

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

A FRAMEWORK FOR RAPID INTEGRATION OF PRESENTATION
COMPONENTS

Jin Yu, Boualem Benatallah, Regis Saint-Paul, Fabio Casati, Florian
Daniel and Maristella Matera

December 2006

Technical Report # DIT-06-100

.

A Framework for Rapid Integration of Presentation
Components

Jin Yu, Boualem Benatallah,
Regis Saint-Paul

University of New South Wales
Sydney, Australia

{jyu,boualem,regiss}
@cse.unsw.edu.au

Fabio Casati
University of Trento

Trento, Italy

casati@dit.unitn.it

Florian Daniel,
Maristella Matera
Politecnico di Milano

Milano, Italy

{daniel,matera}@elet.polimi.it

ABSTRACT
The development of user interfaces (UIs) is one of the most time-
consuming aspects in software development. In this context, the
lack of proper reuse mechanisms for UIs is increasingly becoming
manifest, especially as software development is more and more
moving toward composite applications. In this paper we propose a
framework for the integration of stand-alone modules or
applications, where integration occurs at the presentation layer.
Hence, the final goal is to reduce the effort required for UI
development by maximizing reuse.

The design of the framework is inspired by lessons learned from
application integration, appropriately modified to account for the
specificity of the UI integration problem. We provide an abstract
component model to specify characteristics and behaviors of
presentation components and propose an event-based composition
model to specify the composition logic. Components and
composition are described by means of a simple XML-based
language, which is interpreted by a runtime middleware for the
execution of the resulting composite application. A proof-of-
concept prototype allows us to show that the proposed component
model can also easily be applied to existing presentation
components, built with different languages and/or component
technologies.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
Modules and interfaces, Software libraries. H.5.2 [Information
Interfaces and Presentation]: User Interfaces – Graphical user
interfaces, Interaction styles, Prototyping, Standardization. H.5.4
[Information Interfaces and Presentation]: Hypertext /
Hypermedia – Architectures.

General Terms
Design, Languages, Standardization.

Keywords
Presentation integration, presentation composition, presentation
component, component model, user interface (UI), XPIL.

1. INTRODUCTION
Creating composite applications from reusable components or
modules is an important technique in software engineering and
data management. A large body of research and development
exists in integration-related areas such as enterprise application
integration (EAI), enterprise information integration (EII), and
service composition. However, most of these efforts focus on

simplifying integration at the data or application level, while little
work has been done to facilitate integration at the presentation
level. It is well-recognized that the development of user interfaces
(UIs) is one of the most time-consuming parts of application
development [8], so this indicates that reuse is also critical at the
presentation level. However, UI development today is mostly
facilitated by toolkits (e.g. Java Swing) providing pre-packaged
classes modeling fine-grained UI controls such as buttons and
menus; the integration of high-level presentation components
encapsulating reusable application functionalities has received
little attention.

The need for integrating coarse-grained components at the
presentation level is manifest and examples are numerous, both in
the enterprise and the consumer space. Indeed, hundreds of
examples of presentation integration exist today, in the form of
web mashups [7] (see ProgrammableWeb.com for a list of popular
mashups). Web mashups perform integrations both at the
application level and at the presentation level. However, since
there is very little support in terms of model and tools for
presentation integration, the presentation aspect of most mashups
today is developed manually. That is, a developer needs to glue
the UI of the desired components together using scripts or general
purpose programming languages, in an ad-hoc fashion. Most of
the developer's time is spent in trying to figure out the
programming interfaces of the components, and then use the
appropriate runtime and languages to integrate them.

This situation is similar to that witnessed at the dawn of data and
application integration, where the need for integration was present
but methodologies and tools were not. People resorted to hacking
components and information together by writing all the
integration logic from scratch, using conventional programming
languages such as C or SQL. Eventually, the importance of reuse
and of structured approaches to integration supported by tools was
recognized, and entire multi-billion dollar industries came to life
in the space of EII and EAI. We argue that a similar path will
need to be followed by presentation integration.

Following our preliminary investigation [3], in this paper we
introduce a framework for integration at the presentation level;
that is, integration of components by combining their presentation
front-ends, rather than their application logic or data. The
granularity of components is that of stand-alone modules or
applications encapsulating reusable functionalities; the goal is to
build composite applications that leverage the components’
individual UIs to produce composite applications possibly with
rich and highly interactive user interfaces.

The framework builds on lessons learned in data and application
integration but extends and adapts them to the specific needs of
the presentation layer. Specifically, we argue for the need of the
notion of presentation component, a loosely-coupled, coarse-

Copyright is held by the author/owner(s).
WWW 2007, May 8--12, 2007, Banff, Canada.

grained module or application which includes a presentation layer
(i.e. UI and logic to manage user interactions), that offers a
programmatic access to facilitate its integration with other
presentation components into an overall user interface. We also
argue on the need for a composition framework (model, language,
and tools) that allows the development of composite applications
from presentation components, and of a runtime infrastructure that
manages the interactions among components and keeps them
synchronized with respect to the content they are displaying.

