approaches take as input a pair of ontologies, including

the approach proposed in this thesis, while only a small number of

systems take as input multiple ontologies, e.g., DCM (§4.1.13).

• Most of the approaches handle only tree-like structures, including the

approach proposed in this thesis, while only a small number of systems

handle graphs. Some examples of the latter include Cupid (§4.1.9),

COMA and COMA++ (§4.1.10), and OLA (§4.2.4).

• Most of the systems focus on discovery of one-to-one alignments, while

only a small number of systems have tried to address the problem of

discovering more complex correspondences, such as one-to-many, e.g.,

the approach proposed in this thesis, and many-to-many, e.g., DCM

(§4.1.13).

• Most of the systems focus on computing confidence measures in [0 1]

range, most often standing for the fact that the equivalence relation

holds between ontology entities. Only a small number of systems com-

pute logical relations between ontology entities, such as equivalence,

subsumption. Some examples of the latter include CtxMatch (§4.1.12)

and the approach proposed in this thesis.

Table 4.1 summarizes how some of the matching systems considered

in this chapter cover the solution space in terms of the classification of

Chapter 3.

79

4.3. SUMMARY
CHAPTER 4. OVERVIEW OF

MATCHING SYSTEMS

Table 4.1: Basic matchers used by different systems

Element-level Structure-level

Syntactic External Syntactic Semantic

Hovy string-based, - taxonomic structure -

§4.1.1 language-based

TranScm string-based built-in thesaurus taxonomic structure, -

§4.1.2 matching of

neighbourhood

DIKE string-based, WordNet matching of -

§4.1.3 domain compatibility neighbourhood

SKAT string-based auxiliary thesaurus, taxonomic structure,

§4.1.4 corpus-based matching of -

neighbourhood

Artemis domain compatibility, common thesaurus (CT) matching of neighbours

§4.1.5 language-based via CT, -

clustering

H-Match domain compatibility, common thesaurus (CT) matching of neighbours

§4.1.6 language-based, via CT, -

domains and ranges relations

Anchor- string-based, bounded paths matching:

Prompt domains and ranges - (arbitrary links), -

§4.1.7 taxonomic structure

OntoBuilder string-based, thesaurus look up - -

§4.1.8 language-based

string-based, auxiliary thesauri tree matching

Cupid language-based, weighted by leaves -

§4.1.9 datatypes,

key properties

COMA & string-based, auxiliary thesauri, DAG (tree) matching with

COMA++ language-based, alignment reuse, a bias towards various -

§4.1.10 datatypes repository of structures structures (e.g., leaves)

SF string-based, iterative fix-point

§4.1.11 datatypes, - computation -

key properties

CtxMatch string-based, WordNet - based on

§4.1.12 language-based description logics

DCM - - correlation mining -

§4.1.13
SEMINT neural network,

§4.2.1 datatypes, - - -

value patterns

Clio string-based,

§4.2.2 language-based, - - -

Naive Bayes

NOM & QOM string-based, application-specific matching of neighbours, -

§4.2.3 domains and ranges vocabulary taxonomic structure

string-based, iterative fix-point

OLA language-based, WordNet computation, -

§4.2.4 datatypes matching of neighbours,

taxonomic structure

80

CHAPTER 4. OVERVIEW OF
MATCHING SYSTEMS 4.3. SUMMARY

For example as from Table 4.1, OLA (§4.2.4) exploits string-based element-

level matchers, a matcher based on WordNet, iterative fix-point computa-

tion, etc. Table 4.1 also testifies that ontology matching research so far was

mainly focused on syntactic and external techniques. In fact, many sys-

tems rely on the same string-based techniques. Similar observation can be

also made concerning the use of WordNet as an external resource of com-

mon knowledge. In turn, semantic techniques have rarely been exploited,

this is only done by the approach proposed in this thesis and CtxMatch

(§4.1.12).

Having considered some of the recent schema-based matching systems,

it is important to notice that the matching operation typically constitutes

only one of the steps towards the ultimate goal of, e.g., ontology integra-

tion, data integration, and web service composition. To this end, we would

like to mention some existing infrastructures, which use matching as one of

its integral components. Some examples include: Chimaera [150], MAFRA

[49, 142], Rondo and Moda [161, 160, 158], Prompt Suite [180, 177], Align-

ment API [73], GeRoMe [126], Protoplasm [24], COMA++ [58, 56] and

ModelGen [6, 7]. The goal of such infrastructures is to enable a user with

a possibility of performing such high-level tasks, e.g., given a product re-

quest expressed in terms of the catalog C1, return the products satisfying

the request from the marketplaces MP1 and MP2. Moreover, use match-

ing component M5, and translate instances by using component T3.

81

4.3. SUMMARY
CHAPTER 4. OVERVIEW OF

MATCHING SYSTEMS

82

Part III

Schema-based

semantic matching

Chapter 5

Semantic matching

We think of matching as an operation that takes two graph-like structures

(e.g., classifications, XML schemas or ontologies) and produces an align-

ment between nodes of two graphs that correspond semantically to each

other.

Many various solutions of matching have been proposed so far. This

work concentrates on a schema-based solution, namely a matching ap-

proach exploiting only the schema information, thus not considering in-

stances. The reason behind our choice is that schema information is always

available, while this is not the case with instance information: (i) in tra-

ditional applications, such as schema integration, instance data may not

be available due to the security concerns [46], (ii) in some of the emerging

applications, such as two agents meeting or looking for the web service

integration, there are no instances given beforehand. Finally in some ap-

plications, for example, dealing with masterpieces [229], instances are the

image data, which will require a specific solution. A schema-based solu-

tion, in principle, can be used in the above mentioned cases. Therefore,

schema-based solutions potentially have a wider applicability rather than

instance-based solutions.

85

5.1. GENERIC AND GENERAL
MATCHING CHAPTER 5. SEMANTIC MATCHING

In this thesis we propose the so-called semantic matching schema-based

approach. This approach is based on two key ideas. The first is that

correspondences are calculated between entities of ontologies by computing

logical relations (e.g., equivalence, subsumption, disjointness), instead of

computing coefficients rating match quality in the [0 1] range, as it is

the case in many other approaches [146, 58, 159, 78]. The second idea

is that the relations are determined by analyzing the meaning which is

codified in the entities and the structures of ontologies. In particular, labels

at nodes, written in natural language, are automatically translated into

propositional formulas which explicitly codify the labels’ intended meaning.

This allows the translation of the matching problem into a propositional

validity problem, which can then be efficiently resolved using sound and

complete propositional satisfiability deciders.

Material presented in this chapter has been developed in collaboration

with Mikalai Yatskevich and published in [96, 97, 98]. Algorithms presented

in this chapter have been implemented by Mikalai Yatskevich within the

S-Match system. Therefore, implementation details are out of scope of this

chapter, see [103] for details.

In this chapter we first present basic motivations behind the proposed

approach (§5.1). Then, we discuss the semantic matching by intuitions

and examples as well as we state the problem technically (§5.2). Finally,

we provide the main macro steps of the algorithm realizing the semantic

matching approach (§5.3).

5.1 Generic and general

matching

We assume that all forms of ontologies, e.g., database schemas, classifica-

tions, and formal ontologies (§2.1), can be represented as graphs. There-

86

CHAPTER 5. SEMANTIC MATCHING
5.1. GENERIC AND GENERAL

MATCHING

fore, the matching problem can be decomposed into two steps:

• extract graphs from the input ontologies,

• match the resulting graphs 1.

This allows for the statement and solution of a generic matching prob-

lem, very much along the lines of what is done in Cupid [146] (§4.1.9)

and COMA [58] (§4.1.10). From a technical perspective, development of a

generic matcher aims at handling different forms of ontologies, e.g., rela-

tional schemas, XML schemas, classifications and OWL ontologies (§2.1),

and being general-purpose means being able to serve for many applications,

e.g., ontology integration (Chapter 1). These are the motivations behind

the unified treatment of matching that we take in our approach and the

position of considering matching being a separate operation, as opposed to

considering merging or mediating being the primitive ones.

Let us define the notion of matching graphs more precisely.

A mapping element is a 4-tuple 〈IDij, n1i, n2j, R〉, i=1,...,N1; j=1,...,N2;

where IDij is a unique identifier of the given mapping element; n1i is the

i-th node of the first graph, N1 is the number of nodes in the first graph;

n2j is the j-th node of the second graph, N2 is the number of nodes in the

second graph; and R specifies a similarity relation which may hold between

the nodes n1i and n2j.

Note that the definition of mapping element above is a simplified version

of the correspondence (§2.3, p.29).

Matching is the process of discovering mapping elements between two

graphs through the application of a matching algorithm.

There exist two approaches to graph matching, namely exact matching

and inexact or approximate matching, see, for instance [211]. Both of

1Note that this step is different from what is called graph matching in the graph theory [19, 141],
although may include it as an integral component (§3.4).

87

5.2. SEMANTIC MATCHING:
THE IDEA CHAPTER 5. SEMANTIC MATCHING

them can be stated as subgraph matching problems: find all occurrences

of a pattern graph P of m nodes as a subgraph of a graph G of n nodes,

m ≤ n. In the case of exact matching we look for subgraphs S of G that

are identical to P . In inexact matching some errors are acceptable. For

obvious reasons we are interested in inexact matching.

5.2 Semantic matching:

the idea

As the name of the approach indicates, in semantic matching the key in-

tuition is to match meanings (concepts). Thus, in order to emphasize this

choice (and, hence, be more specific than in §5.1), mapping elements are

computed as 4-tuples 〈IDij, C1i, C2j, R〉, where C1i is the concept at the

i-th node of the first graph; C2j is the concept at the j-th node of the sec-

ond graph; and R specifies a similarity relation in the form of a semantic

relation between the concepts at the given nodes. Possible R’s between

concepts at nodes are equivalence (=), more specific/general (, �), and

disjointness (⊥).

The other approaches which have been grouped under the heading of

syntactic matching in §3.3 (p.58) often focus on matching labels of nodes

(being more important than other available information, such as datatypes

and cardinalities) and look for the similarity using syntax driven tech-

niques. Thus, in contrast to semantic matching, in the case of syntactic

matching, mapping elements can be viewed as 4-tuples 〈IDij, L1i, L2j, R〉,
where L1i is the label at the i-th node of the first graph; L2j is the label at

the j-th node of the second graph; and R specifies a similarity relation in

the form of a coefficient, which measures the similarity between the labels

of the given nodes. Typical examples of R are confidence measures, for

instance, similarity coefficients in the [0 1] range [146].

88

CHAPTER 5. SEMANTIC MATCHING
5.2. SEMANTIC MATCHING:

THE IDEA

In semantic matching, when we match two nodes, the concepts we an-

alyze depend not only on the concept attached to the node (the concept

denoted by the label of the node), but also on the position of the node in

the graph. Thus, we analyze the meaning which is codified in the entities

and the structures of ontologies.

Then, the key idea is that labels, which are written in natural language,

should be translated into an internal language, the language used to express

concepts. The internal language should have precisely defined syntax and

semantics, thus avoiding all the problems related to the ambiguities of

natural language. In particular, we have chosen as an internal language a

propositional concept language, whose expressivity turns out to be good

enough, i.e., to have no or little loss in meaning, when encoding natural

language labels used in classifications and schemas [147, 95]. Finally, this

allows the translation of the matching problem into a propositional validity

problem, which can then be efficiently resolved using sound and complete

state of the art propositional satisfiability deciders. The advantage of using

SAT deciders is that they allow for an exhaustive check of all the possible

mapping elements and choosing only the correct ones.

5.2.1 Concept of a label and Concept at a node

In order to introduce two important notions behind the approach, let us

consider two classifications of Figure 5.1.

The trivial but key observation is that labels in classifications are used

to define the set of documents one would like to classify under the node

holding the label. Thus, when we write Images (see the root node of O1 in

Figure 5.1), we do not really mean “images”, but rather “the documents

which are (about) images”. Analogously, when we write Europe (see the

root node of O2 in Figure 5.1), we mean “the documents which are about

Europe”. In other words, a label has an intended meaning, which is what

89

5.2. SEMANTIC MATCHING:
THE IDEA CHAPTER 5. SEMANTIC MATCHING

Images

2 3

4 5

Europe Computers and
Internet

ItalyGreece

1

2 3

4

Europe

Pictures Cyberspace and
Virtual Reality

Italy

O1 O2
1

Figure 5.1: Simple catalog matching problem

this label means in the world. However, when using labels for classification

purposes, we use them to denote the set of documents which talk about

their intended meaning. This consideration allows us to generalize the

example definitions of Images and Europe and to define the concept of a

label.

Concept of a label denotes the set of documents that are about what the

label means in the world.

Two observations. First, while the semantics of a label are the real

world semantics, the semantics of the concept of a label are in the space

of documents; the relation being that the documents in the extension of

the concept of a label are about what the label means in the real world.

Second, concepts of labels depend only on the labels themselves and are

independent of where in a graph they are positioned.

Graphs (trees) add structure which allows us to perform the classifi-

cation of documents more effectively. Let us consider, for instance, the

node with label Europe in O1. This node stands below the node with label

Images and, therefore, following what is standard practice in classifica-

tion, one would classify under this node the set of documents which are

images and which are about Europe. Thus, generalizing to graphs (trees)

and nodes the idea that the extensions of concepts range in the space of

90

CHAPTER 5. SEMANTIC MATCHING
5.2. SEMANTIC MATCHING:

THE IDEA

documents, we can define the concept at a node.

Concept at a node denotes the set of documents that we would classify

under this node, given it has a certain label and it is positioned in a certain

place in the graph.

More precisely, as the above example has suggested, a document, to be

classified in a node, must be in the extension of the concepts of the labels

that contribute to its meaning, e.g., all the nodes above it, and of the node

itself. Notice that this captures exactly our intuitions about how to classify

and access documents within classifications.

Let us now consider some general examples, which make the conse-

quences of the observations described above clearer. For any example we

also report the results produced by the state of the art matcher, Cupid [146]

(§4.1.9), which exploits sophisticated syntactic matching techniques.

Let us introduce some notation (see Figure 5.1). Numbers are the unique

identifiers of nodes. We use “C” for concepts of labels and concepts at

nodes. Also we use “C1” and “C2” to distinguish between concepts of

labels and concepts at nodes in graph 1 and graph 2, respectively. Thus, in

O1, C1Italy and C15 are, respectively, the concept of the label Italy and the

concept at node 5. Also, to simplify the presentation, whenever it is clear

from the context we assume that the concept of a label can be represented

by the label itself. In this case, for example, CItaly becomes denoted as

Italy. We sometimes use subscripts to distinguish between graphs in which

the given concept of a label occurs. For instance, Italy1, means that the

concept of the label Italy belongs to the graph O1.

Analysis of siblings. Let us consider Figure 5.2. Structurally the graphs

shown in Figure 5.2 differ in the order of siblings. Suppose that we want

to match node 5 in O1 with node 2 in O2.

91

5.2. SEMANTIC MATCHING:
THE IDEA CHAPTER 5. SEMANTIC MATCHING

A

2 3 4 5

B ED C

1

2 53

A

C ED

O1 O21

4

B

Figure 5.2: Analysis of siblings

Cupid correctly processes this situation, and as a result, the similarity

coefficient between labels at the given nodes equals to 0.8, thereby indi-

cating for an appropriate match. This is because A1 = A2, C1 = C2 and

we have the same structures on both sides. A semantic matching approach

compares concepts A�C in O1 with A�C in O2 and produces C15 = C22.

Analysis of ancestors. Let us consider Figure 5.3. Suppose that we

want to match nodes 5 from O1 and 1 from O2.

A

2 3 4 5

B ED C

1

2

5

3

C

D
A

E

O1 O21

4

B

Figure 5.3: Analysis of ancestors. Case 1

Cupid does not find a correspondence between the nodes under con-

sideration, due to the differences in structure of the given graphs, namely

matching a leaf node with a root node. In semantic matching, the con-

cept of label of node 5 in O1 is C1C, while the concept at node 5 in O1

is C15 = C1A � C1C. The concept at node 1 in O2 is C21 = C2C. By

comparing the concepts of labels at nodes 5 in O1 and 1 in O2 we have

92

CHAPTER 5. SEMANTIC MATCHING
5.2. SEMANTIC MATCHING:

THE IDEA

that, being identical, they denote the same concept, namely C1C = C2C.

Thus, the concept at node 5 in O1 is a subset of the concept at node 1 in

O2, namely C15 	 C21.

Let us complicate the example shown in Figure 5.3 by allowing for an

arbitrary number of nodes between ancestors, see Figure 5.4. The asterisk

means that an arbitrary number of nodes are allowed between nodes 1 and

5 in O2. Suppose that we want to match nodes 5 in O1 and 5 in O2.

A

2 3 4 5

B ED C

1

2

5

3

A

D
*

E

O1 O21

4

C

Figure 5.4: Analysis of ancestors. Case 2

Cupid finds out that the similarity coefficient between labels C1 and C2

is 0.86, thereby indicating for an appropriate match. This is because of the

identity of labels (A1 = A2, C1 = C2), and due to the fact that nodes 5 in

O1 and 5 in O2 are leaves. Notice how Cupid treats very differently the two

situations represented here (Figure 5.4) and in the previous example (Fig-

ure 5.3), even if, from a semantic point of view, they are similar. Following

semantic matching, the concept at node 5 in O1 is C15 = C1A�C1C, while

the concept at node 5 in O2 is C25 = C2A � ∗ � C2C. Since we have that

C1A = C2A and C1C = C2C, then C25 	 C15.

93

5.2. SEMANTIC MATCHING:
THE IDEA CHAPTER 5. SEMANTIC MATCHING

5.2.2 Semantic matching: problem statement

Having introduced the basic notions and motivations we proceed with the

definition of the semantic matching problem.

A mapping element is a 4-tuple 〈IDij, n1i, n2j, R〉, i=1,...,N1; j=1,...,N2;

where IDij is a unique identifier of the given mapping element; n1i is the

i-th node of the first graph, N1 is the number of nodes in the first graph;

n2j is the j-th node of the second graph, N2 is the number of nodes in the

second graph; and R specifies a semantic relation which may hold between

the concepts at nodes n1i and n2j. Possible semantic relations include:

equivalence (=), more general (�), less general (), and disjointness (⊥).

Thus, for instance, the concepts at two nodes are equivalent if they have

the same extension, they mismatch if their extensions are disjoint, and so

on for the other relations.

We order these relations as they have been listed, according to their

binding strength, from the strongest to the weakest, with less general and

more general having the same binding power. Thus, equivalence is the

strongest binding relation since the mapping element tells us that the

concept at the second node has exactly the same extension as the first,

more general and less general relations give us a containment information

with respect to the extension of the concept at the first node, disjointness

provides a containment information with respect to the extension of the

complement of the concept at the first node.

When none of the relations holds, the special “idk” (I do not know) rela-

tion should be returned. This is an explicit statement that we are unable to

compute any of the declared (four) relations. This should be interpreted as

either there is not enough background knowledge, and therefore, we cannot

explicitly compute any of the declared relations or, indeed, none of those

94

CHAPTER 5. SEMANTIC MATCHING
5.2. SEMANTIC MATCHING:

THE IDEA

relations hold according to an application.

Semantic matching can then be defined as the following problem.

Given two graphs G1 and G2 compute the N1 × N2 mapping elements

〈IDi,j, n1i, n2j, R′〉, with n1i ∈ G1, i=1,...,N1, n2j ∈ G2, j=1,...,N2 and

R′ the strongest semantic relation holding between the concepts at nodes

n1i and n2j.

Since we look for the N1×N2 correspondences, the cardinality of map-

ping elements we are able to determine is 1 : m. Also, these, if necessary,

can be decomposed straightforwardly into mapping elements with the 1:1

cardinality.

Thus, for example, considering the concepts at the two root nodes of

O1 and O2 in Figure 5.1 we have the following mapping element:

〈ID1,1, n11, n21, idk〉.

This is an obvious consequence of the fact that the set of images has a non

empty intersection with the set of documents which are about Europe and

no stronger relation exists. Building a similar argument for node 2 in O1

and node 2 in O2 of Figure 5.1, and supposing that the concepts of the

labels Images and Pictures are synonyms, we compute instead

〈ID2,2, n12, n22, =〉.

Finally, considering also the node 2 in O1 and the nodes with labels Europe

and Italy in O2 of Figure 5.1, we have the following mapping elements:

〈ID2,1, n12, n21, 	〉,
〈ID2,4, n12, n24, �〉.

95

5.3. SEMANTIC MATCHING:
THE ALGORITHM CHAPTER 5. SEMANTIC MATCHING

5.3 Semantic matching:

the algorithm

We focus on tree-like structures, e.g., classifications, and XML schemas.

real world schemas are seldom trees, however, there are (optimized) tech-

niques, transforming a graph representation of a schema into a tree repre-

sentation, e.g., the graph-to-tree operator of Protoplasm [24]. From now

on we assume that a graph-to-tree transformation can be done by using

existing systems, and therefore, we focus on other issues instead.

5.3.1 An overview of the algorithm

We consider two simple XML schemas shown in Figure 5.5. Notation

follows the one introduced in §5.2.1 (p.91).

Figure 5.5: Two XML schemas and some of the mapping elements

96

CHAPTER 5. SEMANTIC MATCHING
5.3. SEMANTIC MATCHING:

THE ALGORITHM

The algorithm takes as input two tree-like structures and computes as

output a set of mapping elements in four macro steps:

Step 1: for all labels L in two trees, compute concepts of labels, CL.

Step 2: for all nodes N in two trees, compute concepts at nodes, CN .

Step 3: for all pairs of labels in two trees, compute relations among CL’s.

Step 4: for all pairs of nodes in two trees, compute relations among CN ’s.

The first two steps represent the pre-processing phase, while the third

and the fourth steps are the element level and structure level matching,

respectively (Chapter 3). It is important to notice that Step 1 and Step 2

can be done once, independently of the specific matching problem. Step 3

and Step 4 can only be done at run time, once two trees which must be

matched have been chosen.

During Step 1 we compute the meaning of a label at a node (in iso-

lation) by taking as input a label, by analyzing its real world seman-

tics (e.g., using WordNet [163]), and by returning as output a concept

of the label. Thus, for example, by writing CCameras and Photo we move from

the natural language ambiguous label Cameras and Photo to the concept

CCameras and Photo, which codifies explicitly its intended meaning, namely

the data which is about cameras and photo.

During Step 2 we analyze the meaning of the positions that the labels

of nodes have in a tree. By doing this we extend concepts of labels to

concepts at nodes. This is required to capture the knowledge residing in

the structure of a tree, namely the context in which the given concept of

label occurs [94]. For example, in O2, when we write C6 we mean the

concept describing all the data instances of the electronic photography

products which are digital cameras.

