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Abstract. We view match as an operator that takes two graph-like structures 
(e.g., classifications, XML schemas) and produces a mapping between the 
nodes of these graphs that correspond semantically to each other. Semantic 
matching is based on two ideas: (i) we discover mappings by computing seman-
tic relations (e.g., equivalence, more general); (ii) we determine semantic rela-
tions by analyzing the meaning (concepts, not labels) which is codified in the 
elements and the structures of schemas. In this paper we present basic and op-
timized algorithms for semantic matching, and we discuss their implementation 
within the S-Match system. We evaluate S-Match against three state of the art 
matching systems, thereby justifying empirically the strength of our approach. 

1. Introduction 

Match is a critical operator in many well-known metadata intensive applications, such 
as schema/ontology integration, data warehouses, data integration, e-commerce, etc. 
The match operator takes two graph-like structures and produces a mapping between 
the nodes of the graphs that correspond semantically to each other. 

Many diverse solutions of match have been proposed so far, see [43,12,40,42] for 
recent surveys, while some examples of individual approaches addressing the match-
ing problem can be found in [1,2,5,6,10,11,13,16,30,32,33,35,39]1.We focus on a 
schema-based solution, namely a matching system exploiting only the schema infor-
mation, thus not considering instances. We follow a novel approach called semantic 
matching [20]. This approach is based on two key ideas. The first is that we calculate 
mappings between schema elements by computing semantic relations (e.g., equiva-
lence, more general, disjointness), instead of computing coefficients rating match 
quality in the [0,1] range, as it is the case in most previous approaches, see, for exam-
ple, [11,13,32,39,35]. The second idea is that we determine semantic relations by ana-
lyzing the meaning (concepts, not labels) which is codified in the elements and the 
structures of schemas. In particular, labels at nodes, written in natural language, are 
automatically translated into propositional formulas which explicitly codify the la-
bels’ intended meaning. This allows us to translate the matching problem into a pro-

                                                           
* This article is an expanded and updated version of an earlier conference paper [23]. 
1 See www.OntologyMatching.org for a complete information on the topic. 



positional validity problem, which can then be efficiently resolved using (sound and 
complete) state of the art propositional satisfiability (SAT) deciders, e.g., [31]. 

A vision of the semantic matching approach and some of its implementation were 
reported in [20,21,25]. In contrast to these works, this paper elaborates in more detail 
the element level and the structure level matching algorithms, providing a complete 
account of the approach. In particular, the main contributions are: (i) a new schema 
matching algorithm, which builds on the advances of the previous solutions at the 
element level by providing a library of element level matchers, and guarantees cor-
rectness and completeness of its results at the structure level; (ii) an extension of the 
semantic matching approach for handling attributes; (iii) an evaluation of the per-
formance and quality of the implemented system, called S-Match, against other state 
of the art systems, which proves empirically the benefits of our approach. This article 
is an expanded and updated version of an earlier conference paper [23]. Therefore, 
three contributions mentioned above were originally claimed and substantiated in 
[23]. The most important extensions over [23] include a technical account of: (i) word 
sense disambiguation techniques, (ii) management of the inconsistencies in the match-
ing tasks, and (iii) an in-depth discussion of the optimization techniques that improve 
the efficiency of the matching algorithm. 

The rest of the paper is organized as follows. Section 2 introduces the semantic 
matching approach. It also provides an overview of four main steps of the semantic 
matching algorithm, while Sections 3,4,5,6 are devoted to the technical details of 
those steps. Section 7 discusses semantic matching with attributes. Section 8 intro-
duces the optimizations that allow improving efficiency of the basic version of the al-
gorithm. The evaluation results are presented in Section 9. Section 10 overviews the 
related work. Section 11 provides some conclusions and discusses future work. 

2. Semantic Matching 

In our approach, we assume that all the data and conceptual models (e.g., classifica-
tions, database schemas, ontologies) can be generally represented as graphs (see [20] 
for a detailed discussion). This allows for the statement and solution of a generic (se-
mantic) matching problem independently of specific conceptual or data models, very 
much along the lines of what is done in Cupid [32] and COMA [11]. We focus on 
tree-like structures, e.g., classifications, and XML schemas. Real-world schemas are 
seldom trees, however, there are (optimized) techniques, transforming a graph repre-
sentation of a schema into a tree representation, e.g., the graph-to-tree operator of Pro-
toplasm [7]. From now on we assume that a graph-to-tree transformation can be done 
by using existing systems, and therefore, we focus on other issues instead. 

The semantic matching approach is based on two key notions, namely:  
- Concept of a label, which denotes the set of documents (data instances) that 

one would classify under a label it encodes; 
- Concept at a node, which denotes the set of documents (data instances) that 

one would classify under a node, given that it has a certain label and that it is 
in a certain position in a tree. 



Our approach can discover the following semantic relations between the concepts 
at nodes of two schemas: equivalence (=); more general ( ); less general ( ); dis-
jointness (⊥). When none of the relations holds, the special idk (I do not know) 2 rela-
tion is returned. The relations are ordered according to decreasing binding strength, 
i.e., from the strongest (=) to the weakest (idk), with more general and less general re-
lations having equal binding power. Notice that the strongest semantic relation always 
exists since, when holding together, more general and less general relations are 
equivalent to equivalence. The semantics of the above relations are the obvious set-
theoretic semantics. 

A mapping element is a 4-tuple 〈IDij, ai, bj, R〉, i =1,...,NA; j =1,...,NB where IDij is a 
unique identifier of the given mapping element; ai is the i-th node of the first tree, NA 
is the number of nodes in the first tree; bj is the j-th node of the second tree, NB is the 
number of nodes in the second tree; and R specifies a semantic relation which may 
hold between the concepts at nodes ai and bj. Semantic matching can then be defined 
as the following problem: given two trees TA and TB compute the NA × NB mapping 
elements 〈IDij, ai, bj, R′〉, with ai ∈ TA, i=1,..., NA; bj ∈ TB, j =1,..., NB; and R′ is the 
strongest semantic relation holding between the concepts at nodes ai and bj. Since we 
look for the NA × NB correspondences, the cardinality of mapping elements we are 
able to determine is 1:N. Also, these, if necessary, can be decomposed straightfor-
wardly into mapping elements with the 1:1 cardinality. 

Let us summarize the algorithm for semantic matching via a running example. We 
consider small academic courses classifications shown in Figure 1. 

 

Fig. 1. Parts of two classifications devoted to academic courses 

Let us introduce some notation (see also Figure 1). Numbers are the unique identi-
fiers of nodes. We use “C” for concepts of labels and concepts at nodes. Thus, for ex-
                                                           
2 Notice idk is an explicit statement that the system is unable to compute any of the declared 
(four) relations. This should be interpreted as either there is not enough background knowledge, 
and therefore, the system cannot explicitly compute any of the declared relations or, indeed, 
none of those relations hold according to an application. 



ample, in the tree A, CHistory and C4 are, respectively, the concept of the label History 
and the concept at node 4. Also, to simplify the presentation, whenever it is clear from 
the context we assume that the concept of a label can be represented by the label it-
self. In this case, for example, CHistory becomes denoted as History. Finally, we some-
times use subscripts to distinguish between trees in which the given concept of a label 
occurs. For instance, HistoryA, means that the concept of the label History belongs to 
the tree A. 

The algorithm takes as input two schemas and computes as output a set of map-
ping elements in four macro steps: 

− Step 1: for all labels L in two trees, compute concepts of labels, CL. 
− Step 2: for all nodes N in two trees, compute concepts at nodes, CN. 
− Step 3: for all pairs of labels in two trees, compute relations among CL’s.  
− Step 4: for all pairs of nodes in two trees, compute relations among CN’s.  
The first two steps represent the preprocessing phase, while the third and the 

fourth steps are the element level and structure level matching respectively3. It is im-
portant to notice that Step 1 and Step 2 can be done once, independently of the spe-
cific matching problem. Step 3 and Step 4 can only be done at run time, once the two 
trees which must be matched have been chosen. We also refer in the remainder of the 
paper to the element level matching (Step 3) as label matching and to the structure 
level matching (Step 4) as node matching.  

We view labels of nodes as concise descriptions of the data that is stored under the 
nodes. During Step 1, we compute the meaning of a label at a node (in isolation) by 
taking as input a label, by analyzing its real-world semantics (e.g., using WordNet 
[37] 4), and by returning as output a concept of the label. Thus, for example, by writ-
ing CHistory we move from the natural language ambiguous label History to the concept 
CHistory, which codifies explicitly its intended meaning, namely the data (documents) 
which are about history.  

During Step 2 we analyze the meaning of the positions that the labels of nodes 
have in a tree. By doing this we extend concepts of labels to concepts at nodes. This is 
required to capture the knowledge residing in the structure of a tree, namely the con-
text in which the given concept of label occurs [17]. Thus, for example, in the tree A, 
when we write C4 we mean the concept describing all the documents of the (aca-
demic) courses, which are about history. 

Step 3 is concerned with acquisition of “world” knowledge. Relations between 
concepts of labels are computed with the help of a library of element level semantic 
matchers. These matchers take as input two concepts of labels and produce as output a 
semantic relation (e.g., equivalence, more/less general) between them. For example, 
from WordNet [37] we can derive that course and class are synonyms, and therefore, 
CCourses = CClasses.  

                                                           
3 Element level matching (techniques) compute mapping elements by analyzing schema entities 
in isolation, ignoring their relations with other entities. Structure-level techniques compute 
mapping elements by analyzing how schema entities appear together in a structure, see for 
more details [42,43]. 
4 WordNet is a lexical database for English. It is based on synsets (or senses), namely structures 
containing sets of terms with synonymous meanings. 



Step 4 is concerned with the computation of the relations between concepts at 
nodes. This problem cannot be resolved by exploiting static knowledge sources only. 
We have (from Step 3) background knowledge, codified as a set of relations between 
concepts of labels occurring in two trees. This knowledge constitutes the background 
theory (axioms) within which we reason. We need to find a semantic relation (e.g., 
equivalence, more/less general) between the concepts at any two nodes in two trees. 
However, these are usually complex concepts obtained by suitably combining the cor-
responding concepts of labels. For example, suppose we want to find a relation be-
tween C4 in the tree A (which, intuitively, stands for the concept of courses of history) 
and C4 in the tree B (which, intuitively, stands for the concept of classes of history). In 
this case, we should realize that they have the same extension, and therefore, that they 
are equivalent. 

3. Step 1: Concepts of Labels Computation 

Technically, the main goal of Step 1 is to automatically translate ambiguous natural 
language labels taken from the schema elements’ names into an internal logical lan-
guage. We use a propositional description logic language5 (LC) for several reasons. 
First, given its set-theoretic interpretation, it “maps” naturally to the real world se-
mantics. Second, natural language labels, e.g., in classifications, are usually short ex-
pressions or phrases having simple structure. These phrases can often be converted 
into a formula in LC with no or little loss of meaning [18]. Third, a formula in LC can 
be converted into an equivalent formula in a propositional logic language with boo-
lean semantics. Apart from the atomic propositions, the language LC includes logical 
operators, such as conjunction ( ), disjunction ( ), and negation (¬). There are also 
comparison operators, namely more general ( ), less general ( ), and equivalence 
(=). The interpretation of these operators is the standard set-theoretic interpretation.  

We compute concepts of labels according to the following four logical phases, be-
ing inspired by the work in [34].  

1. Tokenization. Labels of nodes are parsed into tokens by a tokenizer which recog-
nizes punctuation, cases, digits, stop characters, etc. Thus, for instance, the label 
History and Philosophy of Science becomes 〈history, and, philosophy, of, science〉. 
The multiword concepts are then recognized. At the moment the list of all multi-
word concepts in WordNet [37] is exploited here together with a heuristic which 
takes into account the natural language connectives, such as and, or, etc. For ex-
ample, Earth and Atmospheric Sciences becomes 〈earth sciences, and, atmos-
pheric, sciences〉 since WordNet contains senses for earth sciences, but not for at-
mospheric sciences. 