The end goal is that of being able to drag and drop components on
a canvas and quickly specify the UI integration logic so that a
complex application can be built by aggregating components with
minimal development effort. These presentation components
should also be easily reusable in various composite applications
and, conversely, a composite application would ideally be able to
swap between components providing similar UI functionality
(e.g., different map providers or different image feed providers).

1.1 Reference Scenarios
To understand the problem and the need for such a framework,
consider the development of a US national park interactive guide
(see Figure 1). There are three presentation components in this
example: a national park listing which contains a list of US
national parks, an image displayer which shows images given a
point of interest, and a map which displays the location of a given
address or point of interest. When the user selects a national park
from the park listing component, the image displayer will show an
image of the selected park while the map will display its location.

Instead of building the above three presentation components from
scratch, we choose to reuse existing components. For the national

park listing component, we can leverage the "Find a Park" service
from the web site www.nps.gov. For the image displayer, we can
use the Flickr.NET component, which displays images given
some keyword tags. And for the map service, we can use Google
Maps, which displays the location map given a point of interest.

For the above example, one can manually build a composite
application using client-side JavaScript to maintain the
coordination among the components, so that the selection of a
park name causes the map and the image to change. Most of web-
based presentation integrations are done with this approach, which
has several important drawbacks: the developer needs to be
intimately familiar with the details of each component, the
integration code is not reusable, and components become tightly
coupled. In fact, if developers want to switch components (e.g.,
use MapQuest instead of Google Maps) or “reuse” Google Maps
and Flickr in other applications, the development effort is
significant.

Another very common example is the integration of UIs within
enterprise applications. For example, there are companies such as
HP offering consoles for IT management, service management,
and process management, separately developed over time or
through acquisition. Ideally, users want a single enterprise console
that integrates these more specific consoles to have an overall
view of a business process, of the services supporting this process,
and of the IT infrastructure supporting the services. Note that
integration does not just mean to put the three GUIs side by side:
interactions need to be coordinated so that for example user
interactions with one component UI (e.g., visualization of a
process) affect what is displayed by the other UIs (e.g., displaying

Figure 1. The National Park Guide.

information on services and the IT infrastructure used by that
process).

1.2 Contributions to Web Engineering
In light of the previous considerations, we believe that the
potentials for a presentation integration framework cannot be
emphasized enough, and that there are huge opportunities for
research and development in this area. In this paper we aim at
laying the foundations for such a framework and at providing a
proof of concept implementation. Specifically, we make the
following contributions:

• We present a model for presentation components, aiming at
combining simplicity with effectiveness. The key
observations are that presentation components require i) a
conceptual, application specific notion of state (e.g., the
location and the zoom level for maps, the service or process
for enterprise management applications), ii) operations to
request state changes, iii) events to notify state changes,
mainly occurring due to user interactions, and iv) layout and
appearance characteristics to give a consistent look and feel
to the composite application.

• We propose an event-based composition model and a
corresponding lightweight middleware, as we argue that
presentation integration is mostly event-based. For cases
when event-based specification is insufficient, additional
integration logics may also be specified in the form of simple
scripts or references to external code.

• We provide bindings from the abstract component model to
concrete component implementations, leveraging an adapter
framework for communicating with existing heterogeneous
presentation components.

In the next section we discuss some background concepts,
especially with respect to application integration. Section 3
describes the proposed presentation integration framework. We
then illustrate a detailed example in Section 4, followed by a brief
discussion of implementation issues in Section 5. Finally, we
discuss related work in Section 6 and conclude in Section 7.

2. GUIDING PRINCIPLES
In this section we discuss the characteristics of the presentation
integration problem, in particular in terms of similarities and
differences with respect to application integration.

2.1 Lessons Learned from EAI
A plethora of research is available in the fields of integration.
Although integration problems and solutions differ based on the
kind of integration needed, certain issues appear to be common
and certain approaches seem to be more successful and applicable
than others. A key learning from research in EAI is the need for a
homogeneous way to describe the different components to be
integrated. This description should be simple, formal, human
readable, and modular.

Simplicity is paramount: it has been proven over and over that
complex models and languages do not succeed. In application
integration, only simple languages made it into the mainstream
use, such as IDL and WSDL. Formalization is needed as the tool
support is essential. Tools relevant for integration include both
development environment as well as runtime middleware that
handle binding and interaction. Readability is important as,
although tools often act as mediation between a language
representation and the user, developers often need to read the
specifications directly (e.g. to overcome inflexibility of the tools).

Modularization is essential to disseminate a new integration
model. Approaches that tried to push a single specification to
cover all aspects in a big bang approach had very limited success.
The problem here is that, first, the learning curve should be small
and developers only want to learn what is needed for the case they
are handling; second, and most importantly, the requirements
become clear only after a technology is being used. Hence, the
best approach is to start simple, understand requirements, and then
add additional functionalities later if needed. This is for example
the path adopted by Web services, which started with a very
simple model, language, and protocol (SOAP and WSDL) and
then added additional features over time (coordination,
transaction, reliability, etc.), and is contrary to the path followed
by ebXML, which had a much lesser success.