97

5.3. SEMANTIC MATCHING:
THE ALGORITHM CHAPTER 5. SEMANTIC MATCHING

Step 3 is concerned with acquisition of “world” knowledge. Relations

between concepts of labels are computed with the help of element level

semantic matchers. These matchers take as input two concepts of labels

and produce as output a semantic relation (e.g., equivalence, more/less

general) between them. For example, from WordNet [163] we can de-

rive that PC and personal computer are synonyms, and therefore, Per-

sonal Computer1 = PC2.

Step 4 is concerned with the computation of the relations between con-

cepts at nodes. This problem cannot be resolved by exploiting static knowl-

edge sources only. We have (from Step 3) background knowledge, codified

as a set of relations between concepts of labels occurring in two trees. This

knowledge constitutes the background theory (axioms) within which we

reason. We need to find a semantic relation (e.g., equivalence, more/less

general) between the concepts at any two nodes in two trees. However,

these are usually complex concepts obtained by suitably combining the

corresponding concepts of labels. For example, suppose we want to find

a relation between C12 (which, intuitively, stands for the concept of elec-

tronic products which are personal computers) and C22 (which, intuitively,

stands for the concept of electronic products which are PCs). In this case,

we should realize that they have the same extension, and therefore, that

they are equivalent.

The rest of this section concentrates on technical details of each of four

macro steps of the algorithm we have outlined above.

5.3.2 Step 1. Compute concepts of labels

During this step we compute concepts of labels for all labels in two trees.

A natural choice is to take the label itself as a placeholder for its concept.

For instance, the label camera is the best string which can be used with the

98

CHAPTER 5. SEMANTIC MATCHING
5.3. SEMANTIC MATCHING:

THE ALGORITHM

purpose of characterizing “all documents which are about cameras”. This

is also what we have done in the previous examples: we have taken labels

to stand for their concepts. Collapsing the notions of label and of concept

of label is in fact a reasonable assumption, which has been implicitly made

in many previous works on syntactic matching (see, e.g., [146, 58]).

However, it has a major drawback since labels are most often written in

some not well defined subset of natural language and, as a result, natural

language presents many ambiguities. For instance, there are many possible

different ways to state the same concept (as we have with Quantity and

Amount); dually, the same sentence may mean many different things (e.g.,

think of the label camera again, being a photographic camera or televi-

sion camera); Quantity and Amount, though being different words, for our

purposes have the same classification role.

Among the key ideas underlying semantic matching is the one that la-

bels, which are written in natural language, are translated into a proposi-

tional concept language, such as propositional description logic language [10].

Specifically, atomic formulas are atomic concepts, written as single words

or multi-words. Complex formulas are obtained by combining atomic con-

cepts using the logical operators, such as conjunction (�), disjunction (�),

and negation (¬). Note that negation can only be applied to atomic con-

cepts. There are also comparison operators, such as less general (), more

general (�), and equivalence (=). The interpretation of these operators is

the standard set-theoretic interpretation2.

The reasons for choosing a simple propositional description logics lan-

guage are as follows. First, given its set-theoretic interpretation, it “maps”

naturally to the real world semantics. Second, natural language labels

2Note that we do not introduce any new knowledge representation formalism here. We rely on the
existing one, which is a propositional description logic. Therefore, we limit its presentation to an informal
discussion, which we believe is appropriate according to the whole contribution of the approach. Also
note that in practice we straightforwardly translate the natural language labels into propositional logic
formulas [103].

99

5.3. SEMANTIC MATCHING:
THE ALGORITHM CHAPTER 5. SEMANTIC MATCHING

used in classifications and XML schemas are usually short expressions or

phrases having simple structure. These phrases can be converted into a

formula in our knowledge representation formalism with no or little loss in

the meaning [95]. Finally, these formulas can be converted into equivalent

formulas in a propositional logic language with boolean semantics. Thus,

technically, concept of a label is the propositional formula which stands for

the set of data instances (documents) that one would classify under a label

it encodes.

We compute atomic concepts, as they are denoted by atomic labels

(namely, labels of single words or multi-words), as the senses provided

by WordNet [163]. In the simplest case, an atomic label generates an

atomic concept. However, atomic labels with multiple senses or labels

with multiple words generate complex concepts. The translation process

from labels to concepts follows the ideas of [31] where the main steps are

as follows (note that the first two steps are common to many matching

approaches):

Tokenization. Labels at nodes are parsed into tokens by a tokenizer

which recognises punctuation, cases, digits, etc. Thus, for instance,

Photo and Cameras becomes 〈photo, and, cameras〉.

Lemmatization. Tokens at labels are further lemmatized, namely they

are morphologically analyzed in order to find all their possible basic

forms. Thus, for instance, cameras is associated with its singular

form, camera.

Building atomic concepts. WordNet is queried to extract the senses of

lemmas of tokens identified during the previous step. For example,

the label Cameras has the only one token cameras, and one lemma

camera, and from WordNet we find out that camera has two senses.

100

CHAPTER 5. SEMANTIC MATCHING
5.3. SEMANTIC MATCHING:

THE ALGORITHM

Atomic formulas are WordNet [163] senses of lemmas obtained from

single words (e.g., cameras) or multi-words (e.g., digital cameras).

Building complex concepts. When existing, all tokens that are prepo-

sitions, punctuation marks, conjunctions (or strings with similar roles)

are translated into logical connectives and used to build complex con-

cepts out of the atomic concepts built previously. Thus, for instance,

commas and conjunctions are translated into disjunctions, preposi-

tions like of and in are translated into conjunctions, and so on. For ex-

ample, the concept of label cameras and photo is computed as follows:

CCameras and Photo = 〈Cameras, sensesWN#2〉 � 〈Photo, sensesWN#1〉,
where sensesWN#2 is taken to be disjunction of the two senses that

WordNet attaches to Cameras, and similarly for Photo. Notice that

the natural language conjunction “and” has been translated into the

logical disjunction “�” [147].

5.3.3 Step 2. Compute concepts at nodes

During this step we compute concepts at nodes for all nodes in two trees.

We analyze the meaning of the positions of labels at nodes in a tree. By

doing this concepts of labels are extended to concepts at nodes. This

is required to capture the knowledge residing in the structure of a tree,

namely the context in which the given concept at label occurs [94, 92].

Technically, concepts of nodes are written in the same propositional log-

ical language as concepts of labels. Thus, concept at a node is the proposi-

tional formula which represents the set of data instances (documents) which

one would classify under a node, given that it has a certain label and that

it is in a certain position in a tree. XML schemas and classifications are

hierarchical structures where the path from the root to a node uniquely

identifies that node (and also its meaning). Thus, following an access crite-

101

5.3. SEMANTIC MATCHING:
THE ALGORITHM CHAPTER 5. SEMANTIC MATCHING

rion semantics [109], the logical formula for a concept at node is defined as

a conjunction of concepts of labels located in the path from the given node

to the root. For example, C26 = Electronics2 � Cameras and Photo2 �
Digital Cameras2, which encodes the concept at node 6 in O2, describing

all the data instances of the electronic photography products which are

digital cameras.

5.3.4 Step 3. Compute relations among concepts of labels

During this step we compute relations among atomic concepts of labels for

all pairs of labels in two trees. By doing this we build a theory or domain

knowledge for the given input two ontologies codified as a set of semantic

relations between atomic concepts of labels occurring in two trees. This is

the background theory within which we reason.

Relations between atomic concepts of labels could be computed by using

any element level matchers discussed in Chapter 3. However, most of

those techniques, e.g., string-based, have to be modified in order to return

(instead of a similarity measure) a semantic relation R, as defined in §5.2.2.

For example, Beverages1 can be found less general than Food2. In fact,

according to WordNet, beverages is hyponym (subordinate word) of food.

Notice, in WordNet beverages has 1 sense, while food has 3 senses. Some

sense filtering techniques have to be used to discard the irrelevant senses

for the given context, see [103] for details. Similarly, by using string-based

matchers (common suffix) we can find that PID1 is equivalent to ID2.

The result of step 3 is a matrix of the relations holding between atomic

concepts of labels. A part of this matrix for the example of Figure 5.5 is

shown in Table 5.1.

102

CHAPTER 5. SEMANTIC MATCHING
5.3. SEMANTIC MATCHING:

THE ALGORITHM

Table 5.1: The matrix of semantic relations holding between atomic concepts of labels

Cameras2 Photo2 Digital Cameras2

Photo1 idk = idk
Cameras1 = idk �

5.3.5 Step 4. Compute relations among concepts at nodes

During this step we compute relations among concepts at nodes for all pairs

of nodes in two trees. This problem cannot be solved simply by asking an

oracle, such as WordNet, containing static knowledge. The situation is far

more complex, being as follows:

• We have background knowledge or theory computed after Step 3 for

the given input two ontologies, namely a set of semantic relations

between atomic concepts of labels occurring in two trees.

• Concepts of labels and concepts at nodes are codified as complex

propositional formulas. In particular, concepts at nodes are conjunc-

tions of concepts of labels, while concepts of labels, in turn, could be

full propositional formulas. We have them computed from Step 1 and

Step 2.

• We need to find a semantic relation, namely equivalence, more/less

general, disjointness, between the concepts at any two nodes in two

trees. We translate all the semantic relations into propositional con-

nectives in the obvious way, namely: equivalence (=) into equivalence

(↔), more general (�) and less general () into implication (← and

→, respectively), disjointness (⊥) into negation (¬) of the conjunction

(∧).

103

5.3. SEMANTIC MATCHING:
THE ALGORITHM CHAPTER 5. SEMANTIC MATCHING

• Build a matching formula for each pair of concepts from two ontolo-

gies. The criterion for determining whether a relation holds between

two concepts is the fact that it is entailed by the premises (theory).

Therefore, a matching query is created as a formula of the following

form:

Axioms→ rel(context1, context2) (5.1)

for each pair of concepts for which we want to test the relation.

context1 is the concept at node under consideration in tree 1, while

context2 is the concept at node under consideration in tree 2. rel

(within =, 	, �, ⊥) is the semantic relation (suitably translated into

a propositional connective) that we want to prove holding between

context1 and context2. The Axioms part is the conjunction of all the

relations (suitably translated) between atomic concepts of labels men-

tioned in context1 and context2. For example, the task of matching

C13 and C26, requires the following axioms:

(Electronics1 ↔ Electronics2) ∧ (Cameras1 ↔ Cameras2)∧
(Photo1 ↔ Photo2) ∧ (Cameras1 ← Digital Cameras2).

• Check for validity of formula (5.1), namely that it is true for all the

truth assignments of all the propositional variables occurring in it. A

propositional formula is valid if and only if its negation is unsatisfiable.

The unsatisfiability is checked by using a SAT solver.

Technically, we initially reformulate the tree matching problem into a

set of node matching problems (one problem for each pair of nodes). Fi-

nally, we translate each node matching problem into a propositional va-

lidity problem. Let us discuss in detail the tree matching algorithm, see

104

CHAPTER 5. SEMANTIC MATCHING
5.3. SEMANTIC MATCHING:

THE ALGORITHM

Algorithm 1 for the pseudo-code.

Lines 1-12 define variables and datatypes. cLabel and cNode are used

to memorize concepts of labels and concepts at nodes, respectively. The

other names of the variables either follow in an obvious way the notions

which have already been introduced, or will be explained at time of their

use. In line 30, the treeMatch function inputs two trees of Nodes (source

and target). It starts from the element level matching. Thus, in line 35, the

matrix of relations holding between atomic concepts of labels (cLabsMatrix)

is populated by the fillCLabsMatrix function. Two loops are run over all

the nodes of source and target trees in lines 50-111 and 53-110 in order to

formulate all the node matching problems. Then, for each node matching

problem, a pair of propositional formulas encoding concepts at nodes and

relevant relations holding between concepts of labels are taken by using the

getCnodeFormula and extractRelMatrix functions, respectively. The former

are memorized as context1 and context2 in lines 52 and 55. The latter

are memorized in relMatrix in line 80. In order to reason about relations

between concepts at nodes, the premises (axioms) are built in line 81. These

are a conjunction of atomic concepts of labels which are related in relMatrix.

Finally, in line 82, the relations holding between the concepts at nodes are

calculated by nodeMatch and are reported in line 150 (cNodesMatrix).

A part of the cNodesMatrix matrix for the example of Figure 5.5 is shown

in Table 5.2.

Table 5.2: The matrix of semantic relations holding between concepts at nodes (the
matching result)

C21 C22 C23 C24 C25 C26

C13 	 idk = idk � �

nodeMatch translates each node matching problem into a propositional

validity problem. It checks for sentence validity by proving that its nega-

105

5.3. SEMANTIC MATCHING:
THE ALGORITHM CHAPTER 5. SEMANTIC MATCHING

Algorithm 1 The tree matching algorithm

1: Node: struct of
2: int nodeId;
3: String label;
4: String cLabel;
5: String cNode;
6: Node parent;
7: AtomicConceptOfLabel [] ACOL;
8: AtomicConceptOfLabel : struct of
9: int id;
10: String token;
11: String [] wnSenses;
12: String [][] cLabsMatrix, cNodesMatrix;

30: String [][] treeMatch(Tree of Nodes source, target)
31: Node sourceNode, targetNode;
32: int i, j;
33: String [][] relMatrix;
34: String axioms, context1, context2;
35: cLabsMatrix = fillCLabMatrix(source, target);

50: for each sourceNode ∈ source do
51: i = getNodeId(sourceNode);
52: context1 = getCnodeFormula(sourceNode);
53: for each targetNode ∈ target do
54: j = getNodeId(targetNode);
55: context2 = getCnodeFormula(targetNode);

80: relMatrix = extractRelMatrix(cLabsMatrix, sourceNode, targetNode);
81: axioms = mkAxioms(relMatrix);
82: cNodesMatrix[i][j] = nodeMatch(axioms, context1, context2);

110: end for
111: end for
150: return cNodesMatrix;

106

CHAPTER 5. SEMANTIC MATCHING 5.4. SUMMARY

tion is unsatisfiable. The algorithm uses, depending on a matching task,

either ad hoc reasoning techniques [102], or standard DPLL-based SAT

solvers [131, 51, 50]. From the example in Figure 5.5, trying to prove

that C26, which is defined as (Electronics2 ∧ (Cameras2 ∨ Photo2) ∧
Digital Cameras2), is less general than C13, which, in turn, is defined

as (Electronics1 ∧ (Photo1 ∨ Cameras1)), requires constructing formula

(5.2), negation of which turns out to be unsatisfiable, and therefore, we

can conclude that the less general relation holds.

((Electronics1 ↔ Electronics2) ∧ (Photo1 ↔ Photo2)∧
(Cameras1 ↔ Cameras2) ∧ (Digital Cameras2 → Cameras1))→
((Electronics2 ∧ (Cameras2 ∨ Photo2) ∧Digital Cameras2)→
(Electronics1 ∧ (Photo1 ∨ Cameras1)))

(5.2)

5.4 Summary

In this chapter we have identified semantic matching as the new approach

for performing generic matching. We discussed the main motivations be-

hind the approach as well as its key notions. Then, the main four macro

steps of the semantic matching algorithm has been presented and described

with the help of examples and pseudo-code.

107

5.4. SUMMARY CHAPTER 5. SEMANTIC MATCHING

108

Chapter 6

Semantic matching

with attributes

So far we have focused only on simple concept hierarchies. However, if

we deal with, e.g., XML schemas, their elements may have attributes,

which, in turn, may require an additional treatment. This chapter discusses

an extension of the semantic matching approach for handling attributes.

Material presented in this chapter has been published in [99, 103].

We first describe the idea of how to handle attributes in the settings

of the semantic matching approach (§6.1). Then, we substantiate it by

considering two possible alternatives when dealing with attributes, namely

exploiting datatypes (§6.2) and ignoring datatypes (§6.3).

6.1 The idea of the approach

We discuss our approach for handling attributes with the help of example

of Figure 5.5 (p.96). Attributes are 〈attribute − name, type〉 pairs associ-

ated with elements. Names for the attributes are usually chosen such that

they describe the roles played by the domains in order to ease distinguish-

ing between their different uses. For example, in O1 of Figure 5.5, the

attributes PID and Name are defined on the same domain string, but

109

6.2. EXPLOITING DATATYPES
CHAPTER 6. SEMANTIC MATCHING

WITH ATTRIBUTES

their intended uses are the internal (unique) product identification and

representation of the official product’s names, respectively. There are no

strict rules telling us when data should be represented as elements, or as

attributes, and obviously there is always more than one way to encode the

same data. For example, in O1, PIDs are encoded as strings, while in

O2, IDs are encoded as ints. However, both attributes serve for the same

purpose of the unique product’s identification. These observations suggest

two possible ways to perform semantic matching with attributes: (i) taking

into account datatypes, and (ii) ignoring datatypes.

The semantic matching approach is based on the idea of matching con-

cepts, not their direct physical implementations, such as elements or at-

tributes. If names of attributes and elements are abstract entities, there-

fore, they allow for building arbitrary concepts out of them. Instead,

datatypes, being concrete entities, are limited in this sense. Thus, a plau-

sible way to match attributes using the semantic matching approach is to

discard the information about datatypes. In order to support this claim,

let us consider both cases in turn.

6.2 Exploiting datatypes

In order to reason with datatypes we have created a datatype ontology,

OD, specified in OWL [217, 52]. It describes the most often used XML

schema built-in datatypes and relations between them. The backbone tax-

onomy of OD is based on the following rule: the specialization relation

holds between two datatypes if and only if their value spaces are related

by set inclusion. Some examples of axioms of OD are: float 	 double,

int ⊥ string, anyURI 	 string, and so on. Let us discuss how datatypes

are plugged within four macro steps of the semantic matching algorithm

(§5.3).

110

CHAPTER 6. SEMANTIC MATCHING
WITH ATTRIBUTES 6.2. EXPLOITING DATATYPES

Steps 1,2. Compute concepts of labels and concepts at nodes. In order to

handle attributes, we extend our knowledge representation formalism with

the quantification construct and datatypes. Thus, we compute concepts of

labels and concepts at nodes as formulas in description logics, in particu-

lar, using ALC(D) [10]. For example, C17, namely, the concept at node

describing all the string data instances which are the names of electronic

photography products is encoded as follows:

C17 = Electronics1 � (Photo1 � Cameras1) � ∃Name1.string.

Step 3. Compute relations among concepts of labels. During this step we

add a Datatype element level matcher. It takes as input two datatypes, it

queries OD and retrieves a semantic relation between them. For example,

from axioms of OD, the Datatype matcher can learn that float 	 double,

and so on.

Step 4. Compute relations among concepts at nodes. In the case of

attributes, the node matching problem is translated into a DL formula,

which is further checked for its validity using sound and complete proce-

dures. The system we use is Racer [112]. From the example in Figure 5.5,

trying to prove that C210 is less general than C19, requires constructing

the following formula:

((Electronics1 = Electronics2) � (Photo1 = Photo2)�
(Cameras1 = Cameras2) � (Price1 = Price2) � (float 	 double))�
(Electronics2 � (Cameras2 � Photo2) � ∃Price2.f loat)�
¬(Electronics1 � (Photo1 � Cameras1) � ∃Price1.double)

(6.1)

It turns out that formula (6.1) is unsatisfiable. Therefore, C210 is less

general than C19. However, this result is not what the user expects. In

111

6.3. IGNORING DATATYPES
CHAPTER 6. SEMANTIC MATCHING

WITH ATTRIBUTES

fact, both C19 and C210 describe prices of electronic products, which are

photo cameras. The storage format of prices in O1 and O2 (i.e., double

and float, respectively) is not an issue at this level of detail.

Thus, another semantic solution of taking into account datatypes would

be to build abstractions out of the datatypes, e.g., float, double, decimal

should be abstracted to type numeric, while token, name, normalizedString

should be abstracted to type string, and so on. However, even such ab-

stractions do not improve the situation, since we may have, for example,

an ID of type numeric in the first schema, and a conceptually equivalent

ID, but of type string, in the second schema. If we continue building such

abstractions, we result in having that numeric is equivalent to string in

the sense that they are both datatypes.

The last observation suggests that for the semantic matching approach

to be correct, we should assume, that all the datatypes are equivalent.

Technically, in order to implement this assumption, we should add corre-

sponding axioms (e.g., float = double) to the premises of formula (5.1),

see p.104. On the one hand, with respect to the case of not considering

datatypes (see §6.3), such axioms do not affect the matching result from

the quality viewpoint. On the other hand, datatypes make the match-

ing problem computationally more expensive by requiring to handle the

quantification construct.

6.3 Ignoring datatypes

In this case, information about datatypes is discarded. For example,

〈Name, string〉 becomes Name. Then, the semantic matching algorithm

builds concepts of labels out of attribute’s names in the same way as it does

in the case of element’s names, and so on (§5.3). A part of the cNodesMa-

trix with relations holding between attributes for the example of Figure 5.5

112

CHAPTER 6. SEMANTIC MATCHING
WITH ATTRIBUTES 6.4. SUMMARY

is presented in Table 6.1. Notice that this solution allows the computation

of mapping elements not only between the attributes, but also between

attributes and elements.

Table 6.1: Attributes: the matrix of semantic relations holding between concepts at nodes
(the matching result)

C27 C28 C29 C210

C16 = idk idk idk
C17 idk � idk idk
C18 idk idk = idk
C19 idk idk idk =

6.4 Summary

In this chapter we have presented how attributes are handled within the

semantic matching settings. We have argued that a plausible way to match

attributes using the semantic matching approach is to discard the infor-

mation about datatypes.

The task of determining mapping elements typically represents a first

step towards the ultimate goal of, for example, schema integration, data

integration, agent communication, query answering, and so on (Chapter 1).

Although information about datatypes will be necessary for accomplishing

an ultimate goal, we do not discuss this issue any further since in this thesis

we concentrate only on the alignment discovery task.

113

6.4. SUMMARY
CHAPTER 6. SEMANTIC MATCHING

WITH ATTRIBUTES

114

Chapter 7

Iterative

semantic matching

In this chapter we present an extension of the semantic matching approach

to deal in a fully automated way with the lack of background knowledge

in matching tasks. The key idea is to use semantic matching iteratively.

The benefits of this extension include: saving some of the pre-match efforts,

improving the quality of match via iterations, and enabling the future reuse

of the newly discovered knowledge.

Material of this chapter has been developed in collaboration with Mikalai

Yatskevich. In particular, some algorithms presented here exploit a library

of element level semantic matchers first introduced in [101]. Note that

the library of [101] does not constitute a contribution of this thesis. The

algorithms presented in this chapter provide the settings that allow for a

practical use for some of those highly contextual element level semantic

matchers. More precisely, in terms of [101], these are the element level

matchers that have the third approximation level. We also note that those

element level semantic matchers technically existed before in the S-Match

system, however (being highly approximate) without a practical applica-

tion [103]. Material of this chapter has been published in [100].