 

                                                           
5 A propositional description logic language (LC) we use here is the description logic ALC lan-
guage without the role constructor, see for more details [4]. Note, since we do not use roles, in 
practice we straightforwardly translate the natural language labels into propositional logic for-
mulas. 



2. Lemmatization. Tokens of labels are further lemmatized, namely they are morpho-
logically analyzed in order to find all their possible basic forms. Thus, for instance, 
sciences is associated with its singular form, science. Also here we discard from 
further considerations some pre-defined meaningless (in the sense of being useful 
for matching) words, articles, numbers, and so on.  

3. Building atomic concepts. WordNet is queried to obtain the senses of lemmas iden-
tified during the previous phase. For example, the label Sciences has the only one 
token sciences, and one lemma science. From WordNet we find out that science 
has two senses as a noun.  

4. Building complex concepts. When existing, all tokens that are prepositions, punc-
tuation marks, conjunctions (or strings with similar roles) are translated into logical 
connectives and used to build complex concepts out of the atomic concepts con-
structed in the previous phase. Thus, for instance, commas and conjunctions are 
translated into logical disjunctions, prepositions, such as of and in, are translated 
into logical conjunctions, and words like except, without are translated into nega-
tions. Thus, for example, the concept of label History and Philosophy of Science is 
computed as CHistory and Philosophy of Science = (CHistory CPhilosophy) CScience, where  
CScience = 〈science, {sensesWN#2}〉 is taken to be the union of two WordNet senses, 
and similarly for history and philosophy. Notice that natural language and is con-
verted into logical disjunction, rather than into conjunction (see [34] for detailed 
discussion and justification for this choice). 

The result of Step 1 is the logical formula for concept of label. It is computed as a full 
propositional formula were literals stand for atomic concepts of labels. 

In Figure 2 we present the pseudo-code which provides an algorithmic account of 
how concepts of labels are built. In particular, the buildCLab function takes the 
tree of nodes context and constructs concepts of labels for each node in the tree. 
The nodes are preprocessed in the main loop in lines 220-350. Within this loop, first, 
the node label is obtained in line 240. Then, it is tokenized and lemmatized in lines 
250 and 260, respectively. The (internal) loop on the lemmas of the node (lines 270-
340) starts from stop words test in line 280. Then, WordNet is queried. If the lemma 
is in WordNet, its senses are extracted. In line 300, atomic concept of label is created 
and attached to the node by the addACOLtoNode function. In the case when Word-
Net returns no senses for the lemma, the special identifier SENSES_NOT_FOUND is 
attached to the atomic concept of label6. The propositional formula for the concept of 
label is iteratively constructed by constructcLabFormula (line 340). Finally, 
the logical formula is attached to the concept at label (line 350) and some sense filter-
ing is performed by elementLevelSenseFiltering7.  
 
 

                                                           
6 This identifier is further used by element level semantic matchers in Step 3 of the matching 
algorithm in order to determine the fact that the label (lemma) under consideration is not con-
tained in WordNet, and therefore, there are no senses in WordNet for a given concept. 
7 The sense filtering problem is also known under the name of word sense disambiguation 
(WSD), see, e.g., [29]. 



 
 

Node struct of 
 int nodeId; 
 String label; 
 String cLabel; 
 String cNode; 
 AtomicConceptAtLabel[] ACOLs; 
AtomicConceptOfLabel struct of 
 int id; 
 String token; 
 String[] wnSenses; 
200. void buildCLab(Tree of Nodes context) 
210.  String[] wnSenses; 
220.  For each node in context 
230.    String cLabFormula=””; 
240.    String nodeLabel=getLabel(node); 
250.    String[] tokens=tokenize(nodeLabel); 
260.    String[] lemmas=lematize(tokens); 
270.    For each lemma in lemmas 
280.      if (isMeaningful(lemma)) 
290.        if (!isInWordnet(lemma)) 
300.         addACOLtoNode(node, lemma, SENSES_NOT_FOUND); 
310.       else 
320.         wnSenses= getWNSenses(token); 
330.         addACOLtoNode(node, lemma, wnSenses); 
340.     cLabFormula=constructcLabFormula(cLabFormula, lemma); 
350.   setcLabFormula(node, cLabFormula); 
360.   elementLevelSenseFiltering(node); 

Fig. 2. Concept of label construction pseudo code 

 
 
The pseudo code in Figure 3 illustrates the sense filtering technique. It is used in 

order to filter out the irrelevant (for the given matching task) senses from concepts of 
labels. In particular, we look whether the senses of atomic concepts of labels within 
each concept of a label are connected by any relation in WordNet. If so, we discard all 
other senses from atomic concept of label. Otherwise we keep all the senses. For ex-
ample, for the concept of label Sites and Monuments before the sense filtering step we 
have 〈Sites, {sensesWN#4}〉 〈Monuments, {sensesWN#3}〉. Since the second sense of 
monument is a hyponym of the first sense of site, notationally Monument#2  Site#1, 
all the other senses are discarded. Therefore, as a result of this sense filtering step we 
have 〈Sites, {sensesWN#1}〉 〈Monuments, {sensesWN#1}〉.  

elementLevelSenseFiltering takes the node structure as input and dis-
cards the irrelevant senses from atomic concepts of labels within the node. In particu-
lar, it executes two loops on atomic concept of labels (lines 30-120 and 50-120). 
WordNet senses for the concepts are acquired in lines 40 and 70. Then two loops on 
the WordNet senses are executed in lines 80-120 and 90-120. Afterwards, checking 
whether the senses are connected by a WordNet relation is performed in line 100. If 
so, the senses are added to a special set, called refined senses set (lines 110, 120). Fi-
nally, the WordNet senses are replaced with the refined senses by saveRefined-
Senses. 

 



 
10.void elementLevelSenseFiltering(Node node) 
20. AtomicConceptOfLabel[] nodeACOLs=getACOLs(node); 
30. for each nodeACOL in nodeACOLs 
40.  String[] nodeWNSenses=getWNSenses(nodeACOL); 
50.  for each ACOL in nodeACOLs 
60.   if (ACOL!=nodeACOL) 
70.    String[] wnSenses=getWNSenses(ACOL); 
80.     for each nodeWNSense in nodeWNSenses 
90.      for each wnSense in wnSenses 
100.       if (isConnectedbyWN(nodeWNSense, focusNodeWNSense)) 
110.        addToRefinedSenses(nodeACOL,nodeWNSense); 
120.        addToRefinedSenses(focusNodeACOL, focusNodeWNSense); 
130.  saveRefinedSenses(context); 
 
140. void saveRefinedSenses(context)  
150.   for each node in context 
160.     AtomicConceptOfLabel[] nodeACOLs=getACOLs(node); 
170.    for each nodeACOL in NodeACOLs 
180.      if (hasRefinedSenses(nodeACOL)) 
190.        //replace original senses with refined 

Fig. 3. The pseudo code of element level sense filtering technique 

 

4. Step 2: Concepts at Nodes Computation 

Concepts at nodes are written in the same propositional description logic language as 
concepts of labels. Classifications and XML schemas are hierarchical structures 
where the path from the root to a node uniquely identifies that node (and also its 
meaning). Thus, following an access criterion semantics [26], the logical formula for 
a concept at node is defined as a conjunction of concepts of labels located in the path 
from the given node to the root. For example, in the tree A, the concept at node four is 
computed as follows: C4 = CCourses  CHistory. 

Further in the paper we require the concepts at nodes to be consistent (satisfiable). 
The reasons for their inconsistency are negations in atomic concepts of labels. For ex-
ample, natural language label except_geology is translated into the following logical 
formula Cexcept_geology =¬Cgeology. Therefore, there can be a concept at node represented 
by a formula of the following type Cgeology … ¬ Cgeology, which is inconsistent. In 
this case the user is notified that the concept at node formula is unsatisfiable and 
asked to decide a more important branch, i.e., (s)he can choose what to delete from 
the tree, namely Cgeology or Cexcept_geology. Notice that this does not sacrifice the system 
performance since this check is made within the preprocessing (i.e., off-line, when the 
tree is edited)8. Let us consider the following example: CN = … CMedieval CModern. 
Here, concept at node formula contains two concepts of labels, which are as from 

                                                           
8 In general case the reasoning is as costly as in the case of propositional logic (i.e., deciding 
unsatisfiability of the concept is co-NP hard). In many real world cases (see [25] for more de-
tails) the corresponding formula is Horn. Thus, its satisfiability can be decided in linear time.  



WordNet disjoint. Intuitively, this means that the context talks about either Medieval 
or Modern (or there is implicit disjunction in the concept at node formula). Therefore, 
in such cases, the formula for concept at node is rewritten in the following way:  
CN =(CMedieval CModern) ... 

The pseudo code of the second step is presented in Figure 4. The buildCNode 
function takes as an input the tree of nodes with precomputed concepts of labels and 
computes as output the concept at node for each node in the tree. The sense filtering 
(line 620) is performed by structureLevelSenseFiltering in the way simi-
lar to the sense filtering approach used at the element level (as discussed in Figure 3). 
Then, the formula for the concept at node is constructed within buildcNodeFor-
mula as conjunction of concepts of labels attached to the nodes in the path to the 
root. Finally, the formula is checked for unsatisfiability (line 640). If so, user is asked 
about the possible modifications in the tree structure or they are applied automati-
cally, specifically implicit disjunctions are added between disjoint concepts (line 
650). 

 
600. void buildCNode(Tree of Node context) 
610.  for each node in context 
620.    structureLevelSenseFiltering (node,context); 
630.    String cNodeFormula= buildcNodeFormula (node, context); 
640.    if (isUnsatisifiable(cNodeFormula)) 
650.      updateFormula(cNodeFormula); 

Fig. 4. Concepts at nodes construction pseudo code 

 
Let us discuss how the structure level sense filtering operates. As noticed before, 

this technique is similar to the one described in Figure 3. The major difference is that 
the senses now are filtered not within the node label but within the tree structure. For 
all concepts of labels we collect all their ancestors and descendants. We call them a 
focus set. Then, all WordNet senses of atomic concepts of labels from the focus set 
are compared with the senses of the atomic concepts of labels of the concept. If a 
sense of atomic concept of label is connected by a WordNet relation with the sense 
taken from the focus set, then all other senses of these atomic concepts of labels are 
discarded. Therefore, as a result of sense filtering step we have (i) the WordNet 
senses which are connected with any other WordNet senses in the focus set or (ii) all 
the WordNet senses otherwise. After this step the meaning of concept of labels is rec-
onciled with respect to the knowledge residing in the tree structure. The pseudo code 
in Figure 5 provides an algorithmic account of the structure level sense filtering pro-
cedure.  

The structureLevelSenseFiltering function takes a node and a tree of 
nodes as input and refines the WordNet senses within atomic concepts of labels in the 
node with respect to the tree structure. First, atomic concepts at labels from the ances-
tor and descendant nodes are gathered into the focus set (line 420). Then, a search for 
pairwise relations between the senses attached to the atomic concepts of labels is per-
formed (lines 440-520). These senses are added to the refined senses set (lines 530-
540) and further saveRefinedSenses from Figure 3 is applied (line 550) in order 
to save the refined senses.  



 
400.void structureLevelSenseFiltering (Node node, Tree of Nodes context) 
410.  AtomicConceptOfLabel[] focusNodeACOLs; 
420.  Node[] focusNodes=getFocusNodes(node, context); 
430.  AtomicConceptOfLabel[] nodeACOLs=getACOLs(node); 
440.  for each nodeACOL in nodeACOLss 
450.    String[] nodeWNSenses=getWNSenses(nodeACOL); 
460.    for each nodeWNSense in nodeWNSenses 
470.      for each focusNode in focusNodes 
480.        focusNodeACOLs=getACOLs(focusNode); 
490.        for each focusNodeACOL in focusNodeACOLs 
500.          String[] fNodeWNSenses=getWNSenses(focusNodeACOL); 
510.          for each fNodeWNSense in nodeWNSenses 
520.            if (isConnectedbyWN(nodeWNSense, fNodeWNSense)) 
530.              addToRefinedSenses(nodeACOL,nodeWNSense); 
540.              addToRefinedSenses(focusNodeACOL, focusNodeWNSense); 
550.  saveRefinedSenses(context); 

Fig. 5. The pseudo code of structure level sense filtering technique 

 

5. Step 3: Label Matching 

5.1 A library of label matchers 

Relations between concepts of labels are computed with the help of a library of ele-
ment level semantic matchers [24]. These matchers take as input two atomic concepts 
of labels and produce as output a semantic relation between them. Some of them are 
re-implementations of well-known matchers used in Cupid [32] and COMA [11]. The 
most important difference is that our matchers ultimately return a semantic relation, 
rather than an affinity level in the [0,1] range, although sometimes using customizable 
thresholds. 