Another interesting lesson, borrowed from application integration,
is the success of queue-based, publish/subscribe, and bus-
mediated approaches to interoperability [2]. This has been proven
by the success of EAI and message broker platforms, and by the
fact that even in Web services, originally born for fully
decentralized interaction with no assumption on a common
middleware, the notion of enterprise service bus quickly emerged
and now it is the common approach to implement SOAs, at least
within the enterprise.

Finally, we observe that there is no easy solution to syntactical
and semantic heterogeneity in application integration. In the end,
the solutions adopted amounts to allowing the specification of
mapping and transformation so that data can be exchanged among
components, possibly with the aid of tools that facilitate data
matching and mapping definitions [2].

2.2 Differences between Presentation and
Application Integration

The above observations provide us with general principles and
guidelines to face the problem of presentation-level integration
(PI). There are, however, important differences that we need to
keep in mind when developing an integration framework at the
presentation layer.

A major difference is that PI is typically event-driven, and
specifically driven by end users' actions. When the user interacts
with the UI of a component, it will react according to its own UI
behavior which may result in certain state changes. At this point,
the rest of the components in the same composite application need
to be aware of the UI state changes in the first component, so that
they can update their UI accordingly.

Figure 2. National park guide (event-based model).

In our national park example, this means that when the user
selects a different park from the park listing component, this
component would fire a "ParkSelectionChanged" event (Figure 2).

This event notifies Flickr and Google Maps to update their UI
accordingly (i.e. displaying the image and the map of the newly
selected park). Loose coupling here advices the use of an
intermediation as opposed to implementing point to point links
among components. As we will see this loose coupling is
achieved via an event broker.

Hence, communication among components mainly consists of
notifications of (and requests for) state changes. This means that,
intuitively, we need a notion of application-defined state, whose
data type is also application specific. In a composite application,
what is important for the purpose of UI coordination is being able
to manipulate a component's state as well as to detect its state
changes.

This is unlike EAI where a component offers an arbitrary set of
methods consisting of invocation and reply data, possibly
complex and/or with large attachments. Furthermore, in EAI, the
integration is mainly procedural, achieved via the specification of
fairly complex control logic (e.g., in BPEL [11] or other
workflow-like language) that causes the invocation of services,
typically in some predefined sequence. The interaction with the
individual component is fairly complex as well and possibly
regulated by a business protocol. EAI components also typically
do not have a first class, application-specific notion of state.

Another difference is that presentation components often require
the configuration of UI appearances, such as font and background
color. Hence, we need a notion of configuration parameters, for
the purpose of design-time component customization. For
example, a developer can specify the font and background color
of a map component using a visual composition tool at design
time. This is not commonly used in EAI, where the notion of
configuring a service before using it is rare and not part of the
mainstream component models or description languages.

In presentation integration the runtime middleware needs to know
if the UI is visible or hidden, minimized or maximized; that is, the
middleware should be able to monitor, query, and update the
presentation modes of the components. In addition, components in
PI also require proper layout management; this includes, for
example, the location, size, shape, transparency, and z-order of the
presentation components.

Finally, EAI is characterized by hard requirements in terms of
reliability, transactionality, and security. In the typical
applications of PI this level of reliability and security is not
expected to be of crucial importance, meaning that the extra
complexity generated by reliability and security requirements may
not be justified. Hence, at least in the initial proposal for a PI
solution, and until if and when such requirements materialize, we
will not put emphasis on reliability and security.

3. PRESENTATION INTEGRATION
FRAMEWORK

Based on the previous considerations and requirements, we
propose in this section a conceptual model as well as a framework
to facilitate presentation integration. Figure 3 describes the high-
level architecture of the proposed framework for the execution of
composite applications.

A composite application consists of one or more components, a
specification of the composition model (i.e. integration logics that
coordinate the components at runtime) and a middleware for the
execution of the composition. The middleware includes an event
broker that manages a set of event listeners defined in the
composition model. The event listeners map state change events,

generated by one component, onto operations (i.e. state change
requests) of other components.

The specification of the composition is performed by the
application composer (i.e. composition developer) at design time,
who may also consult a proper component registry to identify
presentation components that suit his/her application requirements
by inspecting the respective abstract component descriptors.
Component descriptors are similar to WSDL descriptors of Web
services; however, as we will show in the following, some
characteristic differences apply in the case of presentation
components.

Registry

L L L

C1 C2 C3

Components

Presentation Integration Middleware

Composition

E
ve

nt
s

O
pe

ra
tio

ns

C1

Component Descriptors

Event Broker

Event
Listeners

C2 C3

Composer

L

Figure 3. Architecture of the proposed presentation

integration framework.

In the following subsections we discuss the main elements of the
outlined framework, namely components, composition and
execution middleware.

3.1 Component Model
We propose an abstract model for presentation components,
where abstract means that it is not tied to specific implementation
technologies, and that it should be able to describe existing
presentation components from heterogeneous component
technologies.

Conceptually, a component is characterized by a state, which
defines what the composite application can see and control in
terms of changes to the UI. The state can be complex and consist
of multiple attributes (e.g., map location and zoom level). A set of
events allow notification of state changes, while operations allow
for querying and modifications of the state.