115

7.1. MOTIVATION:
LACK OF KNOWLEDGE

CHAPTER 7. ITERATIVE
SEMANTIC MATCHING

In this chapter we first provide some motivations behind the iterative

semantic matching. This is done by examples of the problem of the lack of

background knowledge in matching tasks and some of its possible solutions

(§7.1). Then, we present the main building blocks of the iterative semantic

matching algorithm (§7.2), while its details, namely, algorithms for critical

points discovery (§7.3) and critical points resolution (§7.4) are discussed in

sequel.

7.1 Motivation:

lack of knowledge

Recent industrial-strength evaluations of matching systems, see, e.g., [9,

77], show that lack of background knowledge, most often domain specific

knowledge, is one of the key problems of matching systems these days.

In fact, for example, should PO match Post Office, Purchase Order, or

Project Officer? At present, most state of the art systems, for the tasks of

matching thousands of nodes, perform not with such high values of recall1,

namely ∼30%, as in cases of toy examples, where the recall was most often

around 90%. Also, contributing to this problem, [148] shows that complex

matching solutions requiring months of algorithms design and development

on big tasks may perform as badly as a baseline matcher requiring one hour

burden.

In order to understand better the above observations, let us consider

a preliminary analytical comparative evaluation of some state of the art

matching systems together with a baseline solution2 on three large (hun-

dreds and thousands of entities in each ontology) real world test cases.

Some indicators of the test cases complexity are given in Table 9.1 (p.148)

1Recall is a completeness measure of matching results, see §9.1, p.145 for a definition.
2This matcher does simple string comparison among sets of labels on the paths from nodes under

consideration to the roots of the input trees, see [9].

116

CHAPTER 7. ITERATIVE
SEMANTIC MATCHING

7.1. MOTIVATION:
LACK OF KNOWLEDGE

and correspond to the matching tasks #6, 7, and 8 of the table.

These test cases were first introduced in [9] and used in the OAEI-2005

ontology matching evaluation campaign3. As match quality measures we

focus here on recall which is a completeness measure. It varies in the [0 1]

range; the higher the value, the smaller the set of correct correspondences

which have not been found (§9.1). The summarized evaluation results

for all the three matching tasks are shown in Figure 7.1. Notice that

the results for such matching systems as OMAP, CMS, Dublin20, Falcon,

FOAM, OLA, and ctxMatch2, were taken from OAEI-2005, see [77], while

evaluation results for the baseline matcher and S-Match were taken from

[9]. As Figure 7.1 shows, none of the considered matching systems performs

with a value of recall which is higher than 32%.

Figure 7.1: Analytical comparative evaluation

There are multiple strategies to attack the problem of the lack of back-

ground knowledge. One of the most often used methods so far is to declare

the missing axioms manually as a pre-match effort. Some other plausible

strategies include: (i) extending stop word lists, (ii) expanding acronyms,
3See for details, http://oaei.ontologymatching.org/2005/

117

7.2. THE ITERATIVE TREE
MATCHING ALGORITHM

CHAPTER 7. ITERATIVE
SEMANTIC MATCHING

(iii) reusing the previous match results, (iv) querying the web, (v) using,

if available, domain specific sources of knowledge, and so on.

7.2 The iterative tree

matching algorithm

We first discuss the idea behind the approach and how the tree matching al-

gorithm (§5.3.5) should be modified in order to suitably enable iterations.

Then, we present the main building blocks of the iterative tree match-

ing algorithm, namely, algorithms for critical points discovery and critical

points resolution. The algorithms are discussed via a running example. We

consider lightweight ontologies O1 and O2 shown in Figure 7.2, which are

small parts of Google and Looksmart. Notation follows the one introduced

in §5.2.1 (p.91).

Figure 7.2: Fragments of Google and Looksmart

118

CHAPTER 7. ITERATIVE
SEMANTIC MATCHING

7.2. THE ITERATIVE TREE
MATCHING ALGORITHM

7.2.1 The idea in a nutshell

We propose a fully automated solution to address the problem of the lack

of knowledge by using semantic matching iteratively. The idea is to repeat

Step 3 (§5.3.4) and Step 4 (§5.3.5) of the matching algorithm for some crit-

ical (hard) matching tasks. In particular, the result of SAT is analyzed.

We identify critical points in the matching process, namely mapping ele-

ments with the idk relation where a stronger relation (e.g., more general,

equivalence) should have taken place. We attack critical points by exploit-

ing sophisticated element level matchers of [101] (see also §3.2.1) which

use the deep information encoded in WordNet, e.g., its internal structure.

Then, taking into account the newly discovered knowledge as additional

axioms, we re-run SAT solver on a critical task. Finally, if SAT returns

false, we save the newly discovered knowledge, thereby enabling its future

reuse.

7.2.2 The iterative tree match algorithm

The iterative tree matching algorithm is shown as Algorithm 2. The num-

bers on the left indicate where the new code must be positioned in Algo-

rithm 1 (§5.3.5, p.106).

Algorithm 2 The iterative tree matching algorithm

13: Boolean[][] cPointsMatrix;

100: if (cPointsDiscovery(sourceNode, targetNode) == true) then
101: cPointsMatrix[i][j] = true;
102: ResolveCpoint(sourceNode, targetNode, context1, context2);
103: end if

In line 13, we introduce cPointsMatrix which memorizes critical points.

Semantic matching algorithm works in a top-down manner, and hence, mis-

matches among the top level classes of ontologies imply further mismatches

119

7.2. THE ITERATIVE TREE
MATCHING ALGORITHM

CHAPTER 7. ITERATIVE
SEMANTIC MATCHING

between their descendants. Thus, the descendants should be processed only

after the critical point at those top level nodes has been resolved. This is

ensured by suitably positioning the new functions (enabling iterations) in

a double loop of Algorithm 1. Hence, in line 100, we check with the help

of cPointsDiscovery function if the nodes under consideration are the criti-

cal point. If they indeed represent the critical point, they are (memorized

and) resolved by using the ResolveCpoint function (line 102). In the exam-

ple of Figure 7.2, critical points which are determined include, for instance,

〈C12, C23〉, 〈C13, C23〉, and 〈C14, C24〉.
An updated cNodesMatrix, after running the iterative tree matching

algorithm, is presented in Table 7.1. Comparing it with the non-iterative

matching algorithm result, which is further reported in Table 7.3, we can

see that having identified and resolved the 〈C13, C23〉 critical point, we

also managed to discover the new correspondences, namely between C23

and C19, C110, C111.

Table 7.1: Recomputed cNodesMatrix: relations among concepts at nodes

C11 C12 C13 C14 C15 C19 C110 C111

C21 = � � � � � � �
C23 	 = = idk idk � � �

Having computed all the mapping elements for a given pair of ontolo-

gies, the identified critical relations are validated by a human user. In

particular, user decides if the type of relation determined automatically

is appropriate for the given pair of ontologies. For example, is it ap-

propriate that Games1 ↔ Entertainment2 or a weaker relation, namely

Games1 → Entertainment2, should have taken place ? User decides either

to use this relation once (only for this pair of ontologies) or to save it in a

domain specific oracle in order to enable its future reuse.

Finally, it is worth noting that iterative semantic matching algorithm

120

CHAPTER 7. ITERATIVE
SEMANTIC MATCHING

7.3. THE CRITICAL POINTS
DISCOVERY ALGORITHM

amounts to robustness of the semantic matching. In fact, even if non-

iterative semantic matching determines a (false) top level mismatch, this

can be discovered and resolved by applying Algorithm 2. Thus, avoiding

further propagation of possible mismatches between the descendants of the

initially mismatched top level nodes.

7.3 The critical points

discovery algorithm

The algorithm for discovering critical points is based on the following in-

tuitions:

• each idk relation in cNodesMatrix is potentially a critical point, but it

is not always the case;

• since critical points arise due to lack of background knowledge, the

clue is to check whether some other nodes located below the critical

nodes (those representing a critical point) are related somehow. In

case of a positive result the actual nodes are indeed the critical point;

they represent a false alarm otherwise.

Algorithm 3 formalizes these intuitions. In particular, the first condition

mentioned above is checked in line 4. Verifying the second condition is more

complicated. We call a relation holding between descendants of the poten-

tially critical nodes a support relation. The support relation holds if there

exists atomic concept of label (sACOL) in the descendants of sourceNode

which is related in cLabsMatrix (by any semantic relation, except idk) to

any atomic concept of label (tACOL) in the descendants of targetNode.

This condition is checked in a double loop in lines 7-13. Finally, if both

conditions are satisfied, the cPointsDiscovery function concludes that the

nodes under consideration are the critical point (line 10). Under the given

121

7.3. THE CRITICAL POINTS
DISCOVERY ALGORITHM

CHAPTER 7. ITERATIVE
SEMANTIC MATCHING

Algorithm 3 The critical points discovery algorithm

1: Boolean cPointsDiscovery(Node sourceNode, targetNode)
2: Node[] sDescendant, tDescendant;
3: ACOL sACOL, tACOL;
4: if (cNodesMatrix[sourceNode.nodeID][targetNode.nodeID]==“idk”)

then
5: sDescendant = getSubTree(sourceNode);
6: tDescendant = getSubTree(targetNode);
7: for each sACOL ∈ sDescendant.ACOL do
8: for each tACOL ∈ tDescendant.ACOL do
9: if cLabsMatrix[sACOL.id][tACOL.id] != “idk” then

10: return true;
11: end if
12: end for
13: end for
14: else
15: return false;
16: end if

critical points discovery strategy, performing such a look up over the cLab-

sMatrix makes sense, obviously, only when sourceNode and targetNode are

non-leaf nodes.

For example, suppose we want to match C13 and C23. Parts of cLabs-

Matrix and cNodesMatrix with respect to the given matching task are shown

in Table 7.2 and Table 7.3. Notice that the relations in Table 7.2 were com-

puted by applying element level matchers of [101], namely WordNet, prefix,

suffix, edit distance, and n-gram (see also §3.2.1) in the order as they were

stated [103].

Table 7.2: cLabsMatrix: relations holding among atomic concepts of labels

TOP1 Games1 Board Games1

TOP2 = idk idk
Entertainment2 idk idk idk
Games2 idk = �

122

CHAPTER 7. ITERATIVE
SEMANTIC MATCHING

7.4. THE CRITICAL POINTS
RESOLUTION ALGORITHM

Table 7.3: cNodesMatrix: relations holding among concepts at nodes

C11 C12 C13 C14 C15 C19 C110 C111

C21 = � � � � � � �
C23 	 idk idk idk idk idk idk idk

In cNodesMatrix (Table 7.3) the relation between C13 and C23 is idk 4. In

cLabsMatrix (Table 7.2) there is a support relation for the given matching

problem, e.g., Board Games1 	 Games2. Therefore, relation between C13

and C23 represents the critical point and we should reconsider the relation

holding between Games1 and Entertainment2 in cLabsMatrix.

Finally, it is worth noting that this algorithm also properly handles

nodes, which are indeed dissimilar, e.g., C15 and C22 are determined not

to be the critical point.

7.4 The critical points

resolution algorithm

Let us discuss how the critical points are resolved, see Algorithm 4.

The ResolveCpoint function determines relations (cRel) for the critical

points. Also, by exploiting the cNodesMatrixUpdate procedure, it updates

accordingly cNodesMatrix. In particular, ResolveCpoint executes element

level semantic matchers of [101], which have the third approximation level,

over the atomic concepts of labels by using the GetMLibRel function (line

7). These matchers include: Hierarchy Distance (HD), WordNet Gloss

(WNG), Extended WordNet Gloss (EWNG), Gloss Comparison (GC), and

Extended Gloss Comparison (EGC). By default, they are applied following

the order (ExecutionList) as stated above. These matchers produce the re-

4Notice that the relation is idk since we deal with the classifications, while if the classifications of
Figure 7.2 were encoded as taxonomies (by modifying in obvious way the construction of the Axioms)
we could immediately deduce the less general relation between the nodes under consideration.

123

7.4. THE CRITICAL POINTS
RESOLUTION ALGORITHM

CHAPTER 7. ITERATIVE
SEMANTIC MATCHING

Algorithm 4 The critical points resolution algorithm

1: ResolveCpoint(Node sourceNode, targetNode, String context1, context2)
2: String cRel;
3: String [] ExecutionList;
4: ACOL sACOL, tACOL;
5: for each sACOL ∈ sourceNode.ACOL do
6: for each tACOL ∈ targetNode.ACOL do
7: cRel = GetMLibRel(ExecutionList, sACOL.wnSenses, tACOL.wnSenses);
8: cLabsMatrix[sACOL.id][tACOL.id] = cRel;
9: end for

10: end for
11: cNodesMatrixUpdate(sourceNode, targetNode, context1, context2);

lations which depend heavily on the context of the matching task. Thus,

they cannot be applied in all the cases. For example, these matchers can

find that cat is equivalent to dog since they are both pets, which can be

appropriate for the context of some matching tasks (the example follows

next), and obviously not appropriate for the context of some other match-

ing tasks, for instance, requiring fine-grained distinctions in the domain of

animals.

For example, a Hierarchy Distance matcher computes the equivalence

relation if the distance between two input senses in the WordNet hierarchy

is less than a given threshold value (e.g., 3) and returns idk otherwise.

According to WordNet, games and entertainment have a common ancestor,

which is diversion. The distance between these concepts is 2 (1 more

general link and 1 less general). Therefore, the HD matcher concludes that

Games1 is equivalent to Entertainment2. If the HD matcher fails, which is

not the case in our example, we apply the other remaining matchers in the

order as stated above. We do not discuss those matchers here, since they

do not constitute the contribution of this thesis, see [101] for details. The

example above was given to provide a complete account of the iterative

semantic matching approach.

In line 8, we update cLabsMatrix with the critical relation, cRel, such that

124

CHAPTER 7. ITERATIVE
SEMANTIC MATCHING 7.5. SUMMARY

in all the further computations and for the current pair of nodes this rela-

tion is available. Finally, given the new axiom (Games1↔ Entertainment2)

we recompute (line 11)5, by re-running SAT, the relation holding between

the pair of critical nodes, thus determining that C13 = C23.

The iterative semantic matching algorithms have been implemented

within the S-Match system. We do not discuss implementation details,

since the pseudo-code was given with low level details, and therefore, its

implementation is straightforward.

7.5 Summary

We have presented an automated approach to attack the problem of the

lack of background knowledge by applying semantic matching iteratively.

The key idea is to repeat Step 3, namely computing the relations between

atomic concepts of labels, and Step 4, namely computing the relations

between concepts at nodes, of the semantic matching algorithm for some

critical (hard) matching tasks. The algorithms realizing the approach have

been discussed with the help of examples and pseudo-code.

5cNodesMatrixUpdate performs functionalities identical to those of lines 80-82 in Algorithm 1, see
p.106.

125

7.5. SUMMARY
CHAPTER 7. ITERATIVE

SEMANTIC MATCHING

126

Chapter 8

Explaining

semantic matching

Matching systems may produce effective alignments that may not be intu-

itively obvious to human users. In order for users to trust the alignments,

and thus use them, they need information about them, e.g., they need ac-

cess to the sources that were used to determine semantic correspondences

between ontology entities. Explanations are also useful when matching

large applications with thousands of entities, e.g., business product classi-

fications, such as UNSPSC and eCl@ss. In such cases, automatic matching

solutions will find a number of plausible correspondences, and hence user

input is required for performing cleaning-up of the alignment. Finally, ex-

planations can also be viewed and applied as argumentation schemas for

negotiating alignments between agents [129]. This chapter is devoted to

an extension of the semantic matching approach that enables explanation

of the answers it produces, thus making the matching result intelligible.

Material presented in this chapter has been developed in collaboration

with Deborah McGuinness, Paulo Pinheiro da Silva and Jérôme Euzenat

and published in [154, 215, 75].

127

8.1. JUSTIFICATIONS
CHAPTER 8. EXPLAINING

SEMANTIC MATCHING

In this chapter we first present the information required for providing

explanations of matching (§8.1). Then, we discuss our approach to ex-

plaining semantic matching (§8.2). In turn, details of the approach are

provided in sequel, including default explanations (§8.2.1), explaining the

basic matchers (§8.2.2), and explaining the matching process (§8.2.3). Fi-

nally, we discuss some implementation details (§8.3).

8.1 Justifications

We have presented the matching process as the use of basic matchers com-

bined by strategies (Chapter 3). In order to provide explanations to users it

is necessary to have information on both matters. In particular, this infor-

mation involves justifications on the reason why a correspondence should

hold or not.

8.1.1 Information about basic matchers

When matching systems return alignments, users may not know which

external sources of background knowledge were used, when these sources

were updated, or whether the resulting correspondences was looked up

or derived. However, ultimately, human users or agents have to make

decisions about the alignments in a principled way. So, even when basic

matchers simply rely on some external source of knowledge, users may need

to understand where the information comes from, with different levels of

detail.

Following [153], we call information about the origins of asserted facts

the provenance information. Some examples of this kind of information

include:

• external knowledge source name, e.g., WordNet;

128

CHAPTER 8. EXPLAINING
SEMANTIC MATCHING 8.1. JUSTIFICATIONS

• date and authors of original information;

• authoritativeness of the source, that is whether it is certified as reliable

by a third party;

• name of a basic matcher, version, authors, etc. If the basic matcher

relies on a logical reasoner, such as a SAT solver, e.g., SAT4J [131],

some more meta-information about the reasoner may be made avail-

able:

– the reasoning method, e.g., the Davis-Putnam-Longemann-Loveland

(DPLL) procedure [51, 50];

– properties, e.g., soundness and completeness characteristics of the

result returned by the reasoner;

– reasoner assumptions, e.g., closed world vs open world.

Additional types of information may also be provided, such as a degree

of belief for an external source of knowledge from a particular community,

computed by using some social network analysis techniques.

8.1.2 Process traces

Matching systems typically combine multiple matchers and the final align-

ment is usually a result of synthesis, abstraction, deduction, and some

other manipulations of their results. Thus, users may want to see a trace

of the performed manipulations. We refer to them as process traces. Some

examples of this kind of information include:

• a trace of rules or strategies applied,

• support for alternative paths leading to a single conclusion,

• support for accessing the implicit information that can be made ex-

plicit from any particular reasoning path.

129

8.2. EXPLAINING SEMANTIC
MATCHING: THE APPROACH

CHAPTER 8. EXPLAINING
SEMANTIC MATCHING

Users also may want to understand why a particular correspondence was

not discovered, or why a discovered correspondence was ranked in a partic-

ular place, thereby being included in or excluded from the final alignment.

8.2 Explaining semantic

matching: the approach

The goal of explanation is to take advantage of the previously mentioned

types of information for rendering the matching process intelligible to the

users. Among the key issues is to represent explanations in a simple and

clear way [133].

In fact, while knowledge provenance and process traces may be enough

for experts when they attempt to understand why a correspondence was

returned, usually they are inadequate for ordinary users. Thus, raw jus-

tifications have to be transformed into an understandable explanation for

each of the correspondences. Techniques are required for transforming raw

justifications and rewriting them into abstractions that produce the foun-

dation for what is presented to users.

Presentation support also needs to be provided for users to better under-

stand explanations. Human users will need help in asking questions and

obtaining answers of a manageable size. Additionally, agents may even

need some control over requests, such as the ability to break large process

traces into appropriate size portions, etc. Based on [153], requirements for

process presentation may include:

• methods for breaking up process traces into manageable pieces,

• methods for pruning process traces and explanations to help the user

find relevant information,

130

CHAPTER 8. EXPLAINING
SEMANTIC MATCHING

8.2. EXPLAINING SEMANTIC
MATCHING: THE APPROACH

• methods for explanation navigation, including the ability to ask follow-

up questions,

• methods for obtaining alternative justifications for answers,

• different presentation formats, e.g., natural language, graphs, and as-

sociated translation techniques,

• methods for obtaining justifications for conflicting answers,

• abstraction techniques.

In order to meet the above mentioned requirements the semantic match-

ing approach [215] has been extended to use a third-party infrastructure

for provenance and justification, namely the Inference Web (IW) infras-

tructure as well as the Proof Markup Language (PML) [151, 195]. Thus,

meaningful fragments of semantic matching proofs can be loaded on de-

mand. Users can browse an entire proof or they can restrict their view and

refer only to specific, relevant parts of proofs. They can ask for provenance

information related to proof elements (e.g., the origin of the terms in the

proofs, the authors of the ontologies), and so on.

8.2.1 A default explanation

A default explanation of alignments should be a short, natural language,

high-level explanation without any technical details. It is designed to be

intuitive and understandable by ordinary users.

We concentrate on class matching and describe the approach with the

help of example of a simple classification matching problem shown in Fig-

ure 5.1 (p.90). Notation follows the one introduced in §5.2.1 (p.91). Sup-

pose an agent wants to exchange or to search for documents with another

agent. The documents of both agents are stored in classifications O1 and

131

8.2. EXPLAINING SEMANTIC
MATCHING: THE APPROACH

CHAPTER 8. EXPLAINING
SEMANTIC MATCHING

O2, respectively. Recall that semantic matching takes as input these classi-

fications, decomposes the tree matching problem into a set of node match-

ing problems, each of which, in turn, is translated into a propositional

validity problem, which is then resolved using a SAT solver.

From the example in Figure 5.1, trying to prove that the node with label

Europe in O1 is equivalent to the node with label Pictures in O2, requires

constructing the following formula:

((Images1↔ Pictures2) ∧ (Europe1 ↔ Europe2))
︸ ︷︷ ︸

Axioms

→

((Images1 ∧ Europe1)
︸ ︷︷ ︸

Context1

↔ (Europe2 ∧ Pictures2)
︸ ︷︷ ︸

Context2

)

In this example, the negated formula is unsatisfiable, thus the equivalence

relation holds between the nodes under consideration.

Suppose that agent O2 is interested in knowing why semantic matching

suggested a set of documents stored under the node with label Europe

in O1 as the result to the query – “find european pictures”. A default

explanation is presented in Figure 8.1.

Figure 8.1: Default explanation in English

132

CHAPTER 8. EXPLAINING
SEMANTIC MATCHING

8.2. EXPLAINING SEMANTIC
MATCHING: THE APPROACH

From the explanation in Figure 8.1, users may learn that Images in O1

and Pictures in O2 can be interchanged in the context of the query. Users

may also learn that Europe in O1 denotes the same concept as Europe

(European) in O2. Therefore, they can conclude that Images of Europe

means the same thing as European Pictures.

8.2.2 Explaining basic matchers

Explaining basic matchers requires only to formulate the justification in-

formation.

Suppose that agents want to see the sources of background knowledge

used in order to determine the correspondence. For example, which ap-

plications, publications, other sources, have been used to determine that

Images is equivalent to Pictures. Figure 8.2 presents the source metadata

for the default explanation of Figure 8.1.

Figure 8.2: Source metadata information

133

8.2. EXPLAINING SEMANTIC
MATCHING: THE APPROACH

CHAPTER 8. EXPLAINING
SEMANTIC MATCHING

In this case, both (all) the ground sentences used in the semantic match-

ing proof came from WordNet. Using WorldNet, we learned that the first

sense of the word Pictures is a synonym to the second sense of the word

Images. Therefore, the semantic matching algorithm can conclude that

these two words are equivalent words in the context of the answer. The

meta-information about WordNet is also presented in Figure 8.2 as sources

of the ground axioms. Further examples of explanations include provid-

ing meta-information about the other element level matchers used, i.e.,

those which are based not only on WordNet [101], the order in which the

matchers are used, and so on.