Our label matchers are briefly summarized in Table 1. The first column contains 
the names of the matchers. The second column lists the order in which they are exe-
cuted. The third column introduces the matchers’ approximation level. The relations 
produced by a matcher with the first approximation level are always correct. For ex-
ample, name  brand as returned by WordNet. In fact, according to WordNet name is 
a hypernym (superordinate word) of brand. Notice that name has 15 senses and brand 
has 9 senses in WordNet. We use sense filtering techniques to discard the irrelevant 
senses, see Sections 3 and 4 for details. The relations produced by a matcher with the 
second approximation level are likely to be correct (e.g., net = network, but hot = ho-
tel by Prefix). The relations produced by a matcher with the third approximation level 
depend heavily on the context of the matching task (e.g., cat = dog by Extended gloss 
comparison in the sense that they are both pets). Note, matchers by default are exe-
cuted following the order of increasing approximation level. The fourth column re-
ports the matchers’ type. The fifth column describes the matchers’ input. 



Table 1. Element level semantic matchers implemented so far. 

Matcher name Execution
Order 

Approximation 
level Matcher type Schema info 

Prefix 2 2 
Suffix 3 2 

Edit distance 4 2 
N-gram 5 2 

Labels 

Text Corpus 13 3 

String-based 

Labels + Corpus 
WordNet 1 1 

Hierarchy distance 6 3 
Sense-based WordNet senses 

WordNet Gloss 7 3 
Extended WordNet Gloss 8 3 

Gloss Comparison 9 3 
Extended Gloss Comparison 10 3 
Semantic Gloss Comparison 11 3 

Extended semantic gloss com-
parison 12 3 

Gloss-based WordNet senses 

We have three main categories of matchers: string-, sense- and gloss- based 
matchers. String-based matchers exploit string comparison techniques in order to pro-
duce the semantic relation, while sense-based exploit the structural properties of the 
WordNet hierarchies and gloss-based compare two textual descriptions (glosses) of 
WordNet senses. Below, we discuss in detail some matchers from each of these cate-
gories.  

5.1.1 Sense-based matchers 
We have two sense-based matchers. Let us discuss how the WordNet matcher works. 
As it was already mentioned, WordNet [37] is based on synsets (or senses), namely 
structures containing sets of terms with synonymous meanings. For example, the 
words night, nighttime and dark constitute a single synset. Synsets are connected to 
one another through explicit (lexical) semantic relations. Some of these relations (hy-
pernymy, hyponymy for nouns and hypernymy and troponymy for verbs) constitute 
kind-of and part-of (holonymy and meronymy for nouns) hierarchies. For instance, 
tree is a kind of plant. Thus, tree is hyponym of plant and plant is hypernym of tree. 
Analogously, from trunk being a part of tree we have that trunk is meronym of tree 
and tree is holonym of trunk.  

The WordNet matcher translates the relations provided by WordNet to semantic re-
lations according to the following rules: 

- A  B, if A is a hyponym, meronym or troponym of B; 
- A  B, if A is a hypernym or holonym of B; 
- A = B, if they are connected by synonymy relation or they belong to one synset 

(night and nighttime from the example above); 
- A ⊥ B, if they are connected by antonymy relation or they are the siblings in the 

part of hierarchy. 

5.1.2 String-based matchers 
We have five string-based matchers. Let us discuss how the Edit distance matcher 
works. It calculates the number of simple editing operations (delete, insert and re-



place) over the label’s characters needed to transform one string into another, normal-
ized by the length of the longest string. The result is a value in [0,1]. If the value ex-
ceeds a given threshold (0.6 by default) the equivalence relation is returned, other-
wise, Idk is produced. 

5.1.3 Gloss-based matchers 
We have six gloss-based matchers. Let us discuss how the Gloss comparison  matcher 
works. The basic idea behind this matcher is that the number of the same words oc-
curring in the two WordNet glosses increases the similarity value. The equivalence re-
lation is returned if the number of shared words exceeds a given threshold (e.g., 3). 
Idk is produced otherwise. For example, suppose we want to match Afghan hound and 
Maltese dog using the gloss comparison strategy. Notice, although these two concepts 
are breeds of dog, WordNet does not have a direct lexical relation between them, thus 
the WordNet matcher would fail in this case. However, the glosses of both concepts 
are very similar. Maltese dog is defined as a breed of toy dogs having a long straight 
silky white coat. Afghan hound is defined as a tall graceful breed of hound with a long 
silky coat; native to the Near East. There are 4 shared words in both glosses, namely 
breed, long, silky, coat. Hence, the two concepts are taken to be equivalent. 

5.2 The label matching algorithm 

The pseudo code implementing Step 3 is presented in Figure 6. The label matching 
algorithm produces (with the help of matchers of Table 1) a matrix of relations be-
tween all the pairs of atomic concepts of labels from both trees.  

 
700. String[][] fillCLabMatrix(Tree of Nodes source,target); 
710. String[][]cLabsMatrix; 
720. String[] matchers; 
730. int i,j; 
740. matchers=getMatchers(); 
750. for each sourceAtomicConceptOfLabel in source 
760.  i=getACoLID(sourceAtomicConceptOfLabel); 
770.  for each targetAtomicConceptOfLabel in target 
780.   j= getACoLID(targetAtomicConceptOfLabel); 
790.   cLabsMatrix[i][j]=getRelation(matchers,  
  sourceAtomicConceptOfLabel,targetAtomicConceptOfLabel); 
795. return cLabsMatrix 
800. String getRelation(String[] matchers,  
         AtomicConceptOfLabel source, target) 
810.  String matcher; 
820.  String relation=”Idk”; 
830.  int i=0; 
840.  while ((i<sizeof(matchers))&&(relation==”Idk”)) 
850.   matcher= matchers[i]; 
860.   relation=executeMatcher(matcher,source,target); 
870.   i++; 
880.  return relation; 

Fig. 6. Label matching pseudo code 



fillCLabMatrix takes as input two trees of nodes. It produces as output the 
matrix of semantic relations holding between the atomic concepts of labels in both 
trees. First, the element level matchers of Table 1, which are to be executed (based on 
the configuration settings), are acquired in line 740. Then, for each pair of atomic 
concepts of labels in both trees, semantic relations holding between them are deter-
mined by using the getRelation function (line 790). 
getRelation takes as input an array of matchers and two atomic concepts of 

labels. It returns the semantic relation holding between this pair of atomic concepts of 
labels according to the element level matchers. These label matchers are executed 
(line 860) until the semantic relation different from Idk is produced. Notice that exe-
cution order is defined by the matchers array. 

The result of Step 3 is a matrix of the relations holding between atomic concepts of 
labels. A part of this matrix for the example in Figure 1 is shown in Table 2. 

Table 2. cLabsMatrix: matrix of relations among the atomic concepts of labels. 

 Classes History Modern Europe 

Courses = idk idk idk 
History idk = idk idk 

Medieval idk idk ⊥ idk 
Asia idk idk idk ⊥ 

6. Step 4: Node Matching  

During this step, we initially reformulate the tree matching problem into a set of node 
matching problems (one problem for each pair of nodes). Finally, we translate each 
node matching problem into a propositional validity problem. Let us first discuss in 
detail the tree matching algorithm. Then, we consider the node matching algorithm. 

6.1 The tree matching algorithm 

The tree matching algorithm is concerned with decomposition of the tree matching 
task into a set of node matching tasks. It takes as input two preprocessed trees ob-
tained as a result of Steps 1,2 and a matrix of semantic relations holding between the 
atomic concepts of labels in both trees obtained as a result of Step 3. It produces as 
output the matrix of semantic relations holding between concepts at nodes in both 
trees. The pseudo code in Figure 7 illustrates the tree matching algorithm. 

 
 
 
 
 
 
 

A      B 



 
900.String[][] treeMatch(Tree of Nodes source, target, String[][] 
cLabsMatrix) 
910. Node sourceNode,targetNode; 
920. String[][]cNodesMatrix, relMatrix; 
930. String axioms, contextA, contextB; 
940. int i,j; 
960. For each sourceNode in source 
970.  i=getNodeId(sourceNode); 
980.  contextA=getCnodeFormula (sourceNode); 
990.  For each targetNode in target 
1000.    j=getNodeId(targetNode); 
1010.    contextB=getCnodeFormula (targetNode); 
1020.    relMatrix=extractRelMatrix(cLabsMatrix, sourceNode,  
            targetNode); 
1030.    axioms=mkAxioms(relMatrix); 
1040.    cNodesMatrix[i][j]=nodeMatch(axioms,contextA,contextB); 
1050. return cNodesMatrix; 

Fig. 7. The pseudo code of the tree matching algorithm 

 
treeMatch takes two trees of Nodes (source and target) and the matrix of 

relations holding between atomic concepts of labels (cLabsMatrix) as input. It 
starts from two loops over all the nodes of source and target trees in lines 960-1040 
and 990-1040. The node matching problems are constructed within these loops. For 
each node matching problem we take a pair of propositional formulas encoding con-
cepts at nodes and relevant relations holding between the atomic concepts of labels 
using the getCnodeFormula and extractRelMatrix functions respectively. 
The former are memorized as contextA and contextB in lines 980 and 1010. The 
latter are memorized in relMatrix in line 1020. In order to reason about relations 
between concepts at nodes, we build the premises (axioms) in line 1030. These are a 
conjunction of the concepts of labels which are related in relMatrix. For example, 
the semantic relations in Table 2, which are considered when we match C4 in the tree 
A and C4 in the tree B are ClassesB = CoursesA and HistoryB = HistoryA. In this case 
axioms is (ClassesB ↔ CoursesA)∧(HistoryB ↔ HistoryA). Finally, in line 1040, the 
semantic relations holding between the concepts at nodes are calculated by node-
Match and are reported as a bidimensional array (cNodesMatrix). A part of this 
matrix for the example in Figure 1 is shown in Table 3. 
Table 3. cNodesMatrix: matrix of relations among the concepts at nodes (match-
ing result). 

 C1 C4 C14 C17 
C1 =    
C4  =   
C12   ⊥ ⊥ 
C16   ⊥ ⊥ 

A      B 



6.2 The node matching algorithm 

Each node matching problem is converted into a propositional validity problem. Se-
mantic relations are translated into propositional connectives using the rules described 
in Table 4 (second column).  

Table 4. The relationship between semantic relations and propositional formulas. 

rel(a ,b) Translation of rel(a , b)  
into propositional logic 

Translation of Eq. 2 into  
Conjunctive Normal Form 

a=b a↔b N/A 
a b a→b axioms∧contextA∧ ¬contextB 
a b b→a axioms∧contextB∧ ¬contextA 
a⊥b ¬(a∧b) axioms∧contextA∧ contextB 

The criterion for determining whether a relation holds between concepts of nodes 
is the fact that it is entailed by the premises. Thus, we have to prove that the following 
formula: 

 (axioms) → rel(contextA , contextB ), (1) 
is valid, namely that it is true for all the truth assignments of all the propositional 
variables occurring in it. axioms, contextA, and contextB are as defined in the tree 
matching algorithm. rel is the semantic relation that we want to prove holding be-
tween contextA and contextB. The algorithm checks the validity of Eq. 1 by proving 
that its negation, i.e., Eq. 2, is unsatisfiable.  

axioms ∧¬ rel(contextA , contextB ) (2) 
Table 4 (third column) describes how Eq. 2 is translated before testing each seman-

tic relation. Notice that Eq. 2 is in Conjunctive Normal Form (CNF), namely it is a 
conjunction of disjunctions of atomic formulas. The check for equivalence is omitted 
in Table 4, since A=B holds if and only if A B and A B hold, i.e., both axi-
oms∧contextA∧¬contextB and axioms∧contextB∧¬contextA are unsatisfiable formulas. 