In addition, presentation components typically have configuration
parameters that reflect UI appearances such as font face and
background color. Parameters are specified at design time (or
component creation time) and can no longer be modified at

runtime. Configuration parameters are therefore exposed via a set
of properties, allowing the inspection and specification of the
parameter values at design time.

In general, the attributes of the component's state are high level
and conceptual (e.g., location and zoom level), while
configuration parameters are related to preset graphical attributes
(font faces, background colors, etc). However it is up to the
component developer to define what characteristics are part of the
state and what characteristics are configuration parameters.
Ideally, the state should be kept as simple as possible to facilitate
integration and reuse, as state changes are what cause events to be
exchanged among components and therefore need to be handled
in the composite.

The external interface (i.e. the component model) of a
presentation component consists of a set of events, operations, and
properties, which allow the component to expose its state and
configuration parameters. To better illustrate the concepts, we will
use the following XML fragment, which contains a list of
component model descriptors (<component> elements) that
correspond to the park listing, Flickr, and Google Maps,
respectively.1
<component id="parkListing"
 xmlns:cm="http://www.openxup.org/2006/xpil/component"
 adapter="org.openxup.adapter.SackAdapter"
 address="http://www.nps.gov/findapark/index.htm">

 <event name="ParkSelectionChanged"
 address="selectPark">
 <param element="nps:parkName"/>
 </event>
</component>

<component id="imageDisplayer"
 xmlns:cm="http://openxup.org/2006/08/xpil/component"
 adapter="org.openxup.adapter.dotNETCompAdapter"
 address="http://.../FlickrNet.dll">

 <operation name="search" address="PhotosSearch">
 <input element="nps:tags"/>
 </operation>
</component>

<component id="map"
 xmlns:cm="http://openxup.org/2006/08/xpil/component"
 adapter="org.openxup.adapter.GMapWrapper"
 address="http://maps.google.com/maps?file=api...">

 <operation name="showPOI" address="showAddress">
 <input element="nps:POI"/>
 </operation>

 <property name="currentLocation">...</property>
</component>

<types
 xmlns:cm="http://openxup.org/2006/08/xpil/component">
 <!-- data types defined by XML Schema, for
 events, operations, and properties -->
 <xsd:schema xmlns:xsd="http://www.w3.org/2001/..."
 targetNamespace="http://nps.gov/2006/...">
 <xsd:element name="parkName" type="xsd:string"/>
 <xsd:element name="tags" type="xsd:string"/>
 <xsd:element name="POI" type="xsd:string"/>
 </xsd:schema>
</types>

Listing 1. Component model descriptors.

1 Note that component model descriptors may in fact come from

different developers. For example, the XML fragment in Listing
1 could be created by three different developers, each providing
the component model for one of the components.

Now we will proceed with the details of the component's external
interface.

Events. A presentation component may expose a set of events to
notify other components of its state changes, which are initiated
either by user actions on the UI, or by requests from other
components. For example, the park listing component will fire a
"ParkSelectionChanged" event when the user selects a different
park (see Listing 1).

Note that our component model is only concerned with
component-defined events, not native UI events defined by the
underlying UI toolkit. Figure 4 illustrates the distinction between
component-defined events and native UI events.

Figure 4. Component-defined event vs. native UI event.

Essentially, user actions trigger both native UI events and
component-defined events. However, native UI events are
captured by the underlying UI toolkit and processed by the
components internally, whereas component-defined events (which
signal state changes) are exposed externally. It is up to the
component to define and implement the relationship between
native UI events and component events that signal state changes.

Operations. A presentation component can expose a set of
operations that allows for queries and modifications of its state. In
our national park example, the map component supports an
operation called "showPOI" (see Listing 1), which displays the
map given a point of interest. An operation typically supports a
list of input parameters which allows the caller to pass in values,
and a return value which allows the caller to retrieve the result.
The support of multiple input values allows an operation to set an
attribute of the component state with various options, or even to
set multiple attributes of the state at the same time (e.g. setting
map location and zoom level within a single operation).

Properties. At design time or component creation time, properties
can be used to expose the initial state and the configuration
parameters of the component. For example, properties allow the
design-time customization of the map component's configuration
parameters such as font face and background color, and initial
state such as the default map location.

At runtime, properties can be also used to expose component's
state (e.g. the "currentLocation" property of the map component in
Listing 1, which allows for the query or update of the current map
location at runtime). However, unlike operations, a property is
usually expressed as a pair of setter and getter, supporting a single
value. That means that properties are simpler and easier to
manage than operations, and therefore more suitable for visual
composition tools at design time or deployment time.

Presentation modes. In addition to events, operations, and
properties, there are characteristics common to all components
which allow the runtime middleware to properly manage the
component's execution. Collectively, we call them presentation
modes, which include:

• Component's visual appearance characteristics, such as its
visibility (visible or hidden) and window state (minimized or
maximized);

• Component's lifecycle information. A component can be in
one of the following lifecycle states: instantiated
(downloaded and instance created), ready (finished initial
configuration and ready to handle tasks), busy (busy
processing tasks), and destroyed (instance destroyed).

Presentation modes are different from component properties: their
semantics must be understood by the runtime middleware for the
components to be properly managed. As a result, the runtime
middleware should be able to monitor, query, and update the
presentation modes of a component.