8.2.3 Explaining logical reasoning

A complex explanation may be required if users are not familiar with or do

not trust the inference engine(s) embedded in a matching system. As the

web starts to rely more on information manipulations, instead of simply

information retrieval, explanations of embedded manipulation or inference

engines become more important. Semantic matching uses a propositional

satisfiability engine, more precisely, this is the Davis-Putnam-Longemann-

Loveland procedure [51, 50] as implemented in JSAT/SAT4J [131].

The task of a SAT solver is to find an assignment μ ∈ {�,⊥} for atoms

of a propositional formula ϕ such that ϕ evaluates to true. ϕ is satisfiable

if and only if μ |= ϕ for some μ. If μ does not exist, ϕ is unsatisfiable. A

literal is a propositional atom or its negation. A clause is a disjunction of

one or more literals. ϕ is said to be in conjunctive normal form if and only

if it is a conjunction of disjunctions of literals. The basic DPLL procedure

recursively implements three rules: unit resolution, pure literal and split.

We only consider the unit resolution rule to facilitate the presentation.

Let l be a literal and ϕ a propositional formula in conjunctive normal

form. A clause is called a unit clause if and only if it has exactly one

134

CHAPTER 8. EXPLAINING
SEMANTIC MATCHING

8.2. EXPLAINING SEMANTIC
MATCHING: THE APPROACH

unassigned literal. Unit resolution is an application of resolution to a unit

clause.

unit resolution :
ϕ ∧ {l}
ϕ[l | �]

Unit resolution rule

Let us consider the propositional formula standing for the problem of test-

ing if the concept at node with label Europe in O1 is less general than the

concept at node with label Pictures in O2 of Figure 5.1. The propositional

formula encoding the above stated matching problem is as follows:

((Images1↔ Pictures2) ∧ (Europe1 ↔ Europe2))→
((Images1 ∧ Europe1)→ (Europe2 ∧ Pictures2))

Its intuitive reading, in turn, is as follows: “assuming that Images and Pic-

tures denote the same concept, is there any situation such that the concept

Images of Europe is less general than the concept European Pictures?”.

The proof of the fact that this is not the case is shown in Figure 8.3.

Since the DPLL procedure of JSAT/SAT4J only handles conjunctive nor-

mal form formulas, in Figure 8.3, we show the conjunctive normal form of

the above formula.

From the explanation in Figure 8.3, users may learn that the proof of

the fact that the concept at node with label Europe in O1 is less general

than the concept at node with label Pictures in O2 requires 4 steps and at

each proof step (excepting the first one, which is a problem statement) the

unit resolution rule is applied. Also, users may learn the assumptions that

are made by JSAT/SAT4J. For example, at the second step, the DPLL

procedure assigns the truth value to all instances of the atom Europe,

135

8.2. EXPLAINING SEMANTIC
MATCHING: THE APPROACH

CHAPTER 8. EXPLAINING
SEMANTIC MATCHING

Figure 8.3: A graphical explanation of the unit clause rule

therefore making an assumption that there is a model where what an agent

says about Europe is always true. According to the unit resolution rule,

the atom Europe should then be deleted from the input sentence, and,

hence it does not appear in the sentence of the step 2.

The explanation of Figure 8.3 represents some technical details (only

the less generality test) of the default explanation in Figure 8.1. This type

of explanations is the most verbose. It assumes that, even if the graphical

representation of a decision tree is quite intuitive, the users have some

background knowledge in logics and SAT. However, if they do not, they

have a possibility to learn it by following the publications mentioned in

the source metadata information of the DPLL unit resolution rule (DPLL

unit clause elimination) and JSAT/SAT4J (JSAT-The Java SATisfiability

Library).

136

CHAPTER 8. EXPLAINING
SEMANTIC MATCHING 8.3. IMPLEMENTATION DETAILS

Some further observations are to be made with respect to the other two

rules. In the current version, the pure literal and split rules are explained

in the same manner as the unit resolution rule. Two notes are to be made

with respect to the split rule. The first is that, it is applied when we need

to reason by case distinction, for example, when matching the node with

label Computers and Internet in O1 and and the node with label Cyberspace

and Virtual Reality in O2 of Figure 5.1. The second note is that, in the

case of a satisfiable result, only a path of a decision tree standing for a

successful assignment is represented. In the case of an unsatisfiable result

a full decision tree is reported.

8.3 Implementation details

In order to provide these explanations, we have extended semantic match-

ing and its implementation within the S-Match system to use the Infer-

ence Web infrastructure. Inference Web enables applications to generate

portable and distributed explanations for any of their answers [151].

Figure 8.4 presents an abstract and partial view of the Inference Web

infrastructure as used by S-Match. In order to use Inference Web to provide

explanations, question answering systems need to produce proofs of their

answers in PML, publish those proofs on the web, and provide a pointer

to the last step in the proof. Inference Web also has a registry [152] of

meta-information about proof elements, such as sources, e.g., publications,

ontologies, inference engines and their rules. In the case of S-Match, the

Inference Web repository contains meta-information about WordNet and

JSAT/SAT4J.

In Inference Web, proof and explanation documents are formatted in

PML and are composed of PML node sets [195]. Each node set represents

a step in a proof whose conclusion is justified by any of a set of inference

137

8.3. IMPLEMENTATION DETAILS
CHAPTER 8. EXPLAINING

SEMANTIC MATCHING

browser

S-Match
inference engine

(SAT)

registrar

explainer

registry

proofs and explanations

Caption

Document
maintenance

Document
usage/
reference

Agent

Web
document

(Engines are registered
on the IW)

Figure 8.4: Inference Web infrastructure overview

steps associated with a node set. Node sets are OWL classes [217] and

they are the building blocks of OWL documents describing proofs and

explanations for application answers published on the web.

The explainer hides low-level information, e.g., the core reasoner rules,

and exposes abstractions of the higher-level derived rules. Thus, many

intermediate results can be dropped.

The Inference Web browser is used to present proofs and explanations.

Exploiting PML properties, meaningful fragments of S-Match proofs can

be loaded on demand. Users can browse an entire proof or they can limit

their view and refer only to specific, relevant parts of proofs since each

node set has its own URI that can be used as an entry point for proofs and

proof fragments.

138

CHAPTER 8. EXPLAINING
SEMANTIC MATCHING 8.4. SUMMARY

8.4 Summary

By extending S-Match to use the Inference Web infrastructure, we have

demonstrated our approach for explaining answers from matching systems

exploiting background ontological information and reasoning engines. The

explanations can be presented in different styles allowing users to under-

stand the correspondences and consequently to make informed decisions

about them. The chapter also demonstrates that S-Match users can lever-

age the Inference Web tools, for example, for sharing, combining, brows-

ing proofs, and supporting proof meta-information including background

knowledge.

Delivering alignments to users, for inspection and revision, is an impor-

tant topic not deeply developed so far in the ontology matching community.

However, by using explanations, a matching system can provide users with

meaningful prompts and suggestions on further steps towards the produc-

tion of a desired result.

139

8.4. SUMMARY
CHAPTER 8. EXPLAINING

SEMANTIC MATCHING

140

Part IV

Evaluation

Chapter 9

Evaluation setup

The increasing number of methods available for ontology matching suggests

the need for evaluation of these methods. However, very few extensive

experimental comparisons of algorithms are available. Matching systems

are difficult to compare, but we believe that the ontology matching field can

only evolve if evaluation criteria are provided. These should help system

designers to assess the strengths and weaknesses of their systems as well

as help application developers to choose the most appropriate algorithm.

Material presented in this chapter has been developed in collaboration

with Jérôme Euzenat and Mikalai Yatskevich. Also the work on data

set construction (for the evaluation of quality of the results produced by

matching systems) from the cultural heritage domain has been done in

collaboration with Marjolein van Gendt and Thomas Forrer along the line

of the STITCH1 project. Parts of the material of this chapter have been

published in [98, 103, 75].

In this chapter we first discuss evaluation measures (9.1). Then, we

present the test cases used for evaluation (9.2). Finally, we overview the

matching systems used for evaluation (9.3).

1STITCH is funded by CATCH, a programme of the Netherlands Organization for Scientific Research
NWO. See for details, http://www.cs.vu.nl/STITCH/

143

9.1. EVALUATION MEASURES CHAPTER 9. EVALUATION SETUP

9.1 Evaluation measures

In order to evaluate the results of matching algorithms it is necessary to

confront them with ontologies to be matched and to compare the alignment

produced with a reference alignment based on some criteria.

This section is concerned with the question of how to measure the results

returned by ontology matchers. It considers different possible measures for

evaluating matching algorithms and systems. These include both effective-

ness and efficiency measures.

9.1.1 Quality measures

The most prominent criteria are precision and recall originating from in-

formation retrieval [230] and adapted to ontology matching [57]. Precision

and recall are based on the comparison of the resulting alignment A with

a reference alignment R. These criteria are well understood and widely

accepted.

Precision measures the ratio of correctly found correspondences (true

positives) over the total number of returned correspondences (true positives

and false positives), see Figure 9.1. In logical terms, precision is meant to

measure the degree of correctness of the method.

Given a reference alignment R, the precision of some alignment A is a

function P : Λ× Λ→ [0 1], such that:

P(A, R) =
|R ∩A|
|A| .

Precision can also be determined without explicitly having a complete

reference alignment. In this case only the correct alignments among the

retrieved alignments have to be determined, namely R ∩ A.

144

CHAPTER 9. EVALUATION SETUP 9.1. EVALUATION MEASURES

Figure 9.1: Two alignments as sets of correspondences and relations between them

Recall measures the ratio of correctly found correspondences (true pos-

itives) over the total number of expected correspondences (true positives

and false negatives). In logical terms, recall is meant to measure the degree

of completeness of the alignment.

Given a reference alignment R, the recall of some alignment A is a

function R : Λ× Λ→ [0 1], such that:

R(A, R) =
|R ∩A|
|R| .

Although precision and recall are the most widely and commonly used

measures, when comparing systems one may prefer to have only a single

measure. Moreover, systems are often not comparable based solely on

precision and recall. The one which has higher recall may have a lower

precision and vice versa. For this purpose, two measures are introduced

145

9.1. EVALUATION MEASURES CHAPTER 9. EVALUATION SETUP

which aggregate precision and recall.

The F-measure is used in order to aggregate the results of precision and

recall.

Given a reference alignment R and a number α between 0 and 1, the

F-measure of some alignment A is a function Fα : Λ × Λ → [0 1], such

that:

Fα(A, R) =
P(A, R) · R(A, R)

(1− α) · P(A, R) + α · R(A, R)
.

If α = 1, then the F-measure is equal to precision and if α = 0, the

F-measure is equal to recall. In between, the higher the value of α, the

more importance is given to precision with regard to recall. Very often,

the value α = 0.5 is used, i.e.,

F0.5(A, R) =
2 · P(A, R) · R(A, R)

P(A, R) +R(A, R)
,

which is the harmonic mean of precision and recall. It will be also used

this way when computing the results of our experiments. This measure

helps comparing systems by their precision and recall at the point where

their F-measure is maximal.

The overall measure, also defined in [159] as matching accuracy, is the

ratio of the number of errors on the size of the expected alignment. It

is considered as an edit distance between an alignment and a reference

alignment in which the only operation is “error correction”. In this respect,

it is considered as a measure of the effort required to fix the alignment. The

overall is always lower than the F-measure and it ranges between [−1 1]. In

fact, if precision is lower than 0.5, overall reaches a negative value, which

can be interpreted that repairing the alignment is not worth the effort.

146

CHAPTER 9. EVALUATION SETUP 9.1. EVALUATION MEASURES

Given a reference alignment R, the overall measure of some alignment

A is a function O : Λ× Λ→ [−1 1], such that:

O(A, R) = 1− |(A ∪R)− (A ∩R)|
|R| = 1− |R −A|+ |A−R|

|R| .

9.1.2 Performance measures

Performance measures assess the resource consumption when matching on-

tologies. We mention some of these criteria below.

Unlike previously considered measures, performance measures depend

on the processing environment and the underlying ontology management

system. Thus, it is difficult to obtain objective evaluations, because they

are based on the usual measures, namely processing time in seconds and

memory in bytes. The important point here is that algorithms that are

being compared should be run under the same conditions. We consider

here two such measures.

Speed is measured by the amount of time taken by the algorithms for

performing their matching tasks. It should be measured in the same condi-

tions, i.e., same processor, same memory consumption, for all the systems.

If user interaction is required, one has to ensure that only the processing

time of the matching algorithm is measured.

The amount of memory used for performing the matching task marks

another performance measure. Due to the dependency with underlying

systems, it could also make sense to measure only the extra memory re-

quired in addition to that of the ontology management system, but it still

remains highly dependent.

147

9.2. TEST CASES CHAPTER 9. EVALUATION SETUP

9.2 Test cases

The evaluation was performed on nine matching tasks from different appli-

cation domains: a pair of catalogs (#1) and product schemas (#2), namely

our running examples of Figure 5.1 (p.90) and Figure 5.5 (p.96), respec-

tively. There are two matching tasks from a business domain (#3, 5).

The first business example (#3) describes two company profiles: a Stan-

dard one and Yahoo Finance. The second business example (#5) deals

with BizTalk purchase order schemas. There is one matching task from an

academy domain (#4). It describes courses taught at Cornell University

and at the University of Washington. There are three matching tasks on

general topics (#6, 7, 8) as represented by the well-known web directories,

such as Google, Yahoo, and Looksmart. Finally, the last matching task

(#9) is from the cultural heritage domain. It deals with two standard the-

sauri used for storing masterpieces. Table 9.1 provides some indicators of

the complexity of the test cases2.

Table 9.1: Some indicators of the complexity of the test cases

Matching task #nodes max #labels
depth per tree

1 Images vs Europe (Figure 5.1, p.90) 4/5 2/2 6/5
2 Product schemas (Figure 5.5, p.96) 13/14 4/4 14/15
3 Yahoo Finance vs Standard 10/16 2/2 22/45
4 Cornell vs Washington 34/39 3/3 62/64
5 CIDX vs Excel 34/39 3/3 56/58
6 Google vs Looksmart 706/1081 11/16 1048/1715
7 Google vs Yahoo 561/665 11/11 722/945
8 Yahoo vs Looksmart 74/140 8/10 101/222
9 Iconclass vs Aria 999/553 9/3 2688/835

2Source files, description of the test cases, and reference alignments can be found at
http://www.dit.unitn.it/∼accord/, experiments section.

148

CHAPTER 9. EVALUATION SETUP 9.2. TEST CASES

As match quality measures we have used the following indicators: pre-

cision, recall, F-measure and overall (§9.1.1). In order to calculate the

above mentioned quality indicators we had to obtain reference alignments.

In particular, reference alignments have been manually produced with the

help of BizTalk Mapper [209] used to visualize ontologies and correspon-

dences created for the test cases #1, 2, 3, 4, 5 and 9. The size of the

first five test cases is not big (dozens of nodes at most), therefore reference

alignments can be produced relatively easily for them. The last test case

(#9) is large, therefore producing manually reference alignment for it is

time consuming and error-prone. We report our experience with build-

ing it next in §9.2.1. Finally, the test cases #6, 7, and 8 constitute the

data set constructed in [9], where reference alignments have been acquired

semi-automatically. This test case was used in the OAEI-2005 [77] ontology

matching evaluation campaign.

9.2.1 Data set construction (#9)

We discuss our experience with building test case #9. It involves two

large thesauri from the cultural heritage domain. These are Iconclass3

and Aria4. The underlying documents of these thesauri are illuminated

manuscripts and masterpieces. Note that this, from the matching algo-

rithm perspective, forces to use only schema-based solutions, since in-

stances are image data, and to the best of our knowledge at the moment

there are no instance-based matching solutions working with image data.

Alignment between these thesauri is ultimately used in the data integration

scenario (§1.2.3), see for details [229].

The Iconclass thesaurus contains around 25.000 entities. One of its

main purposes is an iconographical analysis. Therefore, the labels used

3http://www.iconclass.nl/libertas/ic?style=index.xsl
4http://www.rijksmuseum.nl/aria/aria catalogs/index?lang=en

149

9.2. TEST CASES CHAPTER 9. EVALUATION SETUP

for classification purposes aim at providing precise descriptions of the un-

derlying data. Note that these labels are gloss-like. They are much more

complex than those we have considered in all the previous examples, since

they have to describe what is depicted on a masterpiece. An example of a

label from Iconclass is as follows: city-view, and landscape with man-made

constructions.

The Rijksmuseum collection contains around 600 terms used to classify

paintings and sculptures by means of the Aria thesaurus. Contrary to the

case of Iconclass, labels used in Aria are short phrases and not gloss-like.

When building this data set we have focused only on a small part of

Iconclass devoted to the subject of nature which considers earth, and world

as celestial body. More precisely this part corresponds to the Iconclass

fragment with index 25. We have considered the whole Aria thesaurus.

Finally, we have cleaned the thesauri under consideration from non-English

phrases, e.g., Geen realtie met index and Fuoco, Carro del fuoco (Ripa).

Table 9.1 (last row) summarizes the information about these thesauri which

was ultimately used.

Our goal is to create a reference alignment between the fragment of

Iconclass and Aria thesauri in order to enable evaluation of the quality of

the results produced by matching systems. According to the application

scenario [229], we are interested only in the equivalence (=), more general

(�) and less general () relations. For example, correspondences with the

intersection (�) relation have to be excluded.

The reference alignment has been produced manually. Whenever neces-

sary, we have consulted actual data instances of the underlying information

resources, namely illuminated manuscripts and masterpieces. Similar to

the previously discussed test cases (#1-5) we used BizTalk Mapper [209]

to visualize both thesauri and have an overview of the main themes they

cover. Also, an initial set (several hundreds) of correspondences have been

150

CHAPTER 9. EVALUATION SETUP 9.2. TEST CASES

manually created and visualized by using BizTalk Mapper. This approach

helped us to obtain a first view over the scope of the task. For example,

we have identified that in both thesauri there are parts devoted to the

subject of landscapes. However, we could not complete this task by using

BizTalk Mapper, since having created several hundreds of correspondences

the visualization has become clumsy, see Figure 9.2. Similar observations

have been also reported in [201].

Figure 9.2: Manual matching with BizTalk Mapper

We proceeded with a plain text file to handle the correspondences. In

order to ensure good enough quality of reference alignment (5% errors at

most) we have split the set of all the correspondences into three parts. Let

us discuss them in turn.

151

9.2. TEST CASES CHAPTER 9. EVALUATION SETUP

Part 1: Certainly correct correspondences. Some examples of the corre-

spondences from this part include:

Aria: Top/Animal pieces/Birds

Iconclass: Top/Nature/earth, world as celestial body/animals

and

Aria: Top/Animal pieces/Birds

Iconclass: Top/Nature/earth, world as celestial body/animals/birds

In the first example above, the concept of Birds in Aria is more spe-

cific than animals in Iconclass, while in the second example there is

the equivalence relation between the concepts under consideration.

Part 2: Certainly incorrect correspondences. An obvious example of the

correspondence from this part is as follows:

Aria: Top/Holloware

Iconclass: Top/Nature/earth, world as celestial body/animals

Part 3: Correspondences in the correctness of which we were uncertain.

Correspondences of this category have been analyzed one by one in

order to reduce their number as much as possible and re-classify them

in one of the other two categories, namely Part 1 or Part 2.

For example, the following correspondence has been initially put in

Part 3 and having learned some more knowledge about jewelry, it was

ultimately moved to Part 1:

152

CHAPTER 9. EVALUATION SETUP 9.2. TEST CASES

Aria: Top/Accessories/Jewelry

Iconclass: Top/Nature/earth, world as celestial body/rock types; min-

erals and metals; soil types/rock types/precious and semiprecious stones/

precious and semiprecious stones (with NAME)/ precious and semiprecious

stones: emerald

Another example, when the following correspondence has been ini-

tially put in Part 3 and having learned some more knowledge about

jewelry, it was ultimately moved to Part 2:

Aria: Top/Accessories/Jewelry

Iconclass: Top/Nature/earth, world as celestial body/rock types; min-

erals and metals; soil types/rock types/precious and semiprecious stones/

precious and semiprecious stones (with NAME)/ precious and semiprecious

stones: jasper

Note that the thesauri under consideration contain a lot of domain spe-

cific concepts that often only a domain expert can know their exact mean-

ing. In the examples above, our initial knowledge about jewelry was not

enough to assess whether emerald and jasper are actually jewelry or not.

Finally, it is worth noting that sometimes we could not find any source

of domain knowledge being precise enough to resolve our uncertainty. For

example, should

Aria: Top/animal pieces/wild animals

or

Aria: Top/animal pieces/livestock

(or none ?) be matched to

Iconclass: Top/Nature/earth, world as celestial body/animals/ mammals/

hoofed animals/hoofed animals (with NAME)/hoofed animals: dromedary

153

9.3. SYSTEMS USED
FOR EVALUATION CHAPTER 9. EVALUATION SETUP

Can we consider a dromedary to be fully domesticated? According to

Wikipedia5, dromedaries were domesticated between 4000 BC and 1400

BC and used for labour and dairy. Following this argument we can con-

sider a dromedary to be a livestock. However, one can imagine an illumi-

nated manuscript about dromedaries in wild life, thus being wild animals.

Whether this question is valid or not, in our opinion, depends on the appli-

cation, and, therefore, requires involvement of a domain expert to justify

a correct decision. These kinds of correspondences remained in Part 3.

Table 9.2 provides a final size (number of correspondences) of each of the

three parts. For the evaluation we have used only Part 1, namely the set of

certainly (according to our knowledge) correct correspondences. Table 9.2

also shows that the reference alignment set is quite dense with respect to

the size of the input thesauri.

Part 1 Part 2 Part 3
#correspondences 1409 550918 120

Table 9.2: Final sizes of three parts of correspondences used for the data set construction

9.3 Systems used

for evaluation

The system under a prime consideration is S-Match, which implements the

ideas and algorithms presented in the previous chapters (as well as many

other ideas and algorithms, for instance, a library of element level seman-

tic matchers [101], the optimizations of the node matching algorithm [102],

which will be the topic of another thesis). This system has been imple-

mented by Mikalai Yatskevich, except parts for explanations (Chapter 8)

5http://en.wikipedia.org/wiki/Livestock

154

CHAPTER 9. EVALUATION SETUP
9.3. SYSTEMS USED

FOR EVALUATION

and iterative tree match algorithms (Chapter 7). Note that the implemen-

tation of the S-Match system is not claimed as a contribution of this thesis.

The evaluation results obtained are intended to demonstrate that the ideas

and algorithms developed in the thesis have been actually implemented and

give proof of the concept that they are practically useful.