We assume the labels of nodes and the knowledge derived from element level se-
mantic matchers to be all globally consistent. Under this assumption the only reason 
why we get an unsatisfiable formula is because we have found a match between two 
nodes. In fact, axioms cannot be inconsistent by construction. Consistency of contextA 
and contextB is checked in the preprocessing phase (see, Section 4 for details). How-
ever, axioms and contexts (for example, axioms∧contextA) can be mutually inconsis-
tent. The situation occurs, for example, when axioms entails negation of the variable 
occurring in the context. In this case, the concepts at nodes are disjoint. In order to 
guarantee the correct behavior of the algorithm we perform the disjointness test first. 
It does not influence the algorithm correctness in general but allow us to obtain the 
correct result in this special case.  

Let us consider the pseudo code of a basic node matching algorithm, see Figure 8. 
In line 1110, nodeMatch constructs the formula for testing disjointness. In line 
1120, it converts the formula into CNF, while in line 1130 it checks the CNF formula 
for unsatisfiability. If the formula is unsatisfiable the disjointness relation is returned.  

Then, the process is repeated for the less and more general relations. If both rela-
tions hold, then the equivalence relation is returned (line 1220). If all the tests fail, the 



idk relation is returned (line 1280). In order to check the unsatisfiability of a proposi-
tional formula in a basic version of our NodeMatch algorithm we use the standard 
DPLL-based SAT solver [31]. 

 
1100.String nodeMatch(String axioms, contextA, contextB) 
1110. formula= And(axioms, contextA, contextB); 
1120. formulaInCNF=convertToCNF(formula); 
1130. boolean isOpposite= isUnsatisfiable(formulaInCNF); 
1140. if (isOpposite)  
1150.   return “⊥”; 
1160. String formula=And(axioms,contextA,Not(contextB)); 
1170. String formulaInCNF=convertToCNF(formula); 
1180. boolean isLG=isUnsatisfiable(formulaInCNF) 
1190. formula=And(axioms, Not(contextA), contextB); 
1200. formulaInCNF=convertToCNF(formula); 
1210. boolean isMG= isUnsatisfiable(formulaInCNF); 
1220. if (isMG && isLG)  

1230.   return “=”; 
1240. if (isLG)  
1250.   return “ ”; 
1260. if (isMG)  
1270.   return “ ”; 
1280. return “Idk”; 

Fig. 8. The pseudo code of the node matching algorithm 

 

From the example in Figure 1, trying to prove that C4 in the tree B is less general 
than C4 in the tree A, requires constructing the following formula: 

((ClassesB ↔ CoursesA)∧(HistoryB ↔ HistoryA)) ∧ 
(ClassesB∧HistoryB) ∧¬ (CoursesA∧HistoryA) 

 

The above formula turns out to be unsatisfiable, and therefore, the less general re-
lation holds. Notice, if we test for the more general relation between the same pair of 
concepts at nodes, the corresponding formula would be also unsatisfiable. Thus, the 
final relation retuned by the NodeMatch algorithm for the given pair of concepts at 
nodes is the equivalence. 

7. Semantic Matching with Attributes 

So far we have focused on classifications, which are simple class hierarchies. If we 
deal with, e.g., XML schemas, their elements may have attributes, see Figure 9. 

 
Fig.9. Two simple XML schemas 



Attributes are 〈attribute−name, type〉 pairs associated with elements. Names for 
the attributes are usually chosen such that they describe the roles played by the do-
mains in order to ease distinguishing between their different uses. For example, in the 
tree A, the attributes PID and Name are defined on the same domain string, but their 
intended use are the internal (unique) product identification and representation of the 
official products’ names, respectively. There are no strict rules telling us when data 
should be represented as elements, or as attributes, and obviously there is always 
more than one way to encode the same data. For example, in the tree A, PIDs are en-
coded as strings, while in the tree B, IDs are encoded as ints. However, both attributes 
serve for the same purpose of the unique products’ identification. These observations 
suggest two possible ways to perform semantic matching with attributes: (i) taking 
into account datatypes, and (ii) ignoring datatypes. 

The semantic matching approach is based on the idea of matching concepts, not 
their direct physical implementations, such as elements or attributes. If names of at-
tributes and elements are abstract entities, therefore, they allow for building arbitrary 
concepts out of them. Instead, datatypes, being concrete entities, are limited in this 
sense. Thus, a plausible way to match attributes using the semantic matching ap-
proach is to discard the information about datatypes. In order to support this claim, let 
us consider both cases in turn. 

7.1 Exploiting datatypes 

In order to reason with datatypes we have created a datatype ontology, OD, specified 
in OWL [45]. It describes the most often used XML schema built-in datatypes and re-
lations between them. The backbone taxonomy of OD is based on the following rule: 
the is-a relationship holds between two datatypes if and only if their value spaces are 
related by set inclusion. Some examples of axioms of OD are: float  double, int ⊥ 
string, anyURI  string, and so on. Let us discuss how datatypes are plugged within 
the four macro steps of the algorithm.  
Steps 1,2. Compute concepts of labels and nodes. In order to handle attributes, we ex-
tend propositional description logics with the quantification construct and datatypes. 
Thus, we compute concepts of labels and concepts at nodes as formulas in the de-
scription logics ALC(D) language [38]. For example, in the tree A in Figure 9, C4, 
namely, the concept at node describing all the string data instances which are the 
names of electronic photography products is encoded as follows: ElectronicsA  
(PhotoA CamerasA) ∃NameA.string. 
Step 3. Compute relations among concepts of labels. In this step we extend our library 
of element level matchers by adding a Datatype matcher. It takes as input two 
datatypes, it queries OD and retrieves a semantic relation between them. For example, 
from axioms of OD, the Datatype matcher can learn that float  double, and so on. 
Step 4. Compute relations among concepts at nodes. In the case of attributes, the node 
matching problem is translated into an ALC(D) formula, which is further checked for 
its unsatisfiability using sound and complete procedures. Notice that in this case we 
have to test for modal satisfiability, not propositional satisfiability. The system we use 
is Racer [27]. From the example in Figure 9, trying to prove that C7 in the tree B is 
less general than C6 in the tree A, requires constructing the following formula: 



((ElectronicsA=ElectronicsB)  (PhotoA=PhotoB)  
 (CamerasA=CamerasB)  (PriceA=PriceB)  (float double))   

(ElectronicsB  (CamerasB PhotoB) ∃PriceB.float) ¬ 
(ElectronicsA  (PhotoA CamerasA) ∃PriceA.double) 

 

It turns out that the above formula is unsatisfiable. Therefore, C7 in the tree B is 
less general than C6 in the tree A. However, this result is not what the user expects. In 
fact, both C6 in the tree A and C7 in the tree B describe prices of electronic products, 
which are photo cameras. The storage format of prices in A and B (i.e., double and 
float respectively) is not an issue at this level of detail.  

Thus, another semantic solution of taking into account datatypes would be to build 
abstractions out of the datatypes, e.g., float, double, decimal should be abstracted to 
type numeric, while token, name, normalizedString should be abstracted to type string, 
and so on. However, even such abstractions do not improve the situation, since we 
may have, for example, an ID of type numeric in the first schema, and a conceptually 
equivalent ID, but of type string, in the second schema. If we continue building such 
abstractions, we result in having that numeric is equivalent to string in the sense that 
they are both datatypes. 

The last observation suggests that for the semantic matching approach to be cor-
rect, we should assume that all the datatypes are equivalent. Technically, in order to 
implement this assumption, we should add corresponding axioms (e.g., float = double) 
to the premises of Eq. 1. On the one hand, with respect to the case of not considering 
datatypes (see, Section 7.2), such axioms do not affect the matching result from the 
quality viewpoint. On the other hand, datatypes make the matching problem computa-
tionally more expensive by requiring to handle the quantification construct. 

7.2 Ignoring datatypes 

In this case, information about datatypes is discarded. For example, 〈Name, string〉 
becomes Name. Then, the semantic matching algorithm builds concepts of labels out 
of attributes’ names in the same way as it does in the case of elements’ names, and so 
on. Finally, it computes mapping elements using the algorithm of Section 6. A part of 
the cNodesMatrix with relations holding between attributes for the example in Figure 
9 is presented in Table 5. Notice that this solution allows a mappings’ computation 
not only between the attributes, but also between attributes and elements. 

Table 5. Attributes: the matrix of semantic relations holding between concepts of nodes (the 
matching result) for Figure 9. 

 C4 C5 C6 C7 
C3 = idk idk idk 

C4 idk  idk idk 

C5 idk idk = idk 

C6 idk idk idk = 

A      B 



The task of determining mappings typically represents a first step towards the ulti-
mate goal of, for example, data translation, query mediation, agent communication, 
and so on. Although information about datatypes will be necessary for accomplishing 
an ultimate goal, we do not discuss this issue any further since in this paper we con-
centrate only on the mappings discovery task. 

8. Efficient Semantic Matching 

The node matching problem in semantic matching is a CO-NP hard problem, since it 
is reduced to the validity problem for the propositional calculus. In this section we 
present a set of optimizations for the node matching algorithm. In particular, we show 
that when dealing with conjunctive concepts at nodes, i.e., the concept at node is a 
conjunction (e.g., C7 in the tree A in Figure 1 is defined as AsianA LanguagesA), the 
node matching tasks can be solved in linear time. When we have disjunctive concepts 
at nodes, i.e., the concept at node contains both conjunctions and disjunctions in any 
order (e.g., C3 in the tree B in Figure 1 is defined as CollegeB (ArtsB SciencesB)), we 
use techniques allowing us to avoid the exponential space explosion which arises due 
to the conversion of disjunctive formulas into CNF. This modification is required 
since all state of the art SAT deciders take CNF formulas in input. 

8.1 Conjunctive concepts at nodes 

Let us make some observations with respect to Table 4 (Section 6.2). The first obser-
vation is that the axioms part remains the same for all the tests, and it contains only 
clauses with two variables. In the worst case, it contains 2×nA×nB clauses, where nA 
and nB are the number of atomic concepts of labels occurred in contextA and contextB, 
respectively. The second observation is that the formulas for testing less and more 
general relations are very similar and they differ only in the negated context formula 
(e.g., in the test for less general relation contextB is negated). This means that Eq. 2 
contains one clause with nB variables plus nA clauses with one variable. In the case of 
disjointness test contextA and contextB are not negated. Therefore, formula Eq. 2 con-
tains nA + nB clauses with one variable.  

8.1.1 The node matching problem by an example 

Let us suppose that we want to match C16 in the tree A and C17 in the tree B in Figure 
1. The relevant semantic relations between atomic concepts of labels are presented in 
Table 2. Thus, axioms is as follows:  

(courseA↔classB)∧(historyA↔historyB) ∧ 
¬(medievalA∧modernB)∧ ¬(asiaA∧europeB) (3) 

which, when translated in CNF, becomes: 



(¬courseA∨classB)∧( courseA∨¬classB)∧(¬ historyA∨historyB)∧ 
(historyA∨¬historyB) ∧ (¬medievalA∨¬modernB) ∧ (¬asiaA∨¬europeB) (4) 

As from Step 2, contextA and contextB are constructed by taking the conjunction of 
the concepts of labels in the path from the node under consideration to the root. 
Therefore, contextA and contextB are:  

courseA∧historyA∧medievalA∧asiaA (5) 

classB∧historyB∧modernB∧europeB  (6) 

while their negations are: 

¬courseA∨¬historyA∨¬medievalA ∨¬asiaA (7) 

¬classB∨¬historyB∨¬modernB∨¬europeB  (8) 

So far we have concentrated on atomic concepts of labels. The propositional for-
mulas remain structurally the same if we move to conjunctive concepts at labels. Let 
consider the following example: 

 
Fig. 10. Two simple classifications (obtained by modifying, pruning the example in Figure 1) 

 

Suppose we want to match C2 in the tree A and C2 in the tree B in Figure 10. Axi-
oms required for this matching task are as follows: (courseA↔classB)∧ 
(historyA↔historyB)∧(medievalA⊥modernB)∧(asiaA⊥europeB). If we compare them 
with those of Eq. 3 and Eq.4, which represent axioms for the above considered exam-
ple in Figure 1, we find out that they are the same. Furthermore, as from Step 2, the 
propositional formulas for contextA and contextB are the same for atomic and for con-
junctive concepts of labels as long as they “globally” contain the same formulas. In 
fact, concepts at nodes are constructed by taking the conjunction of concepts at labels. 
Splitting a concept of a label with two conjuncts into two atomic concepts has no ef-
fect on the resulting matching formula. The matching result for the matching tasks in 
Figure 10 is presented in Table 6. 