3.2 Composition Model
The composition model includes event subscription information to
facilitate the communication among presentation components. In
addition, the composition model may contain additional data
transformation logics via XSLT [18] and integration logics in the
form scripts or references to external code. Finally, the
composition model also includes layout information so that the
presentation components can be positioned properly.

Again, we will use our national park example to better explain the
concept. The following XML fragment describes the composition
model of the example.2
<listener id="parkChangedImgListener"
 xmlns="http://www.openxup.org/2006/08/xpil/integration"
 publisher="parkListing"
 event="ParkSelectionChanged"
 subscriber="imageDisplayer"
 operation="search"/>

<listener id="parkChangedMapListener"
 xmlns="http://www.openxup.org/2006/08/xpil/integration"
 publisher="parkListing"
 event="ParkSelectionChanged"
 subscriber="map"
 operation="showPOI"/>

<layout manager="CSS2" xmlns="http:.../xpil/integration">
 ...
</layout>

Listing 2. Composition model description.

Event subscriptions. Components exchange events through an
event broker that facilitates loose coupling. The composition
model supports a one to many publisher/subscriber relationship
among presentation components. That is, one component
publishes an event (i.e. declares that it will fire an event), and
other components subscribe to it (i.e. declares that they will listen
to and handle this event). In our national park example, the image
displayer and the map component (subscribers) listen to the park
selection changed event from the park listing component
(publisher).

The publisher/subscriber relationship is specified via event
listeners. Each listener specifies an event publisher, event type,
event subscriber, and an operation of the subscribing component.
In addition, multiple event listeners can be used to support

2 Note that Listing 2 contains references to the presentation

components defined earlier in Listing 1. In general, component
model descriptors are first created by one or more component
developers; then the composition developer authors the
composition model by referencing the components defined in
the component model descriptors.

multiple event subscribers for a single event from the event
publisher. Note that to facilitate loose coupling, event listeners are
specified in the composition model, not in the component model
descriptors of the subscribing components.

Our national park example (Listing 2) contains two event
listeners: one links the "ParkSelectionChanged" event from the
park listing component to the "search" operation of Flickr, and the
other links the "ParkSelectionChanged" event from the park
listing component to the "showPOI" operation of Google Maps.

Data mappings. When direct mappings between event parameters
and operation parameters are impossible, additional mappings and
transformations can be specified inside event listeners.
Specifically, inline or external XSLT style sheets may be
specified in the event listeners to define data transformation logics
for mapping the event parameters to operation parameters.

Additional integration logic. The primary goal of the
composition model is to facilitate the declarative composition of
presentation components. However, additional integration logic
may be needed (e.g. via simple scripting languages) for those
infrequent occurrences when the integration cannot be entirely
declared in the composition model. For example, a location
change on a map may be expressed in terms of (latitude,
longitude) coordinates, and there may be the need to invoke an
external service to derive city or state information from such
coordinates, and then update Flickr topics with such information.
In addition, a composite application may need finer control of the
integration process, through the direct invocations of operations
and properties of the presentation components. That is, a
developer can build a composite application by writing code on
top of the declarative composition framework that directly calls
the operations and properties of individual presentation
components. This allows the developer to directly manipulate the
state of the presentation components and pass data among them.

Therefore, the composition model allows additional integration
logics to be specified within event listeners, in the form of simple
inline scripts or references to external code. The supported
scripting or general purpose languages depend on the middleware
implementation. Our current prototype supports JavaScript, either
embedded inline or as external files. The reason behind this is that
we believe that the exact requirements for an abstract scripting
language will become clear as experience is gained with
presentation integration. At this stage, JavaScript suits our
purpose.

Layout information. The composition model itself does not
define any layout mechanism, but supports the notion of external
layout managers. This design facilitates maximum reuse of
existing layout technologies while at the same time providing a
flexible and extensible layout service for presentation integration.

Layout information may be specified in a <layout> element (see
Listing 2). The content of this element is not interpreted by the
middleware; instead it is simply passed to the external layout
manager at runtime. In addition, presentation components
typically expose layout properties, such as x, y, width, and height
(i.e. as part of the component model). At runtime, the middleware
will pass these properties to the external layout manager. When
combined with the layout specification in the <layout> element,
these properties allow the external layout manager to properly
position the presentation components at runtime.

3.3 Language Representation
To facilitate the easy integration of presentation components, we
propose a declarative composition language, the Extensible

Presentation Integration Language (XPIL). The language contains
two sets of XML elements, one for describing the component
model, and the other for describing the composition model.

The component model consists of a list of component descriptors
(<component> elements) and XML Schema type definitions
(<types> element), and the composition model contains a list of
event listeners (<listener> elements) and layout information
(<layout> element). Listing 1 shows an example of component
model description, and Listing 2 shows an example of
composition model description.

The component and composition models are typically created by
different developers, and they are usually authored in multiple
files (e.g. one file for the composition model, and one file for each
component model). To make the distinction clear, we made the
XML elements describing the component model and the ones that
describing the composition model under different XML
namespaces. This provides a clear separation between the two
models, even if they are authored in the same document.