9.3.1 Setup for the comparative evaluation

We evaluate S-Match against three state of the art systems, namely Cu-

pid [146] (§4.1.9), COMA [58]6 (§4.1.10), and Similarity Flooding [159]

(§4.1.11) as implemented in Rondo [160]. All the systems under consider-

ation are fairly comparable because they are all schema-based. They differ

in the specific matching techniques they use and in how they compute

alignments.

There are three further observations. The first observation is that Cu-

pid, COMA, and Rondo can discover only the correspondences which

express similarity between schema elements. Instead, S-Match, among

the others, discovers the disjointness relation which can be interpreted

as strong dissimilarity in terms of the other systems under considera-

tion. Therefore, we did not take into account the disjointness relations

(e.g., 〈ID4,4, C14, C24,⊥〉 in Figure 5.5, p.96) when specifying the refer-

ence alignments. The second observation is that, since S-Match returns

a matrix of relations, while all the other systems return a list of the best

correspondences, we used some filtering rules. More precisely we have the

following two rules: (i) discard all the correspondences where the relation

is idk; (ii) return always the core relations, and discard relations whose

existence is implied by the core relations. For the example of Figure 5.5

(p.96), 〈ID3,3, C13, C23, =〉 should be returned, while 〈ID3,5, C13, C25,�〉
6We thank Phil Bernstein, Hong Hai Do, and Erhard Rahm for providing us with Cupid and COMA.

In the evaluation we use the version of COMA described in [58]. A newer version of the system COMA++
exists but we do not have it.

155

9.3. SYSTEMS USED
FOR EVALUATION CHAPTER 9. EVALUATION SETUP

should be discarded. Finally, whether S-Match returns the equivalence or

subsumption relations does not affect the quality indicators. What only

matters is the presence of the correspondence standing for those relations.

In our experiments each test has two degrees of freedom: directionality

and use of oracles. By directionality we mean here the direction in which

correspondences have been computed: from the first ontology to the sec-

ond one (forward direction), or vice versa (backward direction). We report

the best results obtained with respect to directionality, and use of oracles

allowed. We were not able to plug a thesaurus in Rondo, since the version

we have is standalone, and it does not support the use of external thesauri.

Thesauri of S-Match, Cupid, and COMA were expanded with terms nec-

essary for a fair competition (e.g., expanding uom into unitOfMeasure, a

complete list is available at the URL in footnote 2, p.148).

For the comparative evaluation all the tests have been performed on a

P4-1700, 512 MB of RAM, Windows XP, with no applications running but

a single matching system. Also, all the tuning parameters (e.g., thresholds,

strategies) of the systems were taken by default (e.g., for COMA we used

NamePath and Leaves matchers combined in the Average strategy) for all

the tests.

S-Match (non-iterative version) was run with five element level match-

ers, namely WordNet, prefix, suffix, edit distance, and n-gram [98, 101, 99]

(see also §3.2.1) and SAT deciders of [131, 102] as structure level matchers

which implement the semantic matching approach. String-based matchers

were used with a threshold of 0.6 [101, 103].

Iterative S-Match used besides the five element level matchers men-

tioned above, also highly contextual element level matchers, namely: Hi-

erarchy Distance, WordNet Gloss, Extended WordNet Gloss, Gloss Com-

parison, and Extended Gloss Comparison [101, 100] (see also §7.4).

156

CHAPTER 9. EVALUATION SETUP
9.3. SYSTEMS USED

FOR EVALUATION

9.3.2 Setup for the evaluation of explanations

The main goal of the experiments being conducted here is to obtain a

vision of how explanations of semantic matching (Chapter 8) potentially

scale to the requirements of the semantic web, providing meaningful and

adjustable answers in real time.

The semantic (node) matching problem is a CO-NP hard problem, since

it is reduced to the validity problem for the propositional calculus. Resolv-

ing this class of problems requires exponential time and exponentially long

proof logs. However, in all the examples we have done so far proofs are not

too long and seem of length polynomial in the length of the input clause.

As a matter of fact, [102] shows, that when we have conjunctive concepts

at nodes (e.g., Images ∧ Europe), these matching tasks can be resolved

by the basic DPLL procedure in polynomial time; while when we have full

proposition concepts at nodes (e.g., Images ∧ (Computers ∨ Internet)),

the length of the original formula can be exponentially reduced by structure

preserving transformations.

In our experiments we have used three test cases, namely #1, 2, 3

of Table 9.1 (p.148). We focus on indicators characterizing explanations

of mapping elements. The analysis of the quality of correspondences is

beyond scope of this experiment. In the experimental study we have used

the following indicators:

• Number of mapping elements determined for a pair of ontologies. As

follows from the definition of semantic matching, this number should

be N1 × N2, where N1 is the number of nodes in the first ontology,

N2 is the number of nodes in the second ontology.

• Number of steps in a proof of a single mapping element. This indicator

represents the number of PML node sets are to be created in the proof.

157

9.4. SUMMARY CHAPTER 9. EVALUATION SETUP

• Time needed to produce a proof of a single mapping element. This

indicator estimates how fast the modified JSAT/SAT4J in producing

IW proofs for a particular task.

• Time needed to produce a proof of all mapping elements determined

by S-Match for a pair of ontologies.

In order to conduct tests in a real environment, we used the Inference

Web web service of KSL at Stanford University (on a P4-2.8GHz, 1.5Gb

of RAM, Linux, Tomcat web server) to generate proofs in PML, while the

modified JSAT/SAT4J version was run at the University of Trento (on a

P4-1.7GHz, 256 MB of RAM, Windows XP). All the tests were performed

without any optimizations: for each single task submitted to JSAT/SAT4J,

the IW web service was invoked, no compression methods were used while

transferring files, etc.

9.4 Summary

In this chapter we have discussed some of the ontology matching evaluation

criteria. In particular, we have presented quality and performance mea-

sures, test cases as well as the systems which were used for the evaluation.

We also described our experience with building manually a large data set

from the cultural heritage domain for the quality evaluation of the results

produced by matching systems. This data set is of high importance for

the ontology matching evaluation due to the general lack of large data sets

(containing hundreds and thousands of entities) allowing the measurement

of the quality indicators of matching systems.

158

Chapter 10

Evaluation results

This chapter provides evaluation results for the test cases and systems

introduced previously in §9.2 and §9.3, respectively. The results have been

obtained and compared based on the measures outlined in §9.1.

Material presented in this chapter has been developed in collaboration

with Mikalai Yatskevich and Paulo Pinheiro da Silva and published in

[98, 215, 99, 100, 103].

In this chapter we first discuss evaluation results for the semantic match-

ing (§10.1) and iterative semantic matching approaches (§10.2). Then, we

provide evaluation results for the explanations of the semantic matching

(§10.3). Finally, we briefly overview some lessons learned out of the exper-

iments (§10.4).

10.1 Evaluation of

semantic matching

We present the quality results for the tasks of Table 9.1 (p.148). For the

matching tasks #2, 3, 4, 5 these are shown in Figures 10.1, 10.2, 10.3, and

10.4, respectively.

For example, in Figures 10.1 and 10.3, since all the labels at nodes

159

10.1. EVALUATION OF
SEMANTIC MATCHING CHAPTER 10. EVALUATION RESULTS

Figure 10.1: Evaluation results: Product schemas (Figure 5.5), test case #2

Figure 10.2: Evaluation results: Yahoo Finance vs Standard, test case #3

160

CHAPTER 10. EVALUATION RESULTS
10.1. EVALUATION OF
SEMANTIC MATCHING

Figure 10.3: Evaluation results: Cornell vs Washington, test case #4

Figure 10.4: Evaluation results: CIDX vs Excel, test case #5

161

10.2. EVALUATION OF
ITERATIVE SEMANTIC MATCHING CHAPTER 10. EVALUATION RESULTS

in the given test case were correctly encoded into propositional formulas,

all the quality measures of S-Match reach their highest values. In fact,

as discussed before, the propositional SAT solver is correct and complete.

This means that once the element level matchers have found all and only

the mapping elements, S-Match will return all of them and only the correct

ones.

For pairs of business schemas, namely Yahoo Finance vs Standard and

CIDX vs Excel (Figures 10.2 and Figures 10.4, respectively), S-Match per-

forms as good as COMA and outperforms other systems in terms of quality

indicators.

10.2 Evaluation of

iterative semantic matching

Iterative semantic matching algorithm has been evaluated on the tasks #6,

7, 8, and 9 of Table 9.1 (p.148).

10.2.1 Evaluation results for the web directories task (#6,7,8)

As reference alignments for the tasks #6, 7, 8 we used 2265 mapping

elements acquired in [9]. By construction those reference alignments rep-

resent only true positives, thereby allowing us to estimate only the recall

with them. To the best of our knowledge, at the moment, there are no

large data sets (besides #9) where available reference alignment allows

measuring both precision and recall. Thus, in the following for the tasks

#6, 7, 8 we focus mostly on analyzing the recall.

Two further observations. First, as it was already mentioned in §9.1,

higher values of recall can be obtained at the expense (lower values) of

precision. Thus, in order to ensure a fair recall evaluation, before running

tests on the matching tasks #6, 7, 8, we have analyzed behavior of the

162

CHAPTER 10. EVALUATION RESULTS
10.2. EVALUATION OF

ITERATIVE SEMANTIC MATCHING

Figure 10.5: Evaluation results (absolute values), test cases #6,7,8

iterative semantic matching on the other test cases of Table 9.1 where ref-

erence alignments allowed measuring both precision and recall. Matchers

decreasing precision substantially in these tests were discarded from the

further evaluation. In fact, for this reason we exclude from the further

considerations the Extended Gloss Comparison matcher. The second ob-

servation is that using matchers mentioned in §9.3 exhaustively for all the

tasks, hence, omitting the critical points discovery algorithm, also leads to

a significant precision decrease, thus justifying usefulness of the cPoints-

Discovery algorithm (p.122).

The summarized evaluation results for the matching tasks #6, 7, 8 of

Table 9.1 are shown in Figure 10.5. In particular, it demonstrates contribu-

tions to the recall of matchers mentioned in §9.3 as well as of their combina-

tions. The Extended WordNet Gloss matcher performed very poorly, i.e.,

contributing less than 1% to the recall, hence, we do not report its results

in Figure 10.5. By using a combination of the Hierarchy Distance, Word-

Net Gloss, and Gloss Comparison matchers we have improved S-Match

recall results (29,5%) up to 46,1% within the iterative S-Match1.

1Note that this result should be considered as a complimentary one to the results of S-Match++
reported in [9], since they address separate problem spaces.

163

10.2. EVALUATION OF
ITERATIVE SEMANTIC MATCHING CHAPTER 10. EVALUATION RESULTS

Table 10.1: Some element level matchers used in the iterative semantic matching and
their evaluation results

HD GC HD + GC HD + WNG + GC
Recall increase (relative), % 20 34 54 56
Threshold value 4 2 4 \ 2 4 \ 1 \ 2

Let us now consider relative characteristics of the iterative S-Match with

respect to the non-iterative version, see the first row of Table 10.1 for a

summary. The highest recall increase by using only a single matcher out of

those mentioned in §9.3 within the iterative S-Match was achieved by the

Gloss Comparison matcher, namely 34% over the non-iterative S-Match.

The best, in this sense, combination of two matchers is being that of the

Hierarchy Distance and Gloss Comparison matchers: recall increased by

54%. Finally, a combination of the Hierarchy Distance, WordNet Gloss

and Gloss Comparison matchers resulted in the 56% recall increase with

respect to the non-iterative S-Match.

Table 10.1 also reports values of thresholds used within the evaluation.

These values were obtained based on the rationale behind designing match-

ers mentioned in §9.3 and their evaluation results.

The evaluation we have conducted shows that the problem of the lack

of background knowledge is a hard one. In fact, as it turns out, not all

the designed element level matchers can perform always well in real world

applications, as it might (mistakenly) seem from the toy evaluations. Also,

new matchers are still needed, since, for example, we could discover that

〈C14, C24〉 in Figure 7.2 (p.118) is the critical point, however, we were

unable to resolve it with the matchers mentioned in §9.3, namely to match

Home1 and Hobbies AND Interests2 in Figure 7.2.

164

CHAPTER 10. EVALUATION RESULTS
10.3. EVALUATION OF

EXPLANATIONS

10.2.2 Evaluation results for the cultural heritage task (#9)

To study the behavior of semantic matching and iterative semantic match-

ing on the data set from the cultural heritage domain (§9.2.1), we have

made only a preliminary evaluation. We ran S-Match and Iterative S-

Match in default configurations (§9.3). The summary of the evaluation

results is presented in Table 10.2.

Precision, % Recall, % F-measure, %
S-Match 44.82 6.45 11.29
Iterative S-Match 47.69 6.60 11.59

Table 10.2: Preliminary evaluation results: Iconclass vs Aria, test case #9

The results of Table 10.2 show that the task is indeed hard and chal-

lenging. Very low recall results can be explained by the fact that labels of

Iconclass are gloss-like, while the algorithms were instead expecting labels

built by only short phrases, like in all the previous test cases.

10.3 Evaluation of

explanations

Figure 10.6 reports on the results of the experimental study. In particular,

for each mapping element of the three test cases, it represents the number

of proof steps required and the time needed to generate proofs in PML.

Notice, that the proof time indicator in Figure 10.6 takes into account

the time needed by the modified version of JSAT/SAT4J to produce proof

information, connection time to the IW web service, time for producing

and posting PML documents.

An observation of the spikes starting from the mapping element #700 in

the time line of the Cornell vs Washington test case is an example of how

Internet connection increases the proof time. The average proof length and

165

10.3. EVALUATION OF
EXPLANATIONS CHAPTER 10. EVALUATION RESULTS

Figure 10.6: Experimental results for explanations, test cases #1,2,3

166

CHAPTER 10. EVALUATION RESULTS 10.4. LESSONS LEARNED

proof time for a single mapping element in the test cases of Figure 10.6

constitute 16 steps and 14 seconds. Time needed to produce proofs of

all mapping elements in each test case is 2.7min. - 20 mapping elements;

27.7min. - 160 mapping elements; and 546.2min. - 1326 mapping elements,

respectively. Notice that the modified JSAT/SAT4J version produces proof

information on a single mapping element requiring, in the average, less

than 1 millisecond, therefore producing proof information for all mapping

elements, for instance, in the case of 1326 mappings, would require less

than 1 minute. Moreover, it is hard to imagine that ordinary users will be

willing to browse explanations of thousands and even hundreds of mapping

elements. However, one dozen seems to be a reasonable number of mapping

elements to be looked through for a short period of time.

10.4 Lessons learned

10.4.1 Evaluation of quality of the results of matching systems

Our evaluation has shown that even if matching systems can achieve good

quality results on small ontologies, the situation is far from being that

promising in the case of large ontologies. Also when labels are gloss-like,

special techniques have to be developed to handle them. For example, we

have analyzed why the recall on the data set from the cultural heritage

domain was so low. After some study on the mapping elements we have

find out the following general classes of mistakes done by S-Match. We

illustrate them below with the help of examples.

Recognizing “noisy” labels. When working with gloss-like labels, the

system tries to interpret all the labels defining an entity. However,

some labels can represent “noise” for the matching algorithm. For

example, given the entity main subject: animals, the system tries

167

10.4. LESSONS LEARNED CHAPTER 10. EVALUATION RESULTS

to interpret all the labels and build a concept of it, however it is

not really necessary. The labels main and subject do not technically

contribute much to the meaning of the entity under consideration

(which defines animals). As a consequence, the system cannot match,

for example, main subject: animals with animals, because, main and

subject are not related (in WordNet) to animals. Thus, such labels

that give no or little contribution to the meaning of an entity can

be considered as “noise” from the matching algorithm perspective. A

proper recognition and treatment (e.g., elimination) of the “noisy”

labels is thus needed.

Negation. When working with negations in gloss-like labels, the algo-

rithm even if it interprets correctly, e.g., other than to be a negation,

it applies it only to the next atomic concept. For example, given the

label seasons of the year represented by concepts other than personi-

fications, human activities, landscapes or still lifes of flowers and or

fruits e.g., biblical scenes, the algorithm negates only the first atomic

concept after the negation phrase, namely personifications. However,

the intended meaning of the sentence is to negate also human activi-

ties, landscapes, etc. Thus, the system has to be improved in order to

understand where to put the parentheses and negate all the necessary

atomic concepts of labels. This problem appears only when dealing

with gloss-like labels, since when labels are short phrases, negation

usually appears to negate only one concept, e.g., except landscapes.

10.4.2 Evaluation of the explanations of semantic matching

Results of the experimental study of §10.3 look promising, however there

are proof time issues to be addressed. For example, if a user needs explana-

tions aimed at proof generation and manipulation need to be added. How-

168

CHAPTER 10. EVALUATION RESULTS 10.5. SUMMARY

ever, the experimental study we have conducted gives a preliminary vision

that the explanation techniques proposed potentially scale to requirements

of the semantic web, providing meaningful and adjustable answers in real

time.

10.5 Summary

In this chapter we have presented comparative evaluation of semantic

matching and iterative semantic matching against the other state of the

art systems. We also discussed evaluation of explanations for semantic

matching. The results are encouraging and empirically prove the strength

of our approach.

However, as our evaluation results show, it is very difficult to know a

priori the quality to expect from a matching system. Matching tasks are

so different that a system can perform very well on some data and not

that well on some other. This means that in order to justify the claim

of a matching system to be generic, a lot of work has to be done yet,

especially to address all the issues that arise when dealing with large-scale

matching tasks. However, still it is necessary that evaluation data sets be

as different as possible and that results be kept separate so that someone

with a particular task can choose a system that performs adequately on

this task.

169

10.5. SUMMARY CHAPTER 10. EVALUATION RESULTS

170

Part V

Conclusions

Chapter 11

Summary

In this thesis we have provided a detailed account of the state of the art in

ontology matching. We proposed a novel approach to ontology matching,

called semantic matching, discussed its technical details and some eval-

uation. Specifically, the main findings of each chapter of the thesis are

summarized one by one in sequel. Finally, future trends in the matching

field are outlined in (the next and last) Chapter 12.

We showed that there are many applications that may need ontology

matching (Chapter 1). This was the reason to consider ontology matching

as a unified object of study. However, there are notable variations in

the way these applications use matching. Therefore, we identified some

application related differences which have to be taken into account in order

to provide the best suited solution in each case.

We showed that there are various existing ways of expressing knowledge

that are found in diverse applications. These ways of expressing knowledge

can be viewed as different forms of ontologies that may need to be matched

(Chapter 2). Unlike many other works, we aimed to treat the matching

problem in a unified way and provide a common roof under the heading of

ontology matching for many existing instantiations of this problem, such

as schema matching, catalog matching, etc. The reason is to facilitate the

173

CHAPTER 11. SUMMARY

cross-fertilization. In fact, on the one side, for example, schema match-

ing is usually performed with the help of techniques trying to guess the

meaning encoded in the schemas. On the other side, ontology matching

systems primarily try to exploit knowledge explicitly encoded in the on-

tologies. In real world applications, schemas and ontologies usually have

both well defined and obscure terms, and the contexts in which they occur,

therefore, solutions from both problems would be mutually beneficial. We

introduced several justifications for heterogeneity in order to help the de-

sign of a matching strategy as a function of the kind of heterogeneity that

has to be addressed. Finally, we technically defined the ontology matching

problem.

We showed that ontology matching can take advantage of innumerable

basic techniques composed and supervised in diverse ways (Chapter 3).

We provided a systematic view over the available techniques by classifying

them and providing some guidelines which help in identifying families of

matching methods.

We reviewed existing schema-based matching systems which emerged

during the last decade (Chapter 4). These were presented in light of the

classifications developed in Chapter 3. We also pointed to concrete basic

matcher and matching strategies used in the considered systems. We sum-

marized some global observations concerning the presented systems and

outlined a number of constant features that are shared by the majority of

them.

Having analyzed in detail the state of the art we proposed an approach

to ontology matching called semantic matching (Chapter 5). This has

been done based on what we have found good practices in the previous

approaches and what we have found missing in them, thereby mastering

that gap. We discussed with the help of examples and pseudo-code the

main macro steps of the algorithm that implements the semantic matching

174

CHAPTER 11. SUMMARY

approach.

We showed how attributes are handled within the semantic matching

settings (Chapter 6). We argued that a plausible way to match attributes

using the semantic matching approach is to discard the information about

datatypes.

We demonstrated how to deal in a fully automated way with the lack

of background knowledge in matching tasks by using semantic matching

iteratively (Chapter 7). This helps saving some of the pre-match efforts,

improving the quality of match via iterations, and enabling the future reuse

of the newly discovered knowledge.

By extending semantic matching to use the Inference Web infrastruc-

ture, we demonstrated our approach for explaining answers from match-

ing systems exploiting background ontological information and reasoning

engines (Chapter 8). Delivering alignments to users, for inspection and

revision, is an important topic not deeply developed so far in the ontology

matching community.

We discussed some evaluation criteria for comparison of the results

of matching algorithms (Chapter 9). We described our experience with

building a large test case for the evaluation of quality results produced by

matching systems. It is worth noting that this is a time-consuming and

error-prone effort, however, large real world data sets for evaluation of the

quality of matching results is among important and not well developed

themes of ontology matching.

We performed an evaluation of the semantic matching approach, which

gives proof of the concept, that it is practically useful (Chapter 10). As

our comparative evaluation shows it is very difficult to know a priori the

quality to expect from a matching system. Matching tasks are so different

that a system can perform very well on some, usually small test cases,

while not that well on some other, usually large-scale test cases. Analysis

175

CHAPTER 11. SUMMARY

of the mistakes done by a system opens a number of ways for further

improvements.

We would like to make two final remarks. The first remark concerns

some assumptions and limitations of the proposed solution. In particular,

the proposed solution naturally assumes that the ontologies to be matched

have a meaningful overlap, thus these are worth been matched. The pro-

posed approach reduces the conceptual heterogeneity (see p.27) only to a

certain extent, though, for example, cases such as geometry axiomatized

with points as primitive objects and geometry axiomatized with spheres

as primitive objects are not handled. At last, although we have aimed at

producing a generic matching solution, a lot of work still needs to be done.

For example, as §10.2.2 (p.165) shows, additional techniques have to be

developed in order to handle properly gloss-like labels. Also we have only

investigated matching of tree-like structures produced out of classifications

and catalogs, while it has still to be analyzed whether the presented solu-

tion will properly handle the trees generated, e.g., out of relational schemas

and the other forms of ontologies.

The second remark is to point out that although the semantic het-

erogeneity problem has been known and faced for decades, the ontology

matching, which is a plausible solution to it, by the time the work on this

thesis started, i.e., in 2002, had still been in its infancy. Therefore, besides

the development of the semantic matching approach, many efforts have

been invested in understanding the related to ontology matching problems

and areas as well as in the rationalization of the state of the art. As a

result, an extended and updated version of the general part of this thesis

will appear in the first book on the topic of ontology matching [75].