Table 6. The matrix of relations between concepts at nodes (matching result) for Figure 10. 

 C1 C2 
C1 =  
C2  ⊥ 

A      B



8.1.2 Optimizations 

Tests for less and more general relations. Using the observations in the beginning 
of Section 8.1 concerning Table 4, Eq. 2, with respect to the tests for less/more gen-
eral relations, can be represented as follows: 

 

(9) 

where n is the number of variables in contextA, m is the number of variables in con-
textB. The Ai’s belong to contextA, and the Bj’s belong to contextB. s, k, p are in the 
[0..n] range, while t, l, r are in the [0..m] range. q, w and v define the number of par-
ticular clauses. Axioms can be empty. Eq. 9 is composed of clauses with one or two 
variables plus one clause with possibly more variables (the clause corresponding to 
the negated context). The key observation is that the formula in Eq. 9 is Horn, i.e., 
each clause contains at most one positive literal. Therefore, its satisfiability can be de-
cided in linear time by the unit resolution rule [9]. Notice, that DPLL-based SAT 
solvers require quadratic time in this case [47]. 

In order to understand how the linear time algorithm works, let us prove the unsat-
isfiability of Eq. 9 in the case of matching C16 in the tree A and C17 in the tree B in 
Figure 1. In this case, Eq. 9 is as follows: 

(¬courseA∨classB)∧( courseA∨¬classB)∧(¬ historyA∨historyB)∧ 
 (historyA∨¬historyB) ∧ (¬medievalA∨¬modernB)∧ (¬asiaA∨¬europeB)∧  

courseA∧historyA∧medievalA ∧asiaA ∧  
(¬classB∨¬historyB∨¬modernB∨¬europeB) 

(10) 

In Eq.10, the variables from contextA are written in bold face. First, we assign true to 
all unit clauses occurring in Eq. 10 positively. Notice these are all and only the 
clauses in contextA. This allows us to discard the clauses where contextA variables oc-
cur positively (in this case: courseA∨¬classB, historyA∨¬historyB). The resulting for-
mula is as follows: 

classB∧historyB∧¬modernB∧¬europeB∧ 
(¬classB∨¬historyB∨¬modernB∨¬europeB) (11) 

Eq. 11 does not contain any variable derived from contextA. Notice that, by assign-
ing true to classB, historyB and false to modernB, europeB we do not derive a contra-
diction. Therefore, Eq. 10 is satisfiable. In fact, a (Horn) formula is unsatisfiable if 
and only if the empty clause is derived (and it is satisfiable otherwise). 

Let us consider again Eq. 11. For this formula to be unsatisfiable, all the variables 
occurring in the negation of contextB (¬classB∨¬historyB∨¬modernB∨¬europeB in 
our example) should occur positively in the unit clauses obtained after resolving axi-
oms with the unit clauses in contextA (classB and historyB in our example). For this to 
happen, for any Bj in contextB there must be a clause of form ¬Ai∨Bj in axioms, where 
Ai is a formula of contextA. Formulas of the form ¬Ai∨Bj occur in Eq. 9 if and only if 



we have the axioms of form A = Bj and Ai Bj. These considerations suggest the fol-
lowing algorithm for testing satisfiability: 
− Step 1. Create an array of size m. Each entry in the array stands for one Bj in Eq. 9.  
− Step 2. For each axiom of type Ai=Bj and Ai Bj mark the corresponding Bj.  
− Step 3. If all the Bj’s are marked, then the formula is unsatisfiable.  

To complete the analysis, let us now suppose that we have not “europe”, but “ex-
cept europe” as a node of the tree depicted in Figure 1. This means that contextB con-
tains the negated variable ¬europeB. Eq. 10 in this case is rewritten as follows: 

(¬courseA∨classB)∧( courseA∨¬classB)∧(¬ historyA∨historyB)∧  
(historyA∨¬historyB) ∧ (¬medievalA∨¬modernB)∧ (¬asiaA∨¬europeB)∧  

courseA∧historyA∧medievalA ∧asiaA ∧  
(¬classB∨¬historyB∨¬modernB∨europeB) 

(12) 

Suppose that we have replaced all the occurrences of ¬europeB and europeB in the 
formula with europenB and ¬europenB respectively. In fact, we replace the variable 
with the new one which represents its negation. Notice that this replacement does not 
change the satisfiability properties of the formula. Truth assignment satisfying the 
new formula will satisfy the original formula after inverting the truth value of the new 
variable (europenB in our example). Notice also that the replacement changed the 
clause with europeB variable in axioms (¬asiaA∨europenB in Eq. 13). 

(¬courseA∨classB)∧( courseA∨¬classB)∧(¬ historyA∨historyB)∧ 
(historyA∨¬historyB) ∧ (¬medievalA∨¬modernB)∧ (¬asiaA∨europenB)∧ 

courseA∧historyA∧medievalA∧asiaA ∧ 
(¬classB∨¬historyB∨¬modernB∨¬europenB) 

(13) 

Let us assign to true the unit clauses occurring in Eq. 13 positively. This allows us to 
discard a number of clauses. A simplified formula is depicted as Eq. 14. 

classB∧historyB∧¬modernB∧europeB∧ 
(¬classB∨¬historyB∨¬modernB∨¬europenB) (14) 

This formula is satisfiable by assigning classB, historyB, europeB to true and mod-
ernB to false. Therefore, less general relation does not hold between the concept at 
node Asia and the concept at node Except Europe. 

In order to construct an optimized algorithm for determining satisfiability of Eq. 13 
let us compare Eq. 10 and Eq. 13. The parts of the formula representing contexts are 
the same. The differences are in axioms part of the formula and they are introduced 
by a variable replacement. Let us analyze how the replacement of the variable with its 
negations influences various classes of clauses in axioms, see Table 7.



Table 7. The correspondence between axioms and clauses. 

Axioms  Ai Bj 
Ai=Bj 

Bj Ai 
Ai=Bj 

Ai⊥Bj 

The classes of propositional clauses  
With two variables ¬Ai∨Bj Ai∨¬Bj ¬Ai∨¬Bj 

The classes of clauses after replacement  
of Ai with its negation Ani 

Ani∨Bj ¬Ani∨¬Bj Ani∨¬Bj 

The classes of clauses after replacement  
of Bj with its negation Bnj 

¬Ai∨¬Bnj Ai∨Bnj ¬Ai∨Bnj 

The classes of clauses after replacement of Ai and Bj 
with their negations Ani and Bnj respectively Ani∨¬Bj ¬Ani∨Bj Ani∨Bj 

Let us concentrate on three classes of propositional clauses depicted in the second 
row of Table 7. As from Eq. 9, we have only these classes of clauses in axioms. The 
axioms from which the particular class of clauses can be derived are described in the 
first column. Rows 2-5 demonstrate how the replacement of variables with its nega-
tion influences the clause. The first observation from Table 7 is that the new class of 
clauses (Ai∨Bj) is introduced in axioms. The variables derived from both contextA and 
contextB occur in these clauses positively. This means that the clauses of form Ai∨Bj 
are discarded from the formula after unit propagation and cannot influence its satisfi-
ability properties. The second observation is that all other clauses in Eq. 13 belong to 
the same classes as ones in Eq. 10. Therefore, the general observation made for Eq. 10 
(namely, the formula is satisfiable if and only if there are clauses ¬Ai∨Bj in axioms 
for any Bj in contextB) holds for Eq. 13. As from Table 7, we have the clauses ¬Ai∨Bj 
in Eq. 13 in three cases:  

− There are axioms Ai = Bj and Ai Bj, where Ai and Bj occur in contexts of the 
original formula positively. 

− There are axioms Ai = Bj and Bj  Ai, where Ai and Bj occur in contexts of the 
original formula negatively. 

− There are axioms Ai⊥Bj, where Ai occurs in contextA of the original formula 
positively and Bj occurs in contextB of the original formula negatively. 

These considerations suggest the following algorithm for testing the satisfiability (no-
tice Step1 and Step 3 remain the same as in the previous version): 
− Step 1. Create an array of size m. Each entry in the array stands for one Bj in Eq. 9.  
− Step 2a. If Ai and Bj occur positively in contextA and contextB respectively, for each 

axiom Ai=Bj and Ai Bj mark the corresponding Bj.  
− Step 2b. If Ai and Bj occur negatively in contextA and contextB respectively, for each 

axiom Ai=Bj and Bj  Ai mark the corresponding Bj.  
− Step 2c. If Bj occurs negatively in contextB and Ai occurs positively in contextA for 

each axiom Ai⊥Bj mark the corresponding Bj. 
− Step 3. If all the Bj’s are marked, then the formula is unsatisfiable.  
The pseudo code of the optimized algorithm is presented in Figure 11. 
 



 
1155.  if (contextA and contextB are conjunctive) 
1156.    isLG=fastHornUnsatCheck (contextA, contextB, axioms, “ ”,“ ”); 
1157.    isMG=fastHornUnsatCheck (contextB, contextA, axioms, “ ”,“ ”); 
1158.  else 
 

1500.boolean fastHornUnsatCheck(String context, neg_context, axioms, 
rel, neg_rel) 

1510. int m=getNumOfVar(String neg_context); 
1520. boolean array[m]; 
1530. for each axiom in axioms 
1540.  String Ai= getFirstVariable(axiom); 
1550.  String Bj= getSecondVariable(axiom); 
1560.  int j=getNumberInContext(Bj); 
1570.  if((occurs_positevely (Ai, context))&& 
    (occurs_positevely (Bj, neg_context))) 
1580.   if((getAType(axiom)=”=”)||(getAType(axiom)=rel)) 
1590.    array[j]=true; 
1600.  if ((occurs_negatively (Ai, context))&& 
    (occurs_negatively (Bj, neg_context))) 
1610.   if((getAType(axiom)=”=”)||(getAType(axiom)=neg_rel)) 
1620.    array[j]=true; 
1630.  if ((occurs_positevely (Ai, context))&& 
    (occurs_negatively (Bj, neg_context))) 
1640.   if(getAType(axiom)=”⊥”) 
1650.    array[j]=true; 
1660. for (i=0; i<m; i++) 
1670.  if (!array[i]) 
1680.   return false; 
1690. return true; 

Fig. 11. Optimization pseudo code of tests for less and more general relations 

 
Thus, nodeMatch can be modified as in Figure 11 (the numbers on the left indi-

cate where the new code must be positioned). fastHornUnsatCheck implements 
the three steps above. Step 1 is performed in lines (1510-1520). Then, a loop on axi-
oms (lines 1530-1650) implements Step 2. The final loop (lines 1660-1690) imple-
ments Step 3.  