In designing XPIL, we try to leverage existing standards from
application integration. As shown in Listing 1, the <operation>,
<input>, and <types> elements are very similar to the
corresponding ones in WSDL 2.0. In addition, the structure of
XPIL documents is also very close to WSDL documents. For
simplicity and ease of authoring, XPIL currently does not require
separate sections for binding and endpoints definitions. The
<component> element combines similar functionalities of WSDL
2.0's interface, binding, and service elements.

3.4 Runtime Middleware
The runtime middleware integrates presentation components, by
leveraging information in the composition model. There are two
key ingredients in the middleware. First, the middleware offers an
event automation mechanism which allows the invocation of
designated component operations in response to events; second, it
provides an adapter framework for connecting to components
from heterogeneous component technologies.

In addition, though not discussed in this paper, the middleware
also supports common services such as data transformation,
component naming, location, and lifecycle management. Our
middleware currently does not provide advanced features found in
EAI, such as transactions and queues. As stated earlier in section
2, we want to start simple and hence, will not emphasize on non-
functional aspects such as security or reliability. Following
examples in service composition (e.g. WSDL), those features can
be added later if and when needed.

Event automation. To facilitate the declarative specification of
presentation integration, the middleware supports the notion of
event automation. Via event automation, the middleware captures
an event from a source component and automatically dispatches it
to the designated operations of other components, based on the
event listener specifications in the composition model.

Conceptually, this is similar to how message brokers and event
buses behave, with the difference that there is no explicit
subscription done by the components (i.e. in the component
model). Instead, the event subscriptions are specified via event
listeners in the composition model.

With the traditional subscription model, the subscriber must be
aware of the event it subscribes to. Therefore, there is a tight
coupling, not with the publisher but with the event (often called
topic) being published. To avoid this tight coupling, the definition
of which events cause which operations to be invoked, as well as

of the data mapping required, must reside in the composition
model, not the component model. As a result, our middleware can
automatically perform transformations from events raised by one
component onto operations of other components.

Figure 5 provides a simple illustration of what happens at the
runtime, using our national park example:

Figure 5. Event automation.

1. Capturing event from the publishing component

a. The park listing component fires the event
"ParkSelectionChanged".

b. The middleware captures this event.

2. Automatically invoking operations of the subscribing
components

a. The middleware searches for a list of event listeners
matching this event.

b. For each listener, the middleware executes the data
transformation logic (if any) that maps event parameters
to operations parameters, and then invokes the specified
operation on the subscribing component. In our
example, the "search" operation of Flickr and the
"showPOI" operation of Google Maps will be invoked.

In summary, the event automation mechanism goes one step
further than the traditional event publishing and subscription
mechanism: it facilitates the automatic invocation of component
operations in response to events. In addition, event subscriptions
are specified in the composition model, not the component model.
This lays a solid foundation for the declarative composition of
loosely coupled presentation components.

Component adapters and wrappers. In order to support
heterogeneous components, the runtime middleware supports the
notion of component adapters, which allow the middleware to
communicate with components from different component
technologies. Using these adapters, the middleware will permit the
integration of presentation components developed using a wide
variety of technologies, as long as the corresponding component
adapters are available. For example, in our national park guide,
the park listing is an AJAX component built with Simple AJAX
Code-Kit (SACK) [15], Flickr is a .NET component, and Google
Maps is another AJAX component.

Specifically, a component adapter performs the following
functionalities:

• Component location and instantiation: locating the
component implementation through URI, local class name,
etc., and then creating an instance of the component.

• Component inspection: identifying the native addresses of
events, operations, and properties within component
implementation, through means such as reflection. This
implies, for example, being able to map an event to an event
member in a .NET class and map an operation to a method in
a Java class, etc.

• Data type mapping: mapping the component's native data
types to and from the platform-independent data types used
in the component model (i.e. XML Schema types).

• Component invocation: capturing native component events
and exposing them as the appropriate abstract events defined
in the component model; invoking operations and properties
by executing their corresponding native counterparts in the
component implementation.

Through appropriate component adapters, the middleware can
practically interface with any component technologies, and
therefore be able to compose existing presentation components
from a variety of sources. Figure 6 illustrates the adapter
framework.

Figure 6. Component adapters.

Referring to Listing 1, the "adapter" attribute of <component>
specifies the adapter to be used by the middleware to
communicate with the component, and the "address" attribute
specifies the location of the component which allows the adapter
to download and instantiate the component. In addition, <event>
and <operation> also contains an "address" attribute, which
allows the adapter to identify the native event or operation in the
component's implementation (e.g. a JavaScript function, a .NET
method or event).

The adapter concept describe here applies to generic classes of
component technologies, with the assumption that the mapping
between events, operations, properties, and their native
counterparts could be done through meta-language facilities such
as reflection. However, if such meta-language facility is not
available or there are no standard conventions for event
registration and callbacks in a particular component technology,
then a generic adapter for that class of components cannot be
built. Instead, we need a component wrapper for each individual
component. For example, there is no reflection mechanism or

standard convention to map the APIs of ad-hoc, custom-built
JavaScript-based components to our abstract events and
operations.