176

Chapter 12

Future trends

in the field

Anticipating the technical details of future trends in ontology matching, let

us first focus on two general observations. The first observation is that most

of the work on matching has been carried out among (i) database schemas

in the world of information integration, (ii) XML-schemas and catalogs

on the web, (iii) formal ontologies in artificial intelligence, semantic web,

knowledge representation, and (iv) objects and entities in data mining.

In the past, these communities were, in a sense isolated, and rarely ad-

dressed technical issues they had encountered from the multidisciplinary

and cross-community viewpoints. Also, it is worth noting that during

the last decade these areas have done a substantial progress in matching.

However, they require other technologies to continue their growth. Thus,

there has emerged such an initiative as Ontology Matching1, which aims

at increasing awareness of the existing matching efforts across the relevant

communities and facilitating the cross-fertilization between them.

The second observation is that the number and variety of solutions to

the matching problem keep growing at a fast pace. In particular, Fig-

ure 12.1 shows (approximately) how many works devoted to diverse aspects

1http://www.OntologyMatching.org

177

CHAPTER 12. FUTURE TRENDS
IN THE FIELD

of matching have been published at various conferences all over the world

in the recent years2.

Figure 12.1: Dynamics of publications devoted to matching

In the future, we expect a continuing growth of works on matching due

to the constantly increasing interest in intelligent solutions for semantic

heterogeneity problem from both academia and industry.

Material presented in this chapter has been developed in collaboration

with Jérôme Euzenat and Roberta Cuel and published in [75]. The work

on the topic of this chapter has been supported by the FP6 Knowledge

Web3 Network of Excellence.

The rest of the chapter is organized as follows. Future trends are dis-

cussed along the lines of (i) trends in theories and methods (§12.1), (ii)

trends in tools (§12.2), and (iii) trends in applications (§12.3). In turn,

each of the three parts is detailed according to the trends of short (0-3

years), medium (3-6 years), and long (6-12 years) terms.

2Source: www.OntologyMatching.org, Publications section. Estimation for 2006 is based on interpo-
lation from the three first quarters of this year.

3http://knowledgeweb.semanticweb.org/

178

CHAPTER 12. FUTURE TRENDS
IN THE FIELD

12.1. TRENDS IN THEORIES
AND METHODS

12.1 Trends in theories

and methods

Heterogeneity is typically reduced in two steps: (i) match two ontologies,

thereby determining the alignment and (ii) process the alignment according

to an application needs (e.g., query answering, web service composition).

In this thesis we have focused only on the first step, and, therefore, here

we consider the future trends only from this perspective. In particular,

we discuss the future trends in matching approaches following the dimen-

sions identified in Chapter 3, namely: (i) the input of the algorithms, (ii)

the characteristics of the matching process, and (iii) the output of the

algorithms. Finally, we discuss possible trends in the evaluation of the

matching approaches.

Disregarding the timelines, there are some general trends to be men-

tioned, namely: gradual and incremental improvement of the existing ap-

proaches, emergence of the new approaches by modifying exiting ones (usu-

ally performed by different group(s) of people with respect to the original

approaches), and emergence of the completely new approaches.

Also, notice that trends which are discussed in the short (medium) term,

in general, remain valid for the forthcoming periods, though, their perfec-

tion is expected.

12.1.1 Short term

Matching approaches

Input dimensions. These dimensions concern the kind of input on which

algorithms operate. We expect the following short term trends here:

• Most of the approaches tend to be more and more generic, i.e., handle

multiple forms of ontologies;

179

12.1. TRENDS IN THEORIES
AND METHODS

CHAPTER 12. FUTURE TRENDS
IN THE FIELD

• New types of input, such as plain text and query interfaces from the

deep web [20, 117] should enter intensively into practice;

• Approaches will try to suitably handle more and more constructs avail-

able from the input (e.g., constraints).

Process dimensions. We discuss the expected trends first in basic match-

ers, then in matching strategies, and finally, generally, in matching ap-

proaches. Thus, the expected short term trends are:

• New types of basic automatic matchers addressing a larger variety

and more sophisticated situations with respect to the current state of

affairs. Some possibly emerging examples include:

– Methods for matching glosses (comments) against labels of enti-

ties;

– Methods for matching processes;

– Methods for alignment reuse (e.g., by reasoning with the given

correspondences to deduce the new correspondences, verify if the

correspondences are still correct, and repair them if necessary);

– Methods exploiting various (new) external resources, e.g., up-

per level ontologies, such as DOLCE [88], domain specific cor-

puses [144];

– Approximate (e.g., semantic-based) methods.

• New libraries of matchers (or extensions of the existing libraries),

which group together the basic automatic matchers based on their

common characteristics, e.g., name-based matchers.

• New approaches to automate the combination of individual matchers

and libraries of matchers. Some existing solutions here can be found

in [59, 67]. Some possibly emerging examples are:

180

CHAPTER 12. FUTURE TRENDS
IN THE FIELD

12.1. TRENDS IN THEORIES
AND METHODS

– Methods for learning the optimal weight assignments, given a set

of basic matchers;

– Combining different techniques (e.g., collaborative filtering, ge-

netic algorithms, statistics) for the optimal/near optimal weight

assignments.

• New general matching solutions or default combinations of basic match-

ers which prove themselves equally good for most of the tasks.

• New approaches to tune automatically matching solutions in general

(e.g., thresholds, weights, coefficients, which basic matchers to use).

Existing examples are given in [205, 67].

• Various application specific approaches, which are particularly tai-

lored to the input/output characteristics.

• New matching approaches investigating the quality vs. efficiency trade

off.

• New ways of viewing/resolving the matching problem by reducing

it to the other, already known problem. Some existing examples of

these translations are graph matching [159, 78], propositional validity

[30, 97], and probabilistic inference [167, 190].

Output dimensions. We expect the following short term trends: transla-

tions between alignments specified with the help of coefficients in [0 1]

range and logical relations, expressiveness of alignment (atomic vs com-

plex), language(s) for alignment (some existing examples include C-OWL

[34], SWRL [118], Alignment format [73], see [208, 75] for an overview),

formal semantics of alignment, scalability of alignment, framework(s) for

characterizing the alignment, and application specific alignment.

181

12.1. TRENDS IN THEORIES
AND METHODS

CHAPTER 12. FUTURE TRENDS
IN THE FIELD

Evaluation of matching approaches

We expect the following trends in evaluation of matching approaches in

the short term: continues (at least annual) ontology matching contests4,

improvements of the ontology matching evaluation methodology, new data

set construction methodologies, including new large real world data sets,

new systematic (artificial) test (e.g., robustness to data noises), new quality

measures, including combinations of precision and recall, and application

specific measures.

12.1.2 Medium term

We discuss some challenges, which we believe, in the medium term (not

earlier) will find appropriate solutions.

Matching approaches

Input dimensions. We expect emergence of standard(s) for the internal

representations of different forms of ontologies taken as input by matching

approaches.

Process dimensions. The key challenges include:

• Knowledge incompleteness. Recent industrial-strength evaluations of

matching systems, see, e.g., [77, 9, 74], show that lack of background

knowledge, most often domain specific knowledge, is one of the key

problems of matching systems. In fact, most state of the art systems,

for the tasks of matching thousands of entities, perform not with such

high values of recall (∼30%) as in cases of toy examples, where the

4Matching contests of years 2004, 2005 and 2006 can be found following the links below:
2004: http://www.atl.external.lmco.com/projects/ontology/i3con.html,
2004: http://oaei.ontologymatching.org/2004/Contest/,
2005: http://oaei.ontologymatching.org/2005/,
2006: http://oaei.ontologymatching.org/2006/.

182

CHAPTER 12. FUTURE TRENDS
IN THE FIELD

12.1. TRENDS IN THEORIES
AND METHODS

recall was most often around 80-90% [100]. Thus, we expect emergence

of the frameworks leveraging the knowledge incompleteness problem,

ultimately in a fully automated way. One possible solution has been

proposed in this thesis.

• Performance. Following the above mentioned examples of the large

scale evaluations, besides the effectiveness of the results, there is an

issue of performance. In fact, there are applications which require

at least some weak form of real time performance (to avoid having a

user waiting too long for the system respond). Execution time indica-

tor shows scalability properties of the matchers and their potential to

become an industrial-strength systems. Also, referring to the above

mentioned evaluations, the fact that some systems went out of mem-

ory on some test cases, although being fast on small and medium test

cases, suggests that their performance time was achieved by using a

large amount of main memory. Therefore, usage of main memory

should also be taken into account. We expect significant improve-

ments of the matching approaches with respect to their performance

characteristics.

• Interactive approaches (semi-automatic matching). As from above,

automatic ontology matching usually cannot be performed with a

due quality, especially on the huge data sets. We believe that semi-

automatic matching is a plausible way to improve the effectiveness of

the results. There are tasks at which machines are good. Obviously,

there are tasks at which human users are good. An important point

here is to involve user only when his/her input is maximally useful.

• Explanations and transparency. Correspondences produced by match-

ing systems may not be intuitively obvious to human users, and there-

fore, they need to be explained, see [215, 53, 129]. One possible so-

183

12.1. TRENDS IN THEORIES
AND METHODS

CHAPTER 12. FUTURE TRENDS
IN THE FIELD

lution of how a matching system can explain its answers has been

proposed in this thesis.

• Social aspects. The impact of social networks, web communities and

direct involvement of humans (in a distributed fashion) on ontology

matching has to be analyzed and distilled. Let us consider one ex-

ample. Eventually, once an alignment has been determined, it can be

saved, and further reused as any other data on the web [238]. Thus,

on the one hand, a (large) repository of alignments has a potential

to increase the effectiveness of matching systems by providing yet an-

other source of domain specific knowledge. On the other hand, users

can publish different and even contradicting alignments. Hence, one

of the open problems here is how to manage the contradictory corre-

spondences in the repositories.

Output dimensions. We expect emergence of annotations (codifying social

aspects) of the alignment and standard(s) for expressing the alignment.

Evaluation of matching approaches

We expect the following trends in evaluation of matching approaches in

the medium term:

• Extensive experiments across different domains with multiple test

cases from each domain as well as new hard, and large real world

data sets.

• More accurate evaluation measures, including user-related measures.

• Automating acquisition of reference alignments, especially for large

applications.

184

CHAPTER 12. FUTURE TRENDS
IN THE FIELD 12.2. TRENDS IN TOOLS

12.1.3 Long term

Matching approaches

In the long term we expect appearance of multilingual matching approaches,

i.e., those matching across multiple languages, such as English, Italian, and

French. Also we expect appearance of matching approaches dealing with

spatio-temporal applications [5, 194]. Finally, a substantial progress in the

field should have been done by that time in general, which in turn, should

cause some paradigm shifts. Thus, new visions and requirements of what

is matching should appear.

Evaluation of matching approaches

Addressing the first two points mentioned above, we expect the following

trends in evaluation of matching approaches in the long term: evaluation

methodology for multilingual and spatio-temporal matching approaches,

multilingual and spatio-temporal data sets, quality measures for multilin-

gual and spatio-temporal matching approaches.

12.2 Trends in tools

12.2.1 Short term

We discuss the future trends in tools, distinguishing between (relevant)

commercially available ones and research prototypes. Most of the commer-

cially available matching tools focus on visualization of the input ontologies

expressed in, e.g., XML, database, flat files formats, and the correspon-

dences between them. It is also possible to specify (over the correspon-

dences) some data transformation operations (e.g., by means of functoids)

such as adding, multiplying, and dividing the values of fields in the source

document and storing the result in a field in the target document. How-

185

12.2. TRENDS IN TOOLS
CHAPTER 12. FUTURE TRENDS

IN THE FIELD

ever, the matching operation itself is not automated at all, namely all the

correspondences have to be specified manually. Some examples of these

tools are Altova MapForce5, BizTalk Schema Mapper6, Cape Clear XSLT

Mapper7, Stylus Studio XSLT Mapper8. In the short term we expect an

increase of the number of such tools.

Obviously, contrary to the commercial tools, research matching proto-

types focus on automating the correspondences discovery operation and

related themes. In general, majority of the research tools focus only on

one of the steps of reducing the heterogeneity, namely on matching ontolo-

gies, fewer on processing the alignments, and only some of them can be

called infrastructures, since they consider matching as one (among others)

operations. It is early to speak about software quality in research tools.

However, some positive trends are worth mentioning, such as modularity

and extensibility of the architectures in most of the research prototypes.

We expect gradual and incremental improvements along the lines men-

tioned above in the short term.

12.2.2 Medium term

We expect the following challenges of ontology matching to be addressed

in the medium term: scalability of visualization of the alignment be-

tween input ontologies, user interfaces, configuration/customizing technol-

ogy, industrial-strength research prototypes, including tools for matching

ontologies, processing the alignment, and infrastructures.

5http://www.altova.com/features xml2xml mapforce.html
6http://msdn.microsoft.com/library/en-us/introduction/htm/ebiz intro story jgtg.asp
7http://www.capescience.com/education/tutorials/index.shtml
8http://www.stylusstudio.com/xslt mapper.html

186

CHAPTER 12. FUTURE TRENDS
IN THE FIELD 12.3. TRENDS IN APPLICATIONS

12.2.3 Long term

In the long term, we expect emergence of good quality matching tools: in

the sense of system characteristics, e.g., complexity, design features, per-

formance, quality, and process characteristics, e.g., maintenance. Finally,

it is worth noting that, for example, engineers of information integration

systems would rather use existing matching systems than build their own.

However, it is quite difficult to connect state of the art matching systems

to other systems or embed them into the new environments. They are usu-

ally packaged as stand alone systems, designed for communication with a

human user. In addition, they are not provided with an interface described

in terms of abstract data types and logical functionality. We expect some

substantial progress on the frameworks for integration of different matching

systems into the new environments in the long term.

12.3 Trends in applications

12.3.1 Short term

Matching is an important operation in traditional applications, such as

schema integration, data warehousing, enterprise information integration

(see Chapter 1). Some examples of commercially available, e.g., EII tools,

are IBM Information Integrator, Liquid Data for WebLogic from BEA

systems, SAP NetWeaver, and EII platform from Denodo Technologies.

However, it is worth mentioning that, even in these tools, a support for

handling the semantic heterogeneity problem is still in its early stages.

We expect the above mentioned applications to play a crucial role as in

the short term as in the medium and long term. For example, according to

Aberdeen Group, the EII market will grow by 60% annually with around

187

12.3. TRENDS IN APPLICATIONS
CHAPTER 12. FUTURE TRENDS

IN THE FIELD

$250M in revenue in 20059. Notice that next we discuss only the new

applications as an addition to those already mentioned.

12.3.2 Medium term

There is an emerging line of applications which can be characterized by

their dynamics, e.g., agents, peer-to-peer systems, web services (see Chap-

ter 1). Such applications, on the contrary to traditional ones, require a run

time matching operation and take advantage of more explicit conceptual

models.

We expect these applications to play an important role starting from the

medium term, since the necessary technologies (e.g., run time matching)

will not mature or converge earlier to support scalable solutions in, e.g.,

B2B and supply chains.

12.3.3 Long term

It is hard to foresee what is going to happen in a long term, since the web

in particular and computer science in general are very dynamic and con-

tinuously evolving fields. Of course, in the long term, we expect different

variations (e.g., P2P trading grid) of the applications mentioned so far.

However, as one of the new possible scenarios, we could see embedding of

the semantic matching services inside operation systems.

9http://www.denodo.com/english/news/2005/08 06 05.html

188

Bibliography

[1] Rakesh Agrawal and Ramakrishnan Srikant. On integrating catalogs.

In Proceedings of the International Conference on World Wide Web

(WWW), pages 603–612, 2001.

[2] Zharko Aleksovski, Michel Klein, Warner ten Kate, and Frank van

Harmelen. Matching unstructured vocabularies using a background

ontology. In Proceedings of the International Conference on Knowl-

edge Engineering and Knowledge Management (EKAW), 2006.

[3] Yigal Arens, Chun-Nan Hsu, and Craig Knoblock. Query processing

in the SIMS information mediator. In Readings in Agents, pages

82–90. AAAI press, 1996.

[4] Alessandro Artale, Bernardo Magnini, and Carlo Strapparava. Word-

net for Italian and its use for lexical deiscrimination. In Proceedings

of the Congress of the Italian Association for Artificial Intelligence

(AI*IA), pages 346–356, 1997.

[5] Alessandro Artale, Christine Parent, and Stefano Spaccapietra. Mod-

eling the evolution of objects in temporal information systems. In

Proceedings of the International Symposium on Foundations of In-

formation and Knowledge Systems (FoIKS), pages 22–42, 2006.

[6] Paolo Atzeni, Paolo Cappellari, and Philip Bernstein. ModelGen:

Model independent schema translation. In Proceedings of the Inter-

189

BIBLIOGRAPHY BIBLIOGRAPHY

national Conference on Data Engineering (ICDE), pages 1111–1112,

2005.

[7] Paolo Atzeni, Paolo Cappellari, and Philip Bernstein. Model-

independent schema and data translation. In Proccedings of the In-

ternational Conference on Extending Database Technology (EDBT),

pages 368–385, 2006.

[8] David Aumüller, Hong-Hai Do, Sabine Maßmann, and Erhard Rahm.

Schema and ontology matching with COMA++. In Proceedings of

the International Conference on Management of Data (SIGMOD),

Software Demonstration, 2005.

[9] Paolo Avesani, Fausto Giunchiglia, and Mikalai Yatskevich. A large

scale taxonomy mapping evaluation. In Proceedings of the Interna-

tional Semantic Web Conference (ISWC), pages 67–81, 2005.

[10] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele

Nardi, and Peter Patel-Schneider, editors. The description logic hand-

book: theory, implementations and applications. Cambridge Univer-

sity Press, 2003.

[11] Carlo Batini, Maurizio Lenzerini, and Shamkant Navathe. A com-

parative analysis of methodologies for database schema integration.

ACM Computing Surveys, 18(4):323–364, 1986.

[12] Howard W. Beck, Sunit K. Gala, and Shamkant B. Navathe. Classi-

fication as a query processing technique in the CANDIDE semantic

data model. In Proceedings of the International Conference on Data

Engineering (ICDE), pages 572–581, 1989.

190

BIBLIOGRAPHY BIBLIOGRAPHY

[13] Massimo Benerecetti, Paolo Bouquet, and Stefano Zanobini. Sound-

ness of schema matching methods. In Proceedings of the European

Semantic Web Conference (ESWC), pages 211–225, 2005.

[14] Massimo Benerecetti, Paulo Bouquet, and Chiara Ghidini. Contex-

tual reasoning distilled. Journal of Experimental and Theoretical Ar-

tificial Intelligence (JETAI), 12(3):279–305, 2000.

[15] Massimo Benerecetti, Paulo Bouquet, and Chiara Ghidini. On the

dimensions of context dependence: partiality, approximation, and

perspective. In Proceedings of the International and Interdisciplinary

Conference on Modeling and Using Context (CONTEXT), pages 59–

72, 2001.

[16] Domenico Beneventano, Sonia Bergamaschi, Stefano Lodi, and Clau-

dio Sartori. Consistency checking in complex object database

schemata with integrity constraints. IEEE Transactions on Knowl-

edge and Data Engineering, 10(4):576–598, 1998.

[17] Sonia Bergamaschi, Domenico Beneventano, Silvana Castano, and

Maurizio Vincini. MOMIS: An intelligent system for the integration

of semistructured and structured data. Technical Report T3-R07,

Università di Modena e Reggio Emilia, Modena (IT), 1998.

[18] Sonia Bergamaschi, Silvana Castano, and Maurizio Vincini. Semantic

integration of semistructured and structured data sources. SIGMOD

Record, 28(1):54–59, 1999.

[19] Claude Berge. Graphes et hypergraphes. Dunod, Paris (FR), 1970.

[20] Michael Bergman. The deep web: surfacing hidden value. The Jour-

nal of Electronic Publishing, 7(1), 2001.

191

BIBLIOGRAPHY BIBLIOGRAPHY

[21] Jacob Berlin and Amihai Motro. Database schema matching using

machine learning with feature selection. In Proceedings of the Inter-

national Conference on Advanced Information Systems Engineering

(CAiSE), pages 452–466, 2002.

[22] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic

web. Scientific American, 284(5):34–43, 2001.

[23] Philip Bernstein, Alon Halevy, and Rachel Pottinger. A vision of

management of complex models. SIGMOD Record, 29(4):55–63, 2000.

[24] Philip Bernstein, Sergei Melnik, M. Petropoulos, and Christoph

Quix. Industrial-strength schema matching. SIGMOD Record,

33(4):38–43, 2004.

[25] Philip Bernstein, Sergey Melnik, and John Churchill. Incremental

schema matching. In Proceedings of the International Conference on

Very Large Data Bases (VLDB), pages 1167–1170, 2006.

[26] Philip Bernstein and Erhard Rahm. Data warehouse scenarios for

model management. In Proceedings of the Conference on Entity-

Relationship Modeling (ER), pages 1 – 15, 2000.

[27] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified

Modeling Language user guide. Addison-Wesley, 1998.

[28] Alexander Borgida, Ronald Brachman, Deborah McGuinness, and

Lawrence Resnick. CLASSIC: A structural data model for objects.

SIGMOD Record, 18(2):58–67, 1989.

[29] Paolo Bouquet, Marc Ehrig, Jérôme Euzenat, Enrico Franconi, Pas-

cal Hitzler, Markus Krötzsch, Luciano Serafini, Giorgos Stamou,

192

BIBLIOGRAPHY BIBLIOGRAPHY

York Sure, and Sergio Tessaris. Specification of a common frame-

work for characterizing alignment. Deliverable D2.2.1, Knowledge

web NoE, 2004.

[30] Paolo Bouquet, Bernardo Magnini, Luciano Serafini, and Stefano

Zanobini. A SAT-based algorithm for context matching. In Proceed-

ings of the International and Interdisciplinary Conference on Model-

ing and Using Context (CONTEXT), pages 66–79, 2003.

[31] Paolo Bouquet, Luciano Serafini, and Stefano Zanobini. Semantic

coordination: A new approach and an application. In Proceedings of

the International Semantic Web Conference (ISWC), pages 130–145,

2003.

[32] Paolo Bouquet, Luciano Serafini, and Stefano Zanobini. Semantic

coordination of heterogeneous classification schemas. In Steffen Staab

and Heiner Stuckenschmidt, editors, Peer-to-peer and Semantic Web,

chapter 9, pages 185–200. Springer, 2005.

[33] Paolo Bouquet, Luciano Serafini, Stefano Zanobini, and Simone Sc-

effer. Bootstrapping semantics on the web: meaning elicitation

from schemas. In Proceedings of the World Wide Web Conference

(WWW), pages 505–512, 2006.

[34] Paulo Bouquet, Fausto Giunchiglia, Frank van Harmelen, Luciano

Serafini, and Heiner Stuckenschmidt. Contextualizing ontologies.