Disjointness test. Using the same notation as before in this section, Eq. 2 with respect 
to the disjointness test can be represented as follows: 

 

(15) 

For example, the formula for testing disjointness between C16 in the tree A and C17 in 
the tree B in Figure 1 is as follows: 

(¬courseA∨classB)∧( courseA∨¬classB)∧(¬ historyA∨historyB)∧  
(historyA∨¬historyB) ∧ (¬medievalA∨¬modernB)∧ (¬asiaA∨¬europeB)∧  

courseA∧historyA∧medievalA ∧asiaA ∧ classB∧historyB∧modernB∧europeB 
(16) 



Eq. 16 is Horn, and thus, similarly to Eq. 10, the satisfiability of this formula can 
be decided by the unit propagation rule. After assigning true to all the variables in 
contextA and propagating the results we obtain the following formula: 

classB∧historyB∧¬modernB∧¬europeB∧ classB∧historyB∧modernB∧europeB (17) 

If we further unit propagate classB and historyB (this means that we assign them to 
true), then we obtain the contradiction modernB∧¬modernB∧europeB∧¬europeB. 
Therefore, the formula is unsatisfiable. This contradiction arises because (¬medie-
valA∨¬modernB) and (¬asiaA∨¬europeB) occur in Eq. 16, which, in turn, are derived 
(as from Table 4) from the disjointness axioms modernB⊥medievalA and 
asiaA⊥europeB. In fact, all the clauses in Eq. 15 contain one positive literal except for 
the clauses in axioms corresponding to disjointness relations. Thus, the key intuition 
here is that if there are no disjointness axioms, then Eq. 15 is satisfiable. However, if 
there is a disjointness axiom, atoms occurring there are also ensured to be either in 
contextA or in contextB, hence, Eq. 15 is unsatisfiable. Therefore, the optimization 
consists of just checking the presence/absence of disjointness axioms in axioms.  

To complete the analysis suppose that we have negated variable in contextB in the 
same fashion as described in the example with negations given before in this section. 
Then, Eq. 16 can be rewritten as follows: 

(¬courseA∨classB)∧( courseA∨¬classB)∧(¬ historyA∨historyB)∧ 
(historyA∨¬historyB) ∧ (¬medievalA∨¬modernB)∧ (¬asiaA∨¬europeB)∧ 

 courseA∧historyA∧medievalA ∧asiaA ∧ classB∧historyB∧modernB∧¬europeB 
(18) 

As in the case of less general relation all the occurrences of the negated variable 
are replaced with a new variable representing its negation (i.e., ¬europeB and europeB 

are replaced by europenB and ¬europenB respectively), see Eq. 19.  

(¬courseA∨classB)∧( courseA∨¬classB)∧(¬ historyA∨historyB)∧ 
(historyA∨¬historyB) ∧ (¬medievalA∨¬modernB)∧ (¬asiaA∨europenB)∧  

courseA∧historyA∧medievalA ∧asiaA ∧ classB∧historyB∧modernB∧europenB 
(19) 

After the unit propagation of the variables derived from contextA we obtain 

classB∧historyB∧¬modernB∧europenB∧ classB∧historyB∧modernB∧europenB (20) 

Eq. 20 is satisfiable. This means that the concept at node Asia is not disjoint with the 
concept at node Except Europe. The replacement introduces the new class of clauses 
Ai∨Bj. However, such clauses are discarded after the unit propagation, and therefore, 
do not influence the satisfiability of the formula. As from Table 7, all other clauses in-
troduced after the replacement belong to the same classes as ones in Eq. 16. This 
means that the major observation made in this section, namely the fact that the satisfi-
ability of Eq. 16 can be decided by checking the presence/absence of the clauses of 
form ¬Ai∨¬Bj holds for Eq. 19. As from Table 7, we have the clauses of form 
¬Ai∨¬Bj in Eq. 19 in the following three cases: 
− There are axioms of form Ai⊥Bj, where both Ai and Bj occur in contexts of the 

original formula positively. 



− There are axioms of form Bj Ai and Ai=Bj, where Ai occurs negatively in contextA 
of the original formula and Bj occurs positively in contextB of the original formula. 

− There are axioms of form Ai Bj and Ai=Bj, where Ai occurs positively in contextA 
of the original formula and Bj occurs negatively in contextB of the original formula.  

Thus, the pseudo code of nodeMatch should be modified as shown in Figure 12. 

 

1105.if (contextA and contextB are conjunctive) 
1106. isOpposite=optimizedUnsatTestForDisjointness (axioms, contextA, 

contextB); 
1107.else 
 
1300. optimizedUnsatTestForDisjointness (axioms, contextA, contextB); 
1310. for each axiom in axioms 
1320.  String Ai= getFirstVariable(axiom); 
1330.  String Bj= getSecondVariable(axiom); 
1340.  if ((occurs_positively (Ai, contextA))&& 
     (occurs_positively (Bj, contextB))) 
1350.   if (getAType(axiom)=”⊥”) 
1360.    return true; 
1370.  if ((occurs_negatively (Ai, contextA))&& 
     (occurs_positively (Bj, contextB))) 
1380.  if((getAType(axiom)=”=”)||(getAType(axiom)=” ”)) 
1390.    return true; 
1400.  if ((occurs_positevely (Ai, contextA))&& 
     (occurs_negatively (Bj, contextB))) 
1410.  if((getAType(axiom)=”=”)||(getAType(axiom)=” ”)) 
1420.    return true; 

 1430. return false; 

Fig. 12. Disjointness test optimization pseudo code 

 
optimizedUnsatTestForDisjointness check three conditions listed 
above. The first condition is checked in lines 1340-1360. In lines 1370-1390 the sec-
ond condition is checked. Finally, the third condition is checked in lines 1400-1420.  

8.2. Disjunctive concepts at nodes  

8.2.1 The node matching problem by an example 

Now, we allow for the concepts at nodes to contain conjunctions and disjunctions in 
any order. Suppose, we want to match C5 in the tree A and C5 in the tree B in Figure 1. 
The relevant part of cLabsMatrix is shown in Table 8.  
 
 
 



Table 8. cLabsMatrix: matrix of relations among the atomic concepts of labels. 

 Classes Mechanics Optics Statistics Dynamics Kinematics 

Courses =      
Biology       
Zoology       
Botany       

Neurobiology       
Genetics       

Physiology       
As from Table 4, the axioms is as follows:  

(courseA ↔classB)  (21) 

Eq.21 in CNF then becomes: 
(¬courseA ∨ classB) ∧ (courseA∨ ¬classB)  (22) 

As from Step 2, contextA and contextB are:  
classB ∧ (mechanicsB∨opticsB∨thermodynamicsB)∧ 

(staticsB∨dynamicsB ∨kinematicsB)  (23) 

courseA ∧ (biologyA∨ zoologyA∨botanyA) ∧ 
(neurobiologyA ∨geneticsA∨ physiologyA) 

(24) 

The negations of contextA and contextB, in turn, are:  
¬ classB ∨  (¬mechanicsB∧¬opticsB∧¬thermodynamicsB) ∨ 

 (¬staticsB∧¬dynamicsB∧¬kinematicsB) 
(25) 

 ¬ courseA ∨  (¬biologyA∧¬zoologyA∧¬botanyA) ∨ 
 (¬neurobiologyA∧¬geneticsA∧ ¬physiologyA) (26) 

The matching result for this task is presented in Table 9. 

Table 9. cNodesMatrix: matrix of relations among the concepts at nodes (matching result). 

 C1 C2 C5 
C1 = idk idk 
C2 idk idk idk 
C5 idk idk idk 

8.2.2 Optimizations 

As from Table 4, axioms is the same for all the tests. However, contextA and contextB 
may contain any number of disjunctions. Some of them are coming from the concepts 
of labels, while others may appear from the negated contextA or contextB (e.g., see 
tests for less/more general relations). Thus, for instance, as from Table 4 in case of 
test for less general relation we obtain the following formula: 
 

A      B 

A      B 



(¬courseA ∨ classB)∧(courseA∨¬classB)∧ (mechanicsB∨opticsB∨ 
thermodynamicsB) ∧ (staticsB∨dynamicsB ∨kinematicsB) ∧ ((¬biologyA ∧ 
¬zoologyA∧¬botanyA) ∨ (¬neurobiologyA∧¬geneticsA∧ ¬physiologyA)) 

(27) 

With disjunctive concepts at nodes, Eq. 2 is a full propositional formula and no 
hypothesis can be made on its structure. As a consequence, its satisfiability must be 
tested using a standard DPLL SAT solver. Thus, for instance, CNF conversion of Eq. 
27 is as follows: 

(¬courseA ∨ classB) ∧ (courseA∨ ¬classB) ∧ (mechanicsB∨opticsB ∨thermody-
namicsB) ∧ (staticsB∨dynamicsB ∨kinematicsB) ∧ ((¬ courseA ∨ ¬biol-

ogyA∨¬neurobiologyA)∧ (¬courseA∨¬biologyA∨¬geneticsA)∧ (¬ courseA ∨ 
¬biologyA∨¬physiologyA)∧ (¬courseA∨¬zoologyA∨¬neurobiologyA)∧(¬ 

courseA ∨ ¬zoologyA∨¬geneticsA)∧ (¬courseA∨¬zoologyA∨¬physiologyA)∧ 
(¬ courseA ∨ ¬botanyA∨¬neurobiologyA)∧ (¬courseA∨¬botanyA ∨¬genet-

icsA) ∧ (¬courseA ∨ ¬botanyA∨¬physiologyA)) 

(28) 

In order to avoid the space explosion, which may arise when converting a formula 
into CNF (see for instance Eq. 28), we apply a set of structure preserving transforma-
tions [41,19]. The main idea is to replace disjunctions occurring in the original for-
mula with newly introduced variables and explicitly state that these variables imply 
the subformulas they substitute. Consider for instance Eq. 27. We obtain:  

(¬courseA ∨ classB) ∧ (courseA∨ ¬classB) ∧ (mechan-
icsB∨opticsB∨thermodynamicsB) ∧(staticsB∨dynamicsB ∨kinematicsB) ∧ 

new1∧new2∧( new1→ ¬biologyA∨¬zoologyA∨¬carA) ∧ 
(new2→¬neurobiologyA∨¬geneticsA∨ ¬physiologyA) 

(29) 

where new1 and new2 stand for newly introduced variables. Eq. 29 is converted into 
CNF as follows:  

(¬courseA ∨ classB) ∧ (courseA∨ ¬classB) ∧ (mechan-
icsB∨opticsB∨thermodynamicsB) ∧(staticsB∨dynamicsB ∨kinematicsB) ∧  

new1∧new2∧(¬new1∨ ¬biologyA∨¬zoologyA∨¬carA) ∧ 
(¬new2∨¬neurobiologyA∨¬geneticsA∨ ¬physiologyA) 

(30) 

Notice that the size of the propositional formula in CNF grows linearly with re-
spect to number of disjunctions in original formula. To account for this optimization 
in nodeMatch all calls to convertToCNF are replaced with calls to opti-
mizedConvertToCNF, (see Figure 13): 

 
1120. formulaInCNF=optimizedConvertToCNF(formula); 
... 
1170. formulaInCNF=optimizedConvertToCNF(formula); 
... 
1200. formulaInCNF=optimizedConvertToCNF(formula); 

Fig. 13. The CNF conversion optimization pseudo code 

 



9. Evaluation 

In this section, we present the performance and quality evaluation of the matching 
system we have implemented, called S-Match. In particular, we evaluate basic and 
optimized versions of our system, called (S-MatchB) and (S-Match) respectively, 
against three state of the art matchers, namely Cupid [32], COMA [11]9, and SF [35] 
as implemented in Rondo [36]. All the systems under consideration are fairly compa-
rable because they are all schema-based. They differ in the specific matching tech-
niques they use and in the way they compute mappings. 

9.1. Evaluation set-up 

The evaluation was performed on seven matching tasks from different application 
domains, see Table 10. There are three matching tasks from a business domain 
(#1,3,5). The first business example (#1) describes two company profiles: a Standard 
one (mini) and Yahoo Finance (mini), while, #5, represents their full versions. The 
third business example (#3) deals with BizTalk10 purchase order schemas. There is 
one matching task from an academy domain (#2). It describes courses taught at Cor-
nell University (mini) and at the University of Washington (mini). Finally, there are 
three matching tasks on general topics (#4,6,7) as represented by the well-known web 
directories, such as Google11, Yahoo12, and Looksmart13. Table 10 provides some in-
dicators of the complexity of these test cases14. 

Table 10. Some indicators of the complexity of the test cases. 