However, we expect the majority of presentation components are
built with established component technologies (e.g. ActiveX, Java
applet) or toolkit (e.g. Yahoo UI [19], Dojo [12]). Therefore, once
a component adapter for a specific component technology or
toolkit has been built, all components in that category can be
integrated with our composition middleware.

4. EXAMPLE
The combination of Listing 1 and 2 provides a full description of
our national park guide example. To conserve space, we only
illustrate a single interaction in this example: after the user selects
a different park in the park listing, Flickr will show a photo of the
newly selected park and Google Maps will display a map of the
park. Figure 1 shows the result of this user interaction. The upper-
left corner is the park listing component (an AJAX component),
and the lower-left corner is Flickr (a .NET component) which
displays a photo of Yellowstone National Park. And at the right
hand side Google Maps shows a map of the park.

At runtime, when the user selects "Yellowstone" from the park
listing, the following happens:

1. The park listing component captures the user action, and fires
a native event (i.e. JavaScript function "selectPark"). The
component adapter in turn exposes it as the abstract event
"ParkSelectionChanged" to the middleware.

2. The middleware tries to locate listeners matching this event.
In this case it finds two listeners.

3. For the "parkChangedImgListener" listener:

a. The middleware locates the component (Flickr) and the
operation ("search") referred to by the listener. It then
dispatches the event to the component by passing the
name of the operation, "search", and the event
parameter "parkName" with the value "Yellowstone"
(an XML Schema string) to the appropriate component
adapter.

b. The component adapter translates the event parameter
from XML Schema string to the appropriate native type
supported by the component implementation, and
locates the operation referred to by the listener within
the component implementation ("PhotosSearch").

c. The component adapter executes the native method,
"PhotosSearch", passing in value for the "tags" input
parameter (i.e. the name of the newly selected park).
Note that the event parameter "parkName" and
operation input "tags" are both XML Schema strings, so
the value "Yellowstone" can be directly passed over
without any transformation or conversion.

d. Flickr updates its display to show a photo of the newly
selected park, Yellowstone National Park.

4. The middleware performs similar steps to execute the listener
"parkChangedMapListener".

The steps above illustrate the middleware's event automation
mechanism. Essentially, a component publishes the events it fires
via <event> elements in the component model; and the <listener>
elements in the composition model define event subscriptions by
linking the events to the designated operations in other
components. This allows for rich interactions among loosely
coupled, pre-built presentation components.

To illustrate how our framework simplifies composite application
development, we shall go through the steps necessary to build our
national park example.

First, component developers implement the components using
whatever languages or technologies they prefer. In the national
park example, since all three components are already available,
this step can be skipped.

After that, they need to provide an abstract component model
describing their components in XPIL (i.e. via <component>).
However, this step usually does not require the involvement of the
developers who created the original component implementations.
As a matter of fact, any one who is familiar with the components'
native APIs can author the corresponding abstract component
models in XPIL. That means any existing, legacy presentation
components could be integrated by simply providing component
model descriptors in XPIL, as long as the appropriate component
adapters are available.

In addition, it is not necessary to provide the full component
model that describes every event, operation, and property of the
component; instead, only the ones required for the composition
need to be specified. For example, the three components in the
national park example may support many addition events and
operations. However, for this particular composition scenario,
only the ones mentioned in Listing 1 need to be declared.

Once the component models are available, the composition author
links the components together by adding event subscriptions (i.e.
via <listener>) in the composition model. If event automation is
insufficient (e.g. the need for complex data mappings beyond
XSLT), additional integration logics can be specified in the
<listener> element, as either inline scripts or references to external
code. In our example, since the event parameter "parkName" and
the operation input parameters "tags" and "POI" are all simple
strings, there is no need for any addition data mapping or
transformation.

Finally, the composition author provides layout specification (i.e.
via <layout>) to position the three components appropriately. In
our national park example, this is specified in CSS.

This completes the steps necessary to build our national park
example. One can follow similar steps to create composite
applications with much more sophisticated interactions and user
interfaces.

5. IMPLEMENTATION AND
DEPLOYMENT

The implementation of our prototype consists of a composition
middleware to execute composite applications and a set of
component adapters to communicate with existing presentation
components. There are plenty of implementation alternatives. We
chose the web-based model for our prototype and the web browser
as the integration platform, since web browsers provide built-in
support for many component technologies.

5.1 Middleware and Deployment
Our prototype includes a server-side code generator implemented
in ASP.NET. Given one or more XPIL documents (e.g. one for
composition model and one or more for component models) as the
input, the code generator outputs a complete HTML page,
including component definitions (e.g. HTML <object> tags) and
the necessary JavaScript code that models the component
interactions. The browser then renders this resulting page,
instantiating the presentation components and executing the
JavaScript which coordinates the interactions among the

components. The generated JavaScript code manages event
subscriptions and operation invocations. In addition, it also
performs data transformation and conversion, when necessary.

Since the final composite application is executed in the browser,
any additional integration logics in the composition model (i.e.
inside <listener>) could be specified as JavaScript, which will be
output by the code generator and executed by the browser at
runtime. The JavaScript code in the composition model may refer
to the component IDs as defined in the component model, since
the generated HTML elements corresponding to those
components have the same ID values.