Journal of Web Semantics, 1(1):325–343, 2004.

[35] Michael Boyd, Sasivimol Kittivoravitkul, Charalambos Lazanitis, Pe-

ter McBrien, and Nikos Rizopoulos. AutoMed: A BAV data in-

tegration system for heterogeneous data sources. In Proceedings of

the International Conference on Advanced Information Systems En-

gineering (CAiSE), pages 82–97, 2004.

193

BIBLIOGRAPHY BIBLIOGRAPHY

[36] Yuri Breitbart. Multidatabase interoperability. SIGMOD Record,

19(3):53–60, 1990.

[37] Michael Brodie, John Mylopoulos, and Joachim Schmidt. On con-

ceptual modeling. Springer Verlag, 1984.

[38] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. De-

scription logics for information integration. In Computational Logic:

Logic Programming and Beyond, Essays in Honour of Robert A.

Kowalski, pages 41–60. 2002.

[39] Silvana Castano, Valeria De Antonellis, and Sabrina De Capitani

di Vimercati. Global viewing of heterogeneous data sources. IEEE

Transactions on Knowledge and Data Engineering, 13(2):277–297,

2000.

[40] Silvana Castano, Alfio Ferrara, and Stefano Montanelli. Dynamic

knowledge discovery in open, distributed and multi-ontology systems:

Techniques and applications. In David Taniar and Wenny Rahayu,

editors, Web Semantics and Ontology. Idea Group Publishing, 2005.

[41] Silvana Castano, Alfio Ferrara, and Stefano Montanelli. Matching

ontologies in open networked systems: Techniques and applications.

Journal on Data Semantics (JoDS), V:25–63, 2006.

[42] Lois Mai Chan, John Comaromi, Joan Mitchell, and Mohinder Satija.

Dewey Decimal Classifcation: A Practical Guide. OCLC Forest

Press, Dublin (OH US), 1996.

[43] Kevin Chang, Bin He, and Zhen Zhang. Toward large scale integra-

tion: Building a metaquerier over databases on the web. In Proceed-

ings of the Conference on Innovative Data Systems Research (CIDR),

pages 44–55, 2005.

194

BIBLIOGRAPHY BIBLIOGRAPHY

[44] Sudarshan Chawathe, Hector Garcia-Molina, Joachim Hammer,

Kelly Ireland, Yannis Papakonstantinou, Jeffrey Ullman, and Jen-

nifer Widom. The TSIMMIS project: Integration of heterogeneous

information sources. In Meeting of the Information Processing Society

of Japan, pages 7–18, 1994.

[45] Peter Chen. The entity-relationship model–toward a unified view of

data. ACM Transactions on database systems, 1(1):9–36, 1976.

[46] Chris Clifton, Ed Hausman, and Arnon Rosenthal. Experience with

a combined approach to attribute matching across heterogeneous

databases. In Proceedings of the IFIP Conference on Database Se-

mantics, 1997.

[47] William Cohen, Pradeep Ravikumar, and Stephen Fienberg. A com-

parison of string metrics for matching names and records. In Proceed-

ings of the Workshop on Data Cleaning and Object Consolidation at

the International Conference on Knowledge Discovery and Data Min-

ing (KDD), 2003.

[48] Oscar Corcho. A declarative approach to ontology translation with

knowledge preservation. PhD thesis, Universidad Politécnica de

Madrid, 2004.

[49] Nuno Alexandre Pinto da Silva. Multi-dimensional service-oriented

ontology mapping. PhD thesis, Universidade de Trás-os-Montes e

Alto Douro, 2004.

[50] Martin Davis, George Longemann, and Donald Loveland. A ma-

chine program for theorem proving. Communications of the ACM,

5(7):394–397, 1962.

195

BIBLIOGRAPHY BIBLIOGRAPHY

[51] Martin Davis and Hilary Putnam. A computing procedure for quan-

tification theory. Journal of the ACM, 7:201–215, 1960.

[52] Mike Dean and Guus Schreiber (eds.). OWL web ontology language

reference. Recommendation, W3C, February 2004.

[53] Robin Dhamankar, Yoonkyong Lee, An-Hai Doan, Alon Halevy, and

Pedro Domingos. iMAP: Discovering complex semantic matches be-

tween database schemas. In Proceedings of the International Confer-

ence on Management of Data (SIGMOD), pages 383–394, 2004.

[54] Tommaso Di Noia, Eugenio Di Sciascio, Francesco Donini, and Ma-

rina Mongiello. A system for principled matchmaking in an elec-

tronic marketplace. In Proceedings of the World Wide Web Confer-

ence (WWW), pages 321–330, 2003.

[55] Rose Dieng and Stefan Hug. Comparison of “personal ontologies”

represented through conceptual graphs. In Proceedings of the Eu-

ropean Conference on Artificial Intelligence (ECAI), pages 341–345,

1998.

[56] Hong-Hai Do. Schema matching and mapping-based data integration.

PhD thesis, University of Leipzig, 2005.

[57] Hong-Hai Do, Sergei Melnik, and Erhard Rahm. Comparison of

schema matching evaluations. In Proceedings of the GI-Workshop

Web and Databases, Erfurt (DE), 2002.

[58] Hong-Hai Do and Erhard Rahm. COMA – a system for flexible

combination of schema matching approaches. In Proceedings of the

International Conference on Very Large Databases, pages 610–621,

2002.

196

BIBLIOGRAPHY BIBLIOGRAPHY

[59] An-Hai Doan, Pedro Domingos, and Alon Halevy. Reconciling

schemas of disparate data sources: A machine-learning approach.

In Proceeding of International Conference on Management of Data

(SIGMOD), pages 509–520, 2001.

[60] An-Hai Doan, Pedro Domingos, and Alon Halevy. Learning to match

the schemas of data sources: A multistrategy approach. Machine

Learning, 50(3):279–301, 2003.

[61] An-Hai Doan and Alon Halevy. Semantic integration research in the

database community: A brief survey. AI Magazine, Special Issue on

Semantic Integration, 26(1):83–94, 2005.

[62] An-Hai Doan, Jayant Madhavan, Pedro Domingos, and Alon Halevy.

Learning to map ontologies on the semantic web. In Proceedings of

the International World Wide Web Conference (WWW), pages 662–

673, 2003.

[63] An-Hai Doan, Jayant Madhavan, Pedro Domingos, and Alon Halevy.

Ontollogy matching: a machine learning approach. In Steffen Staab

and Rudi Studer, editors, Handbook of ontologies, International hand-

books on information systems, chapter 18, pages 385–404. Springer

Verlag, Berlin (DE), 2004.

[64] Pedro Domingos and Michael Pazzani. Beyond independence: Con-

ditions for the optimality of the simple bayesian classifier. In Proceed-

ings of the International Conference on Machine Learning (ICML),

pages 105–112, 1996.

[65] Denise Draper, Alon Halevy, and Daniel Weld. The nimble inte-

gration engine. In Proceedings of the International Conference on

Management of Data (SIGMOD), pages 567–568, 2001.

197

BIBLIOGRAPHY BIBLIOGRAPHY

[66] Marc Ehrig. Ontology alignment: bridging the semantic gap. PhD

thesis, University of Karlsruhe, 2006.

[67] Marc Ehrig, Staab Staab, and York Sure. Bootstrapping ontology

alignment methods with APFEL. In Proceedings of the International

Semantic Web Conference (ISWC), pages 186–200, 2005.

[68] Marc Ehrig and Steffen Staab. QOM – quick ontology mapping. In

Proceedings of the International Semantic Web Conference (ISWC),

pages 683–697, 2004.

[69] Marc Ehrig and York Sure. Ontology mapping – an integrated ap-

proach. In Proceedings of the European Semantic Web Symposium

(ESWS), pages 76–91, 2004.

[70] Ahmed Elmagarmid, Marek Rusinkiewicz, Amith Sheth, and editors.

Management of Heterogeneous and Autonomous Database Systems.

Morgan Kaufmann, 1999.

[71] Jérôme Euzenat. Towards a principled approach to semantic inter-

operability. In Proceedings of the Workshop on Ontology and Infor-

mation Sharing at the International Joint Conference on Artificial

Intelligence (IJCAI), pages 19–25, 2001.

[72] Jérôme Euzenat. Towards composing and benchmarking ontology

alignments. In Proceedings of the Workshop on Semantic Integration

at the International Semantic Web Conference (ISWC), pages 165–

166, 2003.

[73] Jérôme Euzenat. An API for ontology alignment. In Proceedings of

the International Semantic Web Conference (ISWC), pages 698–712,

2004.

198

BIBLIOGRAPHY BIBLIOGRAPHY

[74] Jérôme Euzenat, Malgorzata Mochol Pavel Shvaiko, Heiner Stuck-

enschmidt, Ondřej Šváb, Vojtěch Svátek, Willem Robert van Hage,

and Mikalai Yatskevich. Results of the ontology alignment evaluation

initiative 2006. In Proceedings of the International Workshop on On-

tology Matching (OM) at the International Semantic Web Conference

(ISWC), 2006.

[75] Jérôme Euzenat and Pavel Shvaiko. Ontology matching. Springer-

Verlag, Heidelberg (DE), 2007. to appear.

[76] Jérôme Euzenat and Heiner Stuckenschmidt. The ‘family of lan-

guages’ approach to semantic interoperability. In Knowledge trans-

formation for the semantic web, pages 49–63. 2003.

[77] Jérôme Euzenat, Heiner Stuckenschmidt, and Mikalai Yatskevich. In-

troduction to the ontology alignment evaluation 2005. In Proceedings

of the Workshop on Integrating Ontologies at the International Con-

ference on Knowledge Capture (K-CAP), 2005.

[78] Jérôme Euzenat and Petko Valtchev. Similarity-based ontology align-

ment in OWL-lite. In Proceedings of the European Conference on

Artificial Intelligence (ECAI), pages 333–337, 2004.

[79] Ronald Fagin, Phokion Kolaitis, Lucian Popa, and Wang Chiew Tan.

Composing schema mappings: Second-order dependencies to the res-

cue. In Proceedings of the Symposium on Principles of Database Sys-

tems (PODS), pages 83–94, 2004.

[80] Christiane Fellbaum. Wordnet: An Electronic Lexical Database.

Cambridge, US: The MIT Press, 1998.

[81] Dieter Fensel. Ontologies: A Silver Bullet for Knowledge Manage-

ment and Electronic Commerce. Springer Verlag, 2nd edition, 2004.

199

BIBLIOGRAPHY BIBLIOGRAPHY

[82] Dieter Fensel, Holger Lausen, Axel Polleres, Jos de Bruijn, Michael

Stollberg, Dumitru Roman, and John Domingue. Enabling Semantic

Web Services: The Web Service Modeling Ontology. Springer, 2007.

[83] FIPA0037. FIPA ACL communicative act library specification. Tech-

nical report, FIPA, 2002. http://www.fipa.org/specs/fipa00037.

[84] FIPA0061. FIPA ACL message structure specification, 2002.

http://www.fipa.org/specs/fipa00061.

[85] Avigdor Gal. Managing uncertainty in schema matching with top-k

schema mappings. Journal on Data Semantics (JoDS), VI:90–114,

2006.

[86] Avigdor Gal, Giovanni Modica, Hassan Jamil, and Ami Eyal. Auto-

matic ontology matching using application semantics. AI Magazine,

26(1):21–32, 2005.

[87] David Gale and Lloyd Stowell Shapley. College admissions and the

stability of marriage. American Mathematical Monthly, 69:5–15,

1962.

[88] Aldo Gangemi, Nicola Guarino, Claudio Masolo, and Alessandro

Oltramari. Sweetening WordNet with DOLCE. AI Magazine,

24(3):13–24, 2003.

[89] Aldo Gangemi, Nicola Guarino, and Alessandro Oltramari. Concep-

tual analysis of lexical taxonomies: the case of wordnet top-level. In

Proceedings of the International Conference on Formal Ontology in

Information Systems (FOIS), pages 285–296, 2001.

[90] Bernhard Ganter and Rudolf Wille. Formal concept analysis: math-

ematical foundations. Springer Verlag, 1999.

200

BIBLIOGRAPHY BIBLIOGRAPHY

[91] Michael Garey and David Johnson. Computers and intractability: a

guide to the theory of NP-completeness. W. H. Freeman & Co., 1979.

[92] Chiara Ghidini and Fausto Giunchiglia. Local models semantics, or

contextual reasoning = locality + compatibility. Artificial Intelli-

gence, 127(2):221–259, 2001.

[93] Chiara Ghidini and Fausto Giunchiglia. A semantics for abstraction.

In Proceedings of the European Conference on Artificial Intelligence

(ECAI), pages 343–347, 2004.

[94] Fausto Giunchiglia. Contextual reasoning. Epistemologia, special

issue on I Linguaggi ele Macchine, XVI:345–364, 1993.

[95] Fausto Giunchiglia, Maurizio Marchese, and Ilya Zaihrayeu. Encod-

ing classifications into lightweight ontologies. In Proceedings of the

European Semantic Web Conference (ESWC), pages 80–94, 2006.

[96] Fausto Giunchiglia and Pavel Shvaiko. Semantic matching. In Pro-

ceedings of the Workshop on Ontologies and Distributed Systems at

the International Joint Conference on Artificial Intelligence (IJCAI),

pages 139–146, 2003.

[97] Fausto Giunchiglia and Pavel Shvaiko. Semantic matching. The

Knowledge Engineering Review, 18(3):265–280, 2003.

[98] Fausto Giunchiglia, Pavel Shvaiko, and Mikalai Yatskevich. S-Match:

an algorithm and an implementation of semantic matching. In Pro-

ceedings of the European Semantic Web Symposium (ESWS), pages

61–75, 2004.

[99] Fausto Giunchiglia, Pavel Shvaiko, and Mikalai Yatskevich. Semantic

schema matching. In Proceedings of the International Conference on

Cooperative Information Systems (CoopIS), pages 347–365, 2005.

201

BIBLIOGRAPHY BIBLIOGRAPHY

[100] Fausto Giunchiglia, Pavel Shvaiko, and Mikalai Yatskevich. Discover-

ing missing background knowledge in ontology matching. In Proceed-

ings of the European Conference on Artificial Intelligence (ECAI),

pages 382–386, 2006.

[101] Fausto Giunchiglia and Mikalai Yatskevich. Element level seman-

tic matching. In Proceedings of the Meaning Coordination and Ne-

gotiation Workshop at the International Semantic Web Conference

(ISWC), 2004.

[102] Fausto Giunchiglia, Mikalai Yatskevich, and Enrico Giunchiglia. Ef-

ficient semantic matching. In Proceedings of the European Semantic

Web Conference (ESWC), pages 272–289, 2005.

[103] Fausto Giunchiglia, Mikalai Yatskevich, and Pavel Shvaiko. Semantic

matching: algorithms and implementation. Journal on Data Seman-

tics (JoDS), IX, 2006. to appear.

[104] Fausto Giunchiglia and Ilya Zaihrayeu. Making peer databases in-

teract - a vision for an architecture supporting data coordination. In

Proceedings of the International Workshop on Cooperative Informa-

tion Agents (CIA), pages 18–35, 2002.

[105] François Goasdoué, Véronique Lattes, and Marie-Christine Rousset.

The use of CARIN language and algorithms for information inte-

gration: The PICSEL system. International Journal of Cooperative

Information Systems, 9(4):383–401, 2000.

[106] Cheng-Hian Goh. Representing and reasoning about semantic con-

flicts in heterogeneous information sources. PhD thesis, MIT, 1997.

[107] Irving John Good. The estimation of probabilities: an essay on mod-

ern Bayesian methods. Classics Series. The MIT press, 1965.

202

BIBLIOGRAPHY BIBLIOGRAPHY

[108] Nicola Guarino. Formal ontology in information systems. In Pro-

ceedings of the International Conference on Formal Ontology in In-

formation Systems (FOIS), pages 3–15, 1998.

[109] Nicola Guarino. The role of ontologies for the semantic web (and be-

yond). Technical report, Laboratory for Applied Ontology, Institute

for Cognitive Sciences and Technology (ISTC-CNR), 2004.

[110] Nicola Guarino and Christopher A. Welty. Evaluating ontological

decisions with OntoClean. Communications of the ACM, 45(2):61–

65, 2002.

[111] Nicola Guarino and Christopher A. Welty. An overview of OntoClean.

In Steffen Staab and Rudi Studer, editors, Handbook on Ontologies,

International Handbooks on Information Systems, pages 151–172.

Springer, 2004.

[112] V. Haarslev, R. Moller, and M. Wessel. RACER: Semantic middle-

ware for industrial projects based on RDF/OWL, a W3C Standard.

http://www.sts.tu-harburg.de/~r.f.moeller/racer/.

[113] Laura Haas, Mauricio Hernández, Howard Ho, Lucian Popa, and

Mary Roth. Clio grows up: from research prototype to industrial

tool. In Proceedings of the International Conference on Management

of Data (SIGMOD), pages 805–810, 2005.

[114] Alon Halevy, Naveen Ashish, Dina Bitton, Michael Carey, Denise

Draper, Jeff Pollock, Arnon Rosenthal, and Vishal Sikka. Enterprise

information integration: successes, challenges and controversies. In

Proceedings of the International Conference on Management of Data

(SIGMOD), pages 778–787, 2005.

203

BIBLIOGRAPHY BIBLIOGRAPHY

[115] Adil Hameed, Alun Preece, and Derek Sleeman. Ontology reconcilia-

tion. In Steffen Staab and Rudi Studer, editors, Handbook of ontolo-

gies, International handbooks on information systems, chapter 12,

pages 231–250. Springer Verlag, Berlin (DE), 2004.

[116] Bin He and Kevin Chang. Automatic complex schema matching

across web query interfaces: A correlation mining approach. ACM

Transactions on Database Systems, 31(1):1–45, 2006.

[117] Bin He, Mitesh Patel, Zhen Zhang, and Kevin Chang. Accessing the

deep web: a survey. Communications of the ACM, 2006.

[118] Ian Horrocks, Peter Patel-Schneider, Harold Boley, Said

Tabet, Benjamin Grosof, and Mike Dean. SWRL: a seman-

tic web rule language combining OWL and RuleML, 2004.

http://www.w3.org/Submission/SWRL/.

[119] Eduard Hovy. Combining and standardizing large-scale, practical

ontologies for machine translation and other uses. In Proceedings of

the International Conference on Language Resources and Evaluation

(LREC), pages 535–542, 1998.

[120] Richard Hull. Managing semantic heterogeneity in databases: a the-

oretical prospective. In Proceedings of the Symposium on Principles

of Database Systems (PODS), pages 51–61, 1997.

[121] Ryutaro Ichise, Hideaki Takeda, and Shinichi Honiden. Integrating

multiple internet directories by instance-based learning. In Proceed-

ings of the International Joint Conference on Artificial Intelligence

(IJCAI), pages 22–30, 2003.

204

BIBLIOGRAPHY BIBLIOGRAPHY

[122] Zachary Ives, Alon Halevy, Peter Mork, and Igor Tatarinov. Piazza:

mediation and integration infrastructure for semantic web data. Jor-

nal of Web Semantics, 1(2):155–175, 2004.

[123] Yannis Kalfoglou and Marco Schorlemmer. Ontology mapping: the

state of the art. The Knowledge Engineering Review, 18(1):1–31,

2003.

[124] Vipul Kashyap and Amit Sheth. Semantic and schematic similarities

between database objects: a context-based approach. The VLDB

Journal, 5(4):276–304, 1996.

[125] Vipul Kashyap and Amit Sheth. Semantic heterogeneity in global

information systems: The role of metadata, context and ontologies.

In Michael Papazoglou and Gunter Schlageter, editors, Cooperative

Information Systems, pages 139–178. Academic Press, 1998.

[126] David Kensche, Christoph Quix, Mohamed Amine Chatti, and

Matthias Jarke. Gerome: A generic role based metamodel for model

management. In Proceedings of the International Conference on

Ontologies, DataBases, and Applications of Semantics (ODBASE),

pages 1206–1224, 2005.

[127] Won Kim and Jungyun Seo. Classifying schematic and data hetero-

geneity in multidatabase systems. Computer, 24(12):12–18, 1991.

[128] Michel Klein. Combining and relating ontologies: an analysis of prob-

lems and solutions. In Proceedings of the Workshop on Ontologies

and Information Sharing at the International Joint Conference on

Artificial Intelligence (IJCAI), 2001.

[129] Loredana Laera, Valentina Tamma, Jérôme Euzenat, Trevor Bench-

Capon, and Terry Payne. Reaching agreement over ontology align-

205

BIBLIOGRAPHY BIBLIOGRAPHY

ments. In Proceedings of the International Semantic Web Conference

(ISWC), 2006.

[130] James Larson, Shamkant Navathe, and Ramez Elmasri. A theory

of attributed equivalence in databases with application to schema

integration. IEEE Transactions on Software Engineering, 15(4):449–

463, 1989.

[131] Daniel Le Berre. Sat4j: A satisfiability library for Java.

http://www.sat4j.org/, 2004.

[132] Alain Léger, Johannes Heinecke, Lyndon Nixon, Pavel Shvaiko, Jean

Charlet, Paola Hobson, and François Goasdoué. The semantic web

from an industry perspective. In Tutorial at Reasoning Web, Second

International Summer School, pages 232–268. Springer, 2006.

[133] Alain Léger, Lyndon Nixon, and Pavel Shvaiko. On identifying knowl-

edge processing requirements. In Proceedings of the International

Semantic Web Conference (ISWC), pages 928–943, 2005.

[134] Alan Léger, Lyndon Nixon, Pavel Shvaiko, and Jean Charlet. Se-

mantic web applications: Fields and business cases.the industry chal-

lenges the research. In Proceedings of the International Conference

on Industrial Applications of Semantic Web (IASW), pages 27–46,

2005.

[135] Maurizio Lenzerini. Data integration: A theoretical perspective. In

Proceedings of the Symposium on Principles of Database Systems

(PODS), pages 233–246, 2002.

[136] Nicola Leone, Gianluigi Greco, Giovambattista Ianni, Vincenzino

Lio, Giorgio Terracina, Thomas Eiter, Wolfgang Faber, Michael

Fink, Georg Gottlob, Riccardo Rosati, Domenico Lembo, Maurizio

206

BIBLIOGRAPHY BIBLIOGRAPHY

Lenzerini, Marco Ruzzi, Edyta Kalka, Bartosz Nowicki, and Witold

Staniszkis. The INFOMIX system for advanced integration of incom-

plete and inconsistent data. In Proceedings of the International Con-

ference on Management of Data (SIGMOD), pages 915–917, 2005.

[137] Wen-Syan Li and Chris Clifton. Semantic integration in heteroge-

neous databases using neural networks. In Proceedings of the Very

Large Data Bases Conference (VLDB), pages 1–12, 1994.