 # Matching task   Max. depth # nodes # labels Concepts at nodes 

  1 Yahoo(mini)- 
Standard(mini) 2/2 10/16 22/45 Conjunctive  

Disjunctive 

2 Cornell-Washington 3/3 34/39 62/64  Conjunctive  
Disjunctive 

3 CIDX – Excel 3/3 34/39 56/58 Conjunctive  
Disjunctive 

4 Looksmart-Yahoo 10/8 140/74 222/101 Conjunctive  
Disjunctive 

5 Yahoo-Standard 3/3 333/115 965/242 Conjunctive  
Disjunctive 

6 Google-Yahoo 11/11 561/665 722/945 Conjunctive  
Disjunctive 

7 Google-Looksmart 11/16 706/1081 1048/1715 Conjunctive  
Disjunctive 

                                                           
9 We thank to Phil Bernstein, Hong Hai Do, and Erhard Rahm for providing us with Cupid and 

COMA. In the evaluation we use the version of COMA described in [11]. A newer version of 
the system COMA++ exists but we do not have it. 

10 http://www.microsoft.com/biztalk/ 
11 http://www.google.com/Top/ 
12 http://dir.yahoo.com/ 
13 http://www.looksmart.com/ 
14 Source files and description of the schemas tested can be found at our project web-site, ex-

periments section: http://www.dit.unitn.it/~accord/ 



The reference mappings (also called expert mappings) for some of these problems 
(namely for the tasks #1,2,3) were established manually. Then, the results computed 
by the systems have been compared with expert mappings. It is worth noticing that 
the task of creation of expert mappings is an error-prone and a time consuming one. 
Even if for the moment of writing this paper we have created expert mappings for the 
biggest matching tasks (#6,7) of Table 10, we do not report these findings in this pa-
per. Addressing in full detail the emerged issues along that process as well as the 
matching results achieved is out of scope of this paper, see for some details [3,22]. 
Thus, in this evaluation study we focus mostly on the performance characteristics of 
S-Match, involving large matching tasks, namely schemas with hundreds and thou-
sands of nodes. Notice, scalability properties of matching systems is among the most 
important problems of schema matching (in general) these days, see e.g., [7,12]. 
Quality characteristics of the S-Match results which are presented here address only 
medium size schemas. We acknowledge that a large-scale quality evaluation is also of 
high importance. However, we view it as a separate direction, requiring (beyond some 
preliminary results of [3,22]) further in-depth investigations. Thus, we pose it as fu-
ture work. 

There are three further observations that ensure a fair (qualitative) comparative 
study. The first observation is that Cupid, COMA, and Rondo can discover only the 
mappings which express similarity between schema elements. Instead, S-Match, 
among others, discovers the disjointness relation which can be interpreted as strong 
dissimilarity in terms of other systems under consideration. Therefore, we did not take 
into account the disjointness relations when specifying the expert mappings. The sec-
ond observation is that, since S-Match returns a matrix of relations, while all other 
systems return a list of the best mappings, we used some filtering rules. More pre-
cisely we have the following two rules: (i) discard all the mappings where the relation 
is idk; (ii) return always the core relations, and discard relations whose existence is 
implied by the core relations. Finally, whether S-Match returns the equivalence or 
subsumption relations does not affect the quality indicators. What only matters is the 
presence of the mappings standing for those relations. 

As match quality measures we have used the following indicators: precision, re-
call, overall, and F-measure. Precision varies in the [0,1] range; the higher the value, 
the smaller the set of wrong mappings (false positives) which have been computed. 
Precision is a correctness measure. Recall varies in the [0,1] range; the higher the 
value, the smaller the set of correct mappings (true positives) which have not found. 
Recall is a completeness measure. F-measure varies in the [0,1] range. The version 
computed here is the harmonic mean of precision and recall. It is a global measure of 
the matching quality, growing with it. Overall is an estimate of the post match efforts 
needed for adding false negatives and removing false positives. Overall varies in the 
[-1, 1] range; the higher it is, the less post-match efforts are needed. As a performance 
measure we have used time. It estimates how fast systems are when producing map-
pings fully automatically. Time is very important for us, since it shows the ability of 
matching systems to scale up. 

In our experiments each test has two degrees of freedom: directionality and use of 
oracles. By directionality we mean here the direction in which mappings have been 
computed: from the first schema to the second one (forward direction), or vice versa 
(backward direction). We report the best results obtained with respect to directional-



ity, and use of oracles allowed. We were not able to plug a thesaurus in Rondo, since 
the version we have is standalone, and it does not support the use of external thesauri. 
Thesauri of S-Match, Cupid, and COMA were expanded with terms necessary for a 
fair competition (e.g., expanding uom into unitOfMeasure, a complete list is available 
at the URL in footnote 14). 

All the tests have been performed on a P4-1700, with 512 MB of RAM, with the 
Windows XP operating system, and with no applications running but a single match-
ing system. The systems were limited to allocate no more than 512 MB of memory. 
All the tuning parameters (e.g., thresholds, combination strategies) of the systems 
were taken by default (e.g., for COMA we used NamePath and Leaves matchers 
combined in the Average strategy) for all the tests. S-Match was also used in default 
configuration, e.g., threshold for string-based matchers was 0.6. This threshold has 
been defined after experimentation on several schema matching tasks (see for details 
the URL in footnote 14). Finally, all the element level matchers of the third approxi-
mation level (e.g., gloss-based matchers) were not involved in the evaluation since all 
the matching tasks under consideration were successfully resolved by the matchers of 
Table 1 which belong to the first and the second approximation levels; see [22] for the 
preliminary evaluation results of matchers belonging to the third approximation level 
as well as for the tasks where they are useful. 

9.2. Evaluation results 

We present the time performance results for all the tasks of Table 10, while quality 
results, as from the previous discussion are possible to estimate only for some of the 
matching tasks (#1,2,3). The evaluation results for the matching problems #1,2,3 are 
shown in Figure 14.  

 
Fig.14.1 Evaluation results: Yahoo Finance (mini) vs. Standard (mini), test case #1 



 
Fig. 14.2 Evaluation results: Cornell (mini) vs. Washington (mini), test case #2 

For example, in Figure 14.2, since all the labels at nodes in the given test case were 
correctly encoded into propositional formulas, all the quality measures of S-Match 
reach their highest values. In fact, as discussed before, the propositional SAT solver is 
correct and complete. This means that once the element level matchers have found all 
and only the mappings, S-Match will return all of them and only the correct ones. 

 
Fig. 14.3 Evaluation results: CIDX vs. Excel, test case #3 

For a pair of BizTalk schemas: CIDX vs. Excel, S-Match performs as good as 
COMA and outperforms other systems in terms of quality indicators. Also, the opti-
mized version of S-Match works more than 4 times faster than COMA, more than 2 
times faster than Cupid, and as fast as Rondo. 

The time performance results obtained for the matching tasks #4,5,6,7 of Table 10 
are presented in Figure 15. Cupid went out of memory on all the tasks. Therefore, we 
present the results for other systems.  



 
Fig. 15.1. Execution times: Looksmart vs. Yahoo, test case #4  

In the case of Looksmart-Yahoo matching problem the trees contain about hundred 
nodes each. S-Match works about 18% faster than S-MatchB and about 2% slower 
than COMA. SF, in turn, works about 3 times faster than S-Match. The relatively 
poor improvement (18%) occurs because our optimizations are implemented in a 
straightforward way. More precisely, on small trees (e.g., test case #4) a big constant 
factor15 dominates the growth of all other components in S-Match computational 
complexity formula. 

On Yahoo-Standard matching problem S-Match works about 40% faster than S-
MatchB. It performs 1% faster than COMA and about 5 times slower than SF. The 
relatively small improvement in this case can be explained by noticing that the maxi-
mum depth in both trees is 3 and that the average number of labels at nodes is about 2. 
The optimizations cannot significantly influence the system performance. 

 
Fig. 15.2. Execution times: Yahoo vs. Standard, test case #5 

The next two matching problems are much bigger than the previous ones. They 
contain hundreds and thousands of nodes. On these trees SF went out of memory. 
Therefore, we provide the results only for the other systems. In the case of Google-
Yahoo matching task S-Match is more than 6 times faster than S-MatchB. COMA per-
forms about 5 times slower than the optimized version. These results suggest that the 
optimizations described in this paper are better suited for big trees. In the case of the 

                                                           
15 This is also known in the literature as an implementational constant.  



biggest matching problem, involving Google-Looksmart, S-Match performs about 9 
times faster than COMA, and about 7 times faster than S-MatchB. 

 
Fig.15.3. Execution times: Google vs. Yahoo, test case #6 

 
Fig. 15.4. Execution times: Google vs. Looksmart, test case #7 

Having considered matching tasks of Table 10, we conclude that S-Match performs 
(in terms of execution time) slightly slower than COMA and SF on the schemas with 
one up to three hundred of nodes (see, Figures 15.1-15.2). At the same time, S-Match 
is considerably faster on the schemas with more than five hundreds nodes (see, Fig-
ures 15.3-15.4), thereby indicating system scalability.  

9.3. Evaluation summary 

Quality measures. Since most matching systems return similarity coefficients, rather 
than semantic relations, our qualitative analysis was based on the measures developed 
for those systems. Therefore, we had to omit information about the type of relations 
S-Match returns, and focus only on the number of present/absent mappings. We to-
tally discarded from our considerations the disjointness relation, however, its value 
should not be underestimated, because this relation reduces the search space.  

We pose a large-scale qualitative evaluation of the system as future work. Thus, in 
our evaluation we have focused only on the overall qualitative system results, hence, 
not discussing exhaustively element level matchers, e.g., by showing impact of each 
of them on the matching results (see, for some preliminary results [22]). Also, it is 
worth mentioning that, e.g., string-based matchers, have already been extensively 
evaluated in [11,44]. 



Performance measures. Time is an important indicator, because when matching in-
dustrial-size schemas (e.g., with hundreds and thousands of nodes, which is quite 
typical for e-business applications), it shows scalability properties of the matchers and 
their potential to become industrial-strength systems. It is also important in web ap-
plications, where some weak form of real time performance is required (to avoid hav-
ing a user waiting too long for the system respond).  

10. Related Work 

At present, there exists a line of semi-automated schema matching systems, see, for 
instance [5,10,13,15,32,30,35,39,49,28,46]. A good survey and a classification of 
matching approaches up to 2001 is provided in [42], an extension of its schema-based 
part and a user-centric classification of matching systems is provided in [43], while 
the work in [14] considers both [42, 43] as well as some other classifications. 

In particular, for individual matchers, [43] introduces the following criteria which 
allow for detailing further (with respect to [42]), the element and structure level of 
matching: syntactic techniques (these interpret their input as a function of their sole 
structures following some clearly stated algorithms, e.g., iterative fix point computa-
tion for matching graphs), external techniques (these exploit external resources of a 
domain and common knowledge, e.g., WordNet [37]), and semantic techniques (these 
use formal semantics, e.g., model-theoretic semantics, in order to interpret the input 
and justify their results). 

The distinction between the hybrid and composite matching algorithms of [42] is 
useful from an architectural perspective. [43] extends this work by taking into account 
how the systems can be distinguished in the matter of considering the mappings and 
the matching task, thus representing the end-user perspective. In this respect, the fol-
lowing criteria are proposed: mappings as solutions (these systems consider the 
matching problem as an optimization problem and the mapping is a solution to it, e.g., 
[13,35]); mappings as theorems (these systems rely on semantics and require the 
mapping to satisfy it, e.g., the approach proposed in this paper); mappings as likeness 
clues (these systems produce only reasonable indications to a user for selecting the 
mappings, e.g., [32,11]).  

Let us consider the closest to S-Match schema-based state of the art systems in 
light of the above criteria. 
Rondo. The Similarity Flooding (SF) [35] approach, as implemented in Rondo [36], 
utilizes a hybrid matching algorithm based on the ideas of similarity propagation. 
Schemas are presented as directed labeled graphs. The algorithm exploits only syntac-
tic techniques at the element and structure level. It starts from the string-based com-
parison (common prefixes, suffixes tests) of the nodes’ labels to obtain an initial map-
ping which is further refined within the fix-point computation. SF considers the 
mappings as a solution to a clearly stated optimization problem. 
Cupid. Cupid [32] implements a hybrid matching algorithm comprising syntactic 
techniques at the element (e.g., common prefixes, suffixes tests) and structure level 
(e.g., tree matching weighted by leaves). It also exploits external resources, in particu-
lar, a precompiled thesaurus. Cupid falls into the mappings as likeness clues category. 



COMA. COMA [11] is a composite schema matching system which exploits syntac-
tic and external techniques. It provides a library of matching algorithms; a framework 
for combining obtained results, and a platform for the evaluation of the effectiveness 
of the different matchers. The matching library is extensible, it contains 6 elementary 
matchers, 5 hybrid matchers, and one reuse-oriented matcher. Most of them imple-
ment string-based techniques (affix, n-gram, edit distance, etc.); others share tech-
niques with Cupid (tree matching weighted by leaves, thesauri look-up, etc.); reuse-
oriented is a completely novel matcher, which tries to reuse previously obtained re-
sults for entire new schemas or for its fragments. Distinct features of COMA with re-
spect to Cupid, are a more flexible architecture and a possibility of performing itera-
tions in the matching process. COMA falls into the mappings as likeness clues 
category. 

Reduction of semantic heterogeneity is typically performed in two steps. So far, 
we have concentrated on the first step, namely on determining correspondences be-
tween semantically related entities. The second step is the ultimate goal of the match-
ing exercise, which can be data translation, query answering, and so on. Here, map-
pings are taken as input and are analyzed in order to generate, e.g., query expressions 
that automatically translate/exchange data instances between the information sources, 
see, for example, [16,48]. Notice that taking as input semantic relations, instead of 
coefficients in the [0,1] range, potentially enables, e.g., data translation systems to 
produce better results, since, for example, in such systems as Clio [16], the fist step is 
to interpret the correspondences by giving them a clear semantics. 

11. Conclusions 

We have presented a new semantic schema matching algorithm and its optimizations. 
Our solution builds on top of the past approaches at the element level and introduces a 
novel (with respect to schema matching) techniques, namely model-based techniques, 
at the structure level. We conducted a comparative evaluation of our approach imple-
mented in the S-Match system against three state of the art systems. The results em-
pirically prove the strength of our approach. 

Future work includes development of an iterative and interactive semantic match-
ing system. It will improve the quality of the mappings by iterating and by focusing 
user’s attention on the critical points where his/her input is maximally useful. S-
Match works in a top-down manner, and hence, mismatches among the top level ele-
ments of schemas can imply further mismatches between their descendants. There-
fore, next steps include development of a robust semantic matching algorithm. Also, 
we are planning to extend the semantic matching approach by computing the overlap-
ping relation (with the intersection semantics). This relation might be useful when, 
e.g., input schemas encode a domain of interest at different levels of details. Finally, 
we are going to develop a testing methodology which is able to estimate quality of the 
mappings between schemas with hundreds and thousands of nodes. Initial steps have 
already been done; see for details [3]. Here, the key issue is that in these cases, speci-
fying expert mappings manually is neither desirable nor feasible task, thus a semi-
automatic approach is needed. Comparison of matching algorithms on large real-
world schemas from different application domains will also be performed extensively. 
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Appendix A. Pseudo code of the optimized algorithm 
 
Node struct of 
 int nodeId; 
 String label; 
 String cLabel; 
 String cNode; 
 AtomicConceptAtLabel[] ACOLs; 
 
AtomicConceptOfLabel struct of 
 int id; 
 String token; 
 String[] wnSenses; 

 
 
10.void elementLevelSenseFiltering(Node node) 
20. AtomicConceptOfLabel[] nodeACOLs=getACOLs(node); 
30. for each nodeACOL in nodeACOLs 
40.  String[] nodeWNSenses=getWNSenses(nodeACOL); 
50.  for each ACOL in nodeACOLs 
60.   if (ACOL!=nodeACOL) 
70.    String[] wnSenses=getWNSenses(ACOL); 
80.     for each nodeWNSense in nodeWNSenses 
90.      for ea wnSense wnSenses ch  in 
100.       i isConnectedbyWN(nodeWNSense, focusNodeWNSense)) f (
110.        addToRefinedSenses(nodeACOL,nodeWNSense); 
120.  addToRefinedSenses(focusNodeACOL, focusNodeWNSense);       
131.  saveRefinedSenses(context); 

 
 
140. void saveRefinedSenses(context)  
150.   for each node in context 
160.     AtomicConceptOfLabel[] nodeACOLs=getACOLs(node); 
170.    for ea nodeACOL NodeACOLs ch  in 
180.      if (hasRefinedSenses(nodeACOL)) 
190.        //replace original senses with refined 

 
 
200. void buildCLab(Tree of Nodes context) 
210.  String[] wnSenses; 
220.  For each node in context 
230.    String cLabFormula=””; 
240.    String nodeLabel getLabel(node); =
250.    String[] tokens=tokenize(nodeLabel); 
260.    String[] lemmas=lematize(tokens); 
270.    For each lemma in lemmas 
280.      if (isMeningful(lemma)) 
290.        if (!isInWordnet(lemma)) 
300.         addACOLtoNode(node, lemma,SENSES_NOT_FOUND); 
310.       else 
320.         wnSenses= getWNSenses(token); 
330.         addACOLtoNode(node, lemma, wnSenses); 
340.     cLabFormula=constructcLabFormula(cLabFormula, lemma); 
350.   setcLabFormula(node, cLabFormula); 
360.   elementLevelSenseFiltering(node); 



 
400.void structureLevelSenseFiltering (Node node, Tree of Nodes context) 
410.  AtomicConceptOfLabel[] focusNodeACOLs; 
420.  Node[] focusNodes=getFocusNodes(node, context); 
430.  AtomicConceptOfLabel[] nodeACOLs=getACOLs(node); 
440.  for each nodeACOL in nodeACOLs 
450.    String[] nodeWNSenses=getWNSenses(nodeACOL); 
460.    for each nodeWNSense in nodeWNSenses 
470.      for each focusNode focusNodes  in 
480.        focusNodeACOLs=getACOLs(focusNode); 
490.        for each focusNodeACOL in focusNodeACOLs  
500.          String[] fNodeWNSenses=getWNSenses(focusNodeACOL); 
510.          for ea fNodeWNSense in nodeWNSenses ch 
520.            if isConnectedbyWN nodeWNSense, fNodeWNSense))  ( (
530.              addToRefinedSenses(nodeACOL,nodeWNSense); 
540.              addToRefinedSenses(focusNodeACOL, focusNodeWNSense); 
550.  saveRefinedSenses(context); 

 
 
600. buildCNode(Tree of Node context) 
610.  for each node in context 
620.    cNodeFormula buildcNodeFormula (node, context); String = 
630.    structureLevelSenseFiltering (node,context); 
640.    if isUnsatisifiable(cNodeFormula))  (
650.      updateFormula(cNodeFormula); 
      //error please reconcile the context 

 
 
700. String[][] fillCLabMatrix(Tree of Nodes source,target); 
710. String[][]cLabsMatrix; 
720. String[] matchers; 
730. int i,j; 
740. matchers=getMatchers(); 
750. for each sourceAtomicConceptOfLabel in source 
760.  i=getACoLID(sourceAtomicConceptOfLabel); 
770.  for each targetAtomicConceptOfLabel in target 
780.   j= getACoLID(targetAtomicConceptOfLabel); 
790.   cLabsMatrix[i][j]=getRelation(matchers,  
  sourceAtomicConceptOfLabel,targetAtomicConceptOfLabel); 
 
800. String getRelation(String[] matchers,  
          AtomicConceptOfLabel source, target) 
810.  String matcher; 
820.  String relation=”Idk”; 
830.  int i=0; 
840.  while ((i<sizeof(matchers))&&(relation==”Idk”)) 
850.   matcher= matchers[i]; 
860.   relation=executeMatcher(matcher,source,target); 
870.   i++; 
880.  return relation; 

 
 
 
 
 
 



 
900.String[][] treeMatch(Tree of Nodes source, target,  
          String[][] cLabsMatrix) 
910. Node sourceNode,targetNode; 
920. String[][]cNodesMatrix, relMatrix; 
930. String axioms, contextA, contextB; B

940. int i,j; 
950. cLabsMatrix=fillCLabMatrix(source,target); 
960. For each sourceNode in source 
970.  i=getNodeId(sourceNode); 
980.  contextA=getCnodeFormula (sourceNode); 
990.  For each targetNode in target 
1000.    j=getNodeId(targetNode); 
1010.    contextB=getCnodeFormula (targetNode); B

1020.    relMatrix=extractRelMatrix(cLabsMatrix, sourceNode,  
          targetNode); 
1030.    axioms=mkAxioms(relMatrix); 
1040.    cNodesMatrix[i][j]=nodeMatch(axioms,contextA,contextB); B

1050. return cNodesMatrix; 

 
 
1100.String nodeMatch(String axioms, contextA, contextB) 
1105. if (contextA and context  are conjunctive) B

1106.  isOpposite=optimizedUnsatTestForDisjointness (axioms, contextA,  
        contextB); 
1107. else 
1110.  formula= And(axioms, contextA, contextB); 
1120. formulaInCNF=optimizedConvertToCNF(formula); 
1130.  boolean isOpposite= isUnsatisfiable(formulaInCNF); 
1140. if (isOpposite)  
1150.   return “⊥”; 
1155.  if (context  and contextA B

1156.    isLG=fastHornUnsatCheck (context
B are conjunctive) 

A, contextB, axioms, “B ”,“ ”); 
1157.    isMG=fastHornUnsatCheck (contextB, contextB A, axioms, “ ”,“ ”); 
1158.  else 
1160.  String formula=And(axioms,contextA,Not(contextB)); 
1170. formulaInCNF=optimizedConvertToCNF(formula); 
1180.  boolean isLG=isUnsatisfiable(formulaInCNF) 
1190.  formula=And(axioms, Not(contextA), contextB); 
1200. formulaInCNF=optimizedConvertToCNF(formula); 
1210.  boolean isMG= isUnsatisfiable(formulaInCNF); 
1220. if (isMG && isLG)  
1230.   return “=”; 
1240. if (isLG)  
1250.   return “ ”; 
1260. if (isMG)  
1270.   return “ ”; 
1280. return “Idk”; 

 
 
 
 
 
 
 
 



 
1300. optimizedUnsatTestForDisjointness (axioms, contextA, contextB); 
1310. for each axiom axioms in  
1320.  String Ai= getFirstVariable(axiom); 
1330.  String B = getSecondVariable(axiom); j

1340.  if ((occurs_positively (Ai, contextA))&&(occurs_positively (Bj,  
        contextB))) 
1350.   if (getAType(axiom)=”⊥”) 
1360.    return true; 
1370.  if ((occurs_negatively (Ai, contextA))&&(occurs_positively (Bj,  
        contextB))) 
1380.  if((getAType(axiom)=”=”)||(getAType(axiom)=” ”)) 
1390.    return true; 
1400.  if ((occurs_positevely (Ai, contextA))&&(occurs_negatively (Bj,  
        contextB))) 
1410.  if((getAType(axiom)=” =”)||(getAType(axiom)=” ”)) 
1420.    return true; 
1430. return false; 

 
 
1500.boolean fastHornUnsatCheck(String context, neg_context, axioms,  

       rel, neg_rel) 
1510. int m=getNumOfVar(String neg_context); 
1520. boolean array[m]; 
1530. for each axiom axioms in  
1540.  String Ai= getFirstVariable(axiom); 
1550.  String B = getSecondVariable(axiom); j

1560.  int j getNumberInContext(B=
1570.  if((occurs_positevely (A

j); 
i, context))&&(occurs_positevely (Bj,  

       neg_context))) 
1580.   if((getAType(axiom)=”=”)||(getAType(axiom)=rel)) 
1590.    array j[ ]=true; 
1600.  if ((occurs_negatively (Ai, context))&&(occurs_negatively (Bj,  
       neg_context))) 

1610.   if((getAType(axiom)=” =”)||(getAType(axiom)=neg_rel)) 
1620.    array j[ ]=true; 
1630.  if ((occurs_positevely (Ai, context))&&(occurs_negatively (Bj,  
       neg_context))) 
1640.   if(getAType(axiom)=”⊥”) 
1650.    array[j]=true; 
1660. for (i=0; i<m; i++) 
1670.  if (!array[i]) 
1680.   return false; 
1690. return true; 
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