[138] Wen-Syan Li and Chris Clifton. SEMINT: a tool for identifying at-

tribute correspondences in heterogeneous databases using neural net-

works. Data and Knowledge Engineering, 33(1):49–84, 2000.

[139] Vanessa Lopez, Enrico Motta, and Victoria Uren. PowerAqua: Fish-

ing the semantic web. In Proceedings of the European Semantic Web

Conference (ESWC), pages 393–410, 2006.

[140] Vanessa Lopez, Michele Pasin, and Enrico Motta. AquaLog: An

ontology-portable question answering system for the semantic web.

In Proceedings of the European Semantic Web Conference (ESWC),

pages 546–562, 2005.

[141] László Lovász and Michael Plummer. Matching Theory. North-

Holland, Amsterdam (NL), 1986.

[142] Alexander Mädche, Boris Motik, Nuno Silva, and Raphael Volz.

MAFRA – a mapping framework for distributed ontologies. In Pro-

ceedings of the International Conference on Knowledge Engineering

and Knowledge Management (EKAW), pages 235–250, 2002.

[143] Alexander Mädche and Steffen Staab. Measuring similarity between

ontologies. In Proceedings of the International Conference on Knowl-

edge Engineering and Management (EKAW), pages 251–263, 2002.

207

BIBLIOGRAPHY BIBLIOGRAPHY

[144] Jayant Madhavan, Philip Bernstein, An-Hai Doan, and Alon Halevy.

Corpus-based schema matching. In Proceedings of the International

Conference on Data Engineering (ICDE), pages 57–68, 2005.

[145] Jayant Madhavan, Philip Bernstein, Pedro Domingos, and Alon

Halevy. Representing and reasoning about mappings between do-

main models. In Proceedings of the National Conference on Artificial

Intelligence (AAAI), pages 122–133, 2002.

[146] Jayant Madhavan, Philip Bernstein, and Erhard Rahm. Generic

schema matching using Cupid. In Proceedings of the International

Conference on Very Large Data Bases (VLDB), pages 48–58, 2001.

[147] B. Magnini, Luciano Serafini, and M. Speranza. Making explicit the

semantics hidden in schema models. In Proceedings of the Workshop

on Human Language Technology for the Semantic Web and Web Ser-

vices at the International Semantic Web Conference (ISWC), 2003.

[148] Bernardo Magnini, Manuela Speranza, and Christian Girardi. A

semantic-based approach to interoperability of classification hierar-

chies: Evaluation of linguistic techniques. In Proceedings of the Inter-

national Conference on Computational Linguistics (COLING), 2004.

[149] Andrew McCallum and Kamal Nigam. A comparison of event models

for naive bayes text classification. In Proceedings of the Workshop

on Learning for Text Categorization at the National Conference on

Artificial Intelligence (AAAI), 1998.

[150] Deborah McGuinness, Richard Fikes, James Rice, and Steve Wilder.

An environment for merging and testing large ontologies. In Proceed-

ings of the International Conference on the Principles of Knowledge

Representation and Reasoning (KR), pages 483–493, 2000.

208

BIBLIOGRAPHY BIBLIOGRAPHY

[151] Deborah McGuinness and Paulo Pinheiro da Silva. Infrastructure for

web explanations. In Proceedings of the International Semantic Web

Conference (ISWC), pages 113–129, 2003.

[152] Deborah McGuinness and Paulo Pinheiro da Silva. Registry-based

support for information integration. In Proceedings of the Workshop

on Information Integration on the Web at the International Joint

Conference on Artificial Intelligence (IJCAI), 2003.

[153] Deborah McGuinness and Paulo Pinheiro da Silva. Explaining an-

swers from the semantic web: The Inference Web approach. Journal

of Web Semantics, 1(4):397–413, 2004.

[154] Deborah L. McGuinness, Pavel Shvaiko, Fausto Giunchiglia, and

Paulo Pinheiro da Silva. Towards explaining semantic matching.

In Proceedings of the International Workshop on Description Logics

(DL) at the International Conference on the Principles of Knowledge

Representation and Reasoning (KR), 2004.

[155] Fiona McNeill. Dynamic ontology refinement. PhD thesis, University

of Edinburgh (UK), 2006.

[156] Open information model, version 1.0.

http://mdcinfo/oim/oim10.html, 1999.

[157] Brahim Medjahed and Athman Bouguettaya. A multilevel com-

posability model for semantic web services. IEEE Transactions on

Knowledge and Data Engineering, 17(7):954–968, 2005.

[158] Sergey Melnik, Philip Bernstein, Alon Halevy, and Erhard Rahm.

Supporting executable mappings in model management. In Proceed-

ings of the International Conference on Management of Data (SIG-

MOD), pages 167–178, 2005.

209

BIBLIOGRAPHY BIBLIOGRAPHY

[159] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity

flooding: a versatile graph matching algorithm. In Proceedings of the

International Conference on Data Engineering (ICDE), pages 117–

128, 2002.

[160] Sergey Melnik, Erhard Rahm, and Philip Bernstein. Developing

metadata-intensive applications with Rondo. Journal of Web Se-

mantics, 1(1):47–74, 2003.

[161] Sergey Melnik, Erhard Rahm, and Philip Bernstein. Rondo: A pro-

gramming platform for model management. In Proceedings of the

International Conference on Management of Data (SIGMOD), pages

193–204, 2003.

[162] Eduardo Mena, Vipul Kashyap, Amit Sheth, and Arantza Illarra-

mendi. Observer: An approach for query processing in global infor-

mation systems based on interoperability between pre-existing on-

tologies. In Proceedings of the International Conference on Coopera-

tive Information Systems (CoopIS), pages 14–25, 1996.

[163] George Miller. WordNet: A lexical database for english. Communi-

cations of the ACM, 38(11):39–41, 1995.

[164] Renée Miller, Laura Haas, and Mauricio Hernández. Schema mapping

as query discovery. In Proceedings of the International Conference on

Very Large Data Bases, VLDB, pages 77–88, 2000.

[165] Renée Miller, Mauricio Hernández, Laura Haas, Lingling Yan,

Howard Ho, Ronald Fagin, and Lucian Popa. The Clio project: man-

aging heterogeneity. SIGMOD Record, 30(1):78–83, 2001.

210

BIBLIOGRAPHY BIBLIOGRAPHY

[166] Tova Milo and Sagit Zohar. Using schema matching to simplify

heterogeneous data translation. In Proceedings of the Very Large

Databases Conference (VLDB), pages 122–133, 1998.

[167] Prasenjit Mitra, Natalya Noy, and Anuj Jaiswal. Ontology mapping

discovery with uncertainty. In Proceedings of the International Se-

mantic Web Conference (ISWC), pages 537–547, 2005.

[168] Prasenjit Mitra and Gio Wiederhold. Resolving terminological het-

erogeneity in ontologies. In Proceedings of the Workshop on Ontolo-

gies and Semantic Interoperability at the European Conference on

Artificial Intelligence (ECAI), 2002.

[169] Prasenjit Mitra, Gio Wiederhold, and Jan Jannink. Semi-automatic

integration of knowledge sources. In Proceedings of the International

Conference On Information Fusion (FUSION), 1999.

[170] Prasenjit Mitra, Gio Wiederhold, and Martin Kersten. A graph-

oriented model for articulation of ontology interdependencies. In

Proccedings of the International Conference on Extending Database

Technology (EDBT), pages 86–100, 2000.

[171] Giovanni Modica, Avigdor Gal, and Hasan Jamil. The use of

machine-generated ontologies in dynamic information seeking. In

Proceedings of the International Conference on Cooperative Informa-

tion Systems (CoopIS), pages 433–448, 2001.

[172] Felix Naumann, Ching-Tien Ho, Xuqing Tian, Laura Haas, and Nim-

rod Megiddo. Attribute classification using feature analysis. In

Proceedings of the International Conference on Data Engineering

(ICDE), page 271, 2002.

211

BIBLIOGRAPHY BIBLIOGRAPHY

[173] Wolfgang Nejdl, Boris Wolf, Changtao Qu, Stefan Decker, Michael

Sintek, Ambjörn Naeve, Mikael Nilsson, Matthias Palmér, and Tore

Risch. Edutella: A P2P networking infrastructure based on RDF.

In Proceedings of the World Wide Web Conference (WWW), pages

604–615, 2002.

[174] Ian Niles and Adam Pease. Towards a standard upper ontology. In

Proceedings of the International Conference on Formal Ontology in

Information Systems (FOIS), pages 2–9, 2001.

[175] Henrik Nottelmann and Umberto Straccia. sPLMap: A probabilis-

tic approach to schema matching. In Proceedings of the European

Conference on Information Retrieval Research (ECIR), pages 81–95,

2005.

[176] Natalya Noy. Semantic integration: A survey of ontology-based ap-

proaches. SIGMOD Record, 33(4):65–70, 2004.

[177] Natalya Noy. Tools for mapping and merging ontologies. In Stef-

fen Staab and Rudi Studer, editors, Handbook of ontologies, Interna-

tional handbooks on information systems, chapter 18, pages 365–384.

Springer Verlag, Berlin (DE), 2004.

[178] Natalya Noy and Michel Klein. Ontology evolution: Not the same

as schema evolution. Knowledge and Information Systems, 6(4):428–

440, 2004.

[179] Natalya Noy and Marc Musen. SMART: Automated support for

ontology merging and alignment. In Proceedings of the Workshop on

Knowledge Acquisition, Modeling, and Management, 1999.

212

BIBLIOGRAPHY BIBLIOGRAPHY

[180] Natalya Noy and Marc Musen. The PROMPT suite: interactive

tools for ontology merging and mapping. International Journal of

Human-Computer Studies (IJHCS), 59(6):983–1024, 2003.

[181] Natalya Noy and Mark Musen. Anchor-PROMPT: Using non-local

context for semantic matching. In Proceedings of the Workshop on

Ontology and Information Sharing at the International Joint Confer-

ence on Artificial Intelligence (IJCAI), pages 63–70, 2001.

[182] Natalya Noy and Mark Musen. PromptDiff: A fixed-point algorithm

for comparing ontology versions. In Proceedings of the National Con-

ference on Artificial Intelligence (AAAI), pages 744–750, 2002.

[183] Natalya Noy and Mark Musen. Ontology versioning in an ontology

management framework. IEEE Intelligent Systems, 19(4):6–13, 2004.

[184] Swapna Oundhakar, Kunal Verma, Kaarthik Sivashanugam, Amit

Sheth, and John Miller. Discovery of web services in a multi-ontology

and federated registry environment. International Journal of Web

Services Research (JWSR), 2(3):1–32, 2005.

[185] Tamer Özsu and Patrick Valduriez. Principles of Distributed

Database Systems. Prentice Hall, second edition, 1999.

[186] Luigi Palopoli, Luigi Pontieri, Giorgio Terracina, and Domenico

Ursino. Intensional and extensional integration and abstraction of

heterogeneous databases. Data Knowledge Engineering, 35(3):201–

237, 2000.

[187] Luigi Palopoli, Domenico Saccá, Giorgio Terracina, and Domenico

Ursino. Uniform techniques for deriving similarities of objects and

subschemes in heterogeneous databases. IEEE Transactions on

Knowledge and Data Engineering, 15(2):271–294, 2003.

213

BIBLIOGRAPHY BIBLIOGRAPHY

[188] Luigi Palopoli, Domenico Saccà, and Domenico Ursino. An auto-

matic techniques for detecting type conflicts in database schemes. In

Proceedings of the Conference on Information and Knowledge Man-

agement (CIKM), pages 306–313, 1998.

[189] Luigi Palopoli, Giorgio Terracina, and Domenico Ursino. DIKE: a

system supporting the semi-automatic construction of cooperative in-

formation systems from heterogeneous databases. Software–practice

and experinece, 33(9):847–884, 2003.

[190] Rong Pan, Zhongli Ding, Yang Yu, and Yun Peng. A bayesian net-

work approach to ontology mapping. In Proceedings of the Interna-

tional Semantic Web Conference (ISWC), pages 563–577, 2005.

[191] Massimo Paolucci, Takahiro Kawamura, Terry Payne, and Katia

Sycara. Semantic matching of web services capabilities. In Proceed-

ings of the International Semantic Web Conference (ISWC), pages

333–347, 2002.

[192] Christine Parent and Stefano Spaccapietra. Issues and approaches of

database integration. Communications of the ACM, 41(5):166–178,

1998.

[193] Christine Parent and Stefano Spaccapietra. Database integration:

the key to data interoperability. In Object-Oriented Data Modeling.

The MIT Press, Cambridge (MA US), 2000.

[194] Christine Parent, Stefano Spaccapietra, and Esteban Zimányi. Con-

ceptual Modeling for Traditional and Spatio-Temporal Applications :

The MADS Approach. Springer-Verlag, Heidelberg (DE), 2006.

214

BIBLIOGRAPHY BIBLIOGRAPHY

[195] Paulo Pinheiro da Silva, Deborah McGuinness, and Richard Fikes.

A proof markup language for semantic web services. Information

systems, 31(4):381–395, 2006.

[196] Alun Preece, Kit-Ying Hui, Alex Gray, Philippe Marti, Trevor Bench-

Capon, Dean Jones, and Zhan Cui. The KRAFT architecture for

knowledge fusion and transformation. Knowledge-Based Systems,

13(2-3):113–120, 2000.

[197] Roy Rada, Hafedh Mili, Ellen Bicknell, and Maria Blettner. Devel-

opment and application of a metric on semantic nets. IEEE Trans-

actions on Systems, Man and Cybernetics, 19(1):17–30, 1989.

[198] Erhard Rahm and Philip Bernstein. A survey of approaches to auto-

matic schema matching. The VLDB Journal, 10(4):334–350, 2001.

[199] Erhard Rahm, Hong-Hai Do, and Sabine Maßmann. Matching large

XML schemas. SIGMOD Record, 33(4):26–31, 2004.

[200] Phillip Resnik. Semantic similarity in a taxonomy: an information-

based measure and its application to problems of ambiguity in natural

language. Journal of Artificial Intelligence Research (JAIR), 11:95–

130, 1999.

[201] George G. Robertson, Mary P. Czerwinski, and John E. Churchill.

Visualization of mappings between schemas. In Proceedings of the

Conference on Human Factors in Computing Systems (CHI), pages

431–439, 2005.

[202] John Roddick. A survey of schema versioning issues for database

systems. Information and Software Technology, 37(7):383–393, 1995.

[203] Marie-Christine Rousset, Philippe Adjiman, Philippe Chatalic,

François Goasdoué, and Laurent Simon. Somewhere in the semantic

215

BIBLIOGRAPHY BIBLIOGRAPHY

web. In Proceedings of the Conference on Current Trends in Theory

and Practice of Informatics (SOFSEM), pages 84–99, 2006.

[204] Marta Sabou, Vanessa Lopez, and Enrico Motta. Ontology selection

for the real semantic web: How to cover the queens birthday din-

ner? In Proceedings of the International Conference on Knowledge

Engineering and Knowledge Management (EKAW), 2006.

[205] Mayssam Sayyadian, Yoonkyong Lee, An-Hai Doan, and Arnon

Rosenthal. Tuning schema matching software using synthetic scenar-

ios. In Proceedings of the Very Large Data Bases Conference (VLDB),

pages 994–1005, 2005.

[206] Randall Schuh. Biological Systematics: Principles and Applications.

Cornell University Press, 1999.

[207] Ellen Schulten, Hans Akkermans, Guy Botquin, Martin Dorr, Nicola

Guarino, Nelson Lopes, and Norman Sadeh. Call for participants:

The e-commerce product classification challenge. IEEE Intelligent

Systems, 16(4):86–c3, 2001.

[208] Luciano Serafini, Heiner Stuckenschmidt, and Holger Wache. A for-

mal investigation of mapping language for terminological knowledge.

In Proceedings of the International Joint Conference on Artificial In-

telligence (IJCAI), pages 576–581, 2005.

[209] Microsoft BizTalk Server. Biztalk mapper.

http://msdn.microsoft.com/biztalk/, 2004.

[210] Dennis Shasha, Jason Tsong-Li Wang, and Rosalba Giugno. Algo-

rithmics and applications of tree and graph searching. In Proceedings

of the Symposium on Principles of Database Systems (PODS), pages

39–52, 2002.

216

BIBLIOGRAPHY BIBLIOGRAPHY

[211] Dennis Shasha and Kaizhong Zhang. Approximate tree pattern

matching. In Alberto Apostolico and Zvi Galil, editors, Pattern

Matching Algorithms, chapter 14, pages 341–371. Oxford University

Press, 1997.

[212] Amit Sheth and James Larson. Federated database systems for man-

aging distributed, heterogeneous, and autonomous databases. ACM

Computing Surveys, 22(3):183–236, 1990.

[213] Pavel Shvaiko. A classification of schema-based matching approaches.

In Proceedings of the Meaning Coordination and Negotiation Work-

shop at the International Semantic Web Conference (ISWC), 2004.

[214] Pavel Shvaiko and Jérôme Euzenat. A survey of schema-based match-

ing approaches. Journal on Data Semantics (JoDS), IV:146–171,

2005.

[215] Pavel Shvaiko, Fausto Giunchiglia, Paulo Pinheiro da Silva, and Deb-

orah McGuinness. Web explanations for semantic heterogeneity dis-

covery. In Proceedings of the European Semantic Web Conference

(ESWC), pages 303–317, 2005.

[216] Pavel Shvaiko, Fausto Giunchiglia, Marco Schorlemmer, Fiona Mc-

Neill, Alan Bundy, Maurizio Marchese, Mikalai Yatskevich, Ilya Za-

ihrayeu, Bo Ho, Vanessa Lopez, Marta Sabou, Joaq́ın Abian, Ronny

Siebes, and Spyros Kotoulas. Dynamic ontology matching: a survey.

Deliverable 3.1, OpenKnowledge STReP, 2006.

[217] Mike Smith, Christopher Welty, and Deborah McGuinness (eds.).

OWL web ontology language guide. Recommendation, W3C, Febru-

ary 10 2004.

217

BIBLIOGRAPHY BIBLIOGRAPHY

[218] Anastasiya Sotnykova, Christèle Vangenot, Nadine Cullot, Nacra

Bennacer, and Marie-Aude Aufaure. Semantic mappings in descrip-

tion logics for spatio-temporal database schema integration. Journal

on Data Semantics (JoDS), III:143–167, 2005.

[219] Stefano Spaccapietra and Christine Parent. Conflicts and corre-

spondence assertions in interoperable databases. SIGMOD Record,

20(4):49–54, 1991.

[220] Stefano Spaccapietra and Christine Parent. View integration: A step

forward in solving structural conflicts. IEEE Transactions on Knowl-

edge and Data Engineering (TKDE), 6(2):258–274, 1994.

[221] Stefano Spaccapietra, Christine Parent, and Yann Dupont. Model

independent assertions for integration of heterogeneous schemas. The

VLDB Journal, 1(1):81–126, 1992.

[222] Steffen Staab and Rudi Studer. Handbook of ontologies. International

handbooks on information systems. Springer Verlag, Berlin (DE),

2004.

[223] Gerd Stumme and Alexander Mädche. FCA-Merge: Bottom-up

merging of ontologies. In Proceedings of the International Joint Con-

ference on Artificial Intelligence (IJCAI), pages 225–234, 2001.

[224] Kai Ming Ting and Ian Witten. Issues in stacked generalization.

Journal of Artificial Intelligence Research (JAIR), 10:271–289, 1999.

[225] Mike Uschold and Michael Gruninger. Ontologies and semantics for

seamless connectivity. SIGMOD Record, 33(4):58–64, 2004.

[226] Petko Valtchev. Construction automatique de taxonomies pour

l’aide à la représentation de connaissances par objets. Thèse

d’informatique, Université Grenoble 1, 1999.

218

BIBLIOGRAPHY BIBLIOGRAPHY

[227] Petko Valtchev and Jérôme Euzenat. Dissimilarity measure for col-

lections of objects and values. In Proceedings of the Symposium on

Intelligent Data Analysis (IDA), pages 259–272, 1997.

[228] Rogier van Eijk, Frank de Boer, Wiebe van de Hoek, and John-

Jules Meyer. On dynamically generated ontology translators in agent

communication. International Journal of Intelligent Systems (IJIS),

16:587–607, 2001.

[229] Marjolein van Gendt, Antoine Isaac, Lourens van der Meij, and Ste-

fan Schlobach. Semantic web techniques for multiple views on het-

erogeneous collections: A case study. In Proceedings of the European

Conference on Digital Libraries (ECDL), pages 426–437, 2006.

[230] Cornelis Joost (Keith) van Rijsbergen. Information retrieval. But-

terworths, 1975. http://www.dcs.gla.ac.uk/Keith/Preface.html.

[231] Pepijn Visser, Dean Jones, Trevor Bench-Capon, and Michael Shave.

An analysis of ontological mismatches: heterogeneity versus interop-

erability. In Proceedings of the AAAI Spring Symposium on Ontolog-

ical Engineering, 1997.

[232] Piek Vossen, editor. EuroWordNet: A Multilingual Database with

Lexical Semantic Networks. Kluwer Academic Publishers, 1998.

[233] Holger Wache, Thomas Voegele, Ubbo Visser, Heiner Stucken-

schmidt, Gerhard Schuster, Holger Neumann, and Sebastian Hübner.

Ontology-based integration of information - a survey of existing ap-

proaches. In Proceedings of the Workshop on Ontologies and Infor-

mation Sharing at the International Joint Conference on Artificial

Intelligence (IJCAI), pages 108–117, 2001.

219

BIBLIOGRAPHY BIBLIOGRAPHY

[234] Jun Wang and Les Gasser. Mutual on-line ontology alignment. In

Proceedings of the Workshop on Ontologies in Agent Systems (OAS)

at the International Joint Conference on Autonomous Agents and

Multi-Agent Systems (AAMAS), 2002.

[235] Christopher A. Welty and Nicola Guarino. Supporting ontological

analysis of taxonomic relationships. Data and Knowledge Engineer-

ing, 39(1):51–74, 2001.

[236] Ilya Zaihrayeu. Towards Peer-to-Peer Information Management Sys-

tems. PhD thesis, International Doctorate School in Information and

Communication Technology, University of Trento, March 2006.

[237] Stefano Zanobini. Semantic coordination: the model and an applica-

tion to schema matching. PhD thesis, International Doctorate School

in Information and Communication Technology, University of Trento,

March 2006.

[238] Anna Zhdanova and Pavel Shvaiko. Community-driven ontology

matching. In Proceedings of the European Semantic Web Conference

(ESWC), pages 34–49, 2006.

[239] Antoine Zimmermann, Markus Krötzsch, Jérôme Euzenat, and Pas-

cal Hitzler. Formalizing ontology alignment and its operations with

category theory. In Proceedings of the International Conference on

formal ontologies for information systems (FOIS), 2006.

[240] Sagit Zohar. Schema-based data translation. Master’s thesis, Tel-

Aviv University (IL), 1997.

220

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