Finally, since our delivery platform is the web browser, the
prototype leverages CSS for layout management. Composition
developers may specify any valid CSS fragment using the
<layout> element in the composition model, which will be
inserted into the output as is during code generation. The CSS
fragment may refer to the component IDs as defined in the
component model, since the generated HTML elements
corresponding to those components have the same ID values.

5.2 Component Adapters
With browsers’ built-in support for most popular components
technologies (e.g. ActiveX, Java applet, Flash), component
adapters are relatively easy to implement. In our national park
example, we have implemented a .NET adapter for the
Flickr.NET component3; this adapter could be used to integrate
any .NET components. Similarly, for the park listing component,
we implemented a SACK adapter, which will work with any
AJAX components built with the SACK toolkit.

For Google Maps, we could implement a generic adapter which
would work with many Google-based AJAX components.
However, we chose to implement a wrapper for it instead, for two
reasons. First, Google Maps is one of the most popular AJAX
components, so developing a dedicated wrapper for it to expose
many of its useful services should justify the investment. Second,
the Google Maps API does not support point of interest or address
directly; instead, one needs to translate a point of interest or
address to geographic coordinates first, and then feed the
coordinates to the appropriate API to display the map. We could
leave the translation task to composition developers who would
insert the proper scripts in the <listener> element. However, to
make things easier, we implemented this translation logic as a
JavaScript function (i.e. "showAddress") inside the wrapper.

Finally, component adapters (and wrappers) also support
configuration options for component instantiation, through the
<config> elements inside <component>. Examples of
configuration information are user ID for Flickr service and API
key for Google Maps. At runtime, the adapters will output the
configuration options when called by the code generator.

6. RELATED WORK
There has been a large amount of research and development in the
field of application integration and more recently service
composition. Our work tries to leverage those existing work as
much as possible. And in particular, the design of our composition
language, XPIL, follows closely to that of WSDL. Existing
developers who are familiar with WSDL will find XPIL to be
easy to learn.

3 There are many other APIs for Flickr. For example, we could

also use an AJAX-based or Flash-based Flickr component here.

In addition, there are numerous application building frameworks,
which allow developers to build composition GUI applications by
assembling application building blocks or modules; for example,
.NET Composite UI Application Block (CAB) [16] and Eclipse's
Rich Client Platform (RCP) [13] for desktop applications, and
Java Portlet [1], ASP.NET Web Parts [9], and WSRP [17] for web
applications. However, these frameworks all require the
components to be built using their specific interfaces or APIs. On
the contrary, our component model provides an abstract layer on
top of any existing component interfaces; and we do not require or
enforce any specific APIs. Furthermore, since our component
model is fairly generic, we believe it should be able to model
existing presentation components developed in these frameworks
(as a matter of fact, we are working on component adapters for the
frameworks mentioned above).

Finally, there are several visual programming based frameworks
that facilitate building composite web applications; for example,
IBM ADIEU [10] and IntelligentPad [5,6]. Those frameworks
provide a "pad" or "card" based metaphor, which presents users
with a form-like interface for inputting data. The pad or card may
contain, for example, snippet of HTML code or linkage to web
service operations. However, with this pad or card based
approach, user interactions are mostly form-based (i.e. one page
or screen at a time), and therefore unsuitable for rich internet
applications. In addition, it is unclear how this approach would
work with AJAX-based components or legacy presentation
components such as ActiveX controls or Java applets.

Our composition framework is event-based, and therefore it
inherently provides richer user interactions. In addition, our
component and composition models are very generic, and can be
applied toward composing web applications as well as desktop
applications.

7. CONCLUSION
Presentation integration is undoubtedly the next step that has to be
taken in the integration area. In this article, we proposed a
presentation integration framework to facilitate the creation of
composite applications through a simple declarative composition
language, XPIL. The language allows developers to specify an
abstract component model for component descriptions as well as a
composition model for presentation interaction logic.

The separation of component model and composition model
allows the division of responsibility between component
developers and composition developers. That is, component
developers are responsible for creating presentation components
using their favorite languages and component technologies, and
then provide an abstract component model (in XPIL) for each
component; composition developers are responsible for creating
the composite application by specifying a composition model (in
XPIL) with integration logics that link the components together.

In addition, we do not advocate a new interface standard for
presentation components to adhere. Our proposed component
model can be used analogously to WSDL at the application layer,
that is, as a way to expose presentation components for the sake of
integration. Indeed, when designing the language, we tried to
follow existing standards in application integration, such as
WSDL and BPEL. This allowed us to leverage prior work in
application integration and to provide familiarity to developers
who are versed in the application integration and service
composition area.

Finally, for our current prototype, we chose web applications as
the target of composition, since our event-based composition

model is particularly well-suited for delivering rich internet
applications. In addition, we chose the web browser as the
integration platform due to the fact that it has broad support for
various component technologies. This reduces the implementation
efforts required for component adapters and wrappers.

Many improvements could be made to our integration framework.
For example, the layout mechanism in our prototype is based on
passing CSS fragments to the browser. We are investigating how
to adapt to different layout controllers to offer more layout
options. In addition, we plan to provide additional component
adapters for AJAX-based toolkits, such as Yahoo UI and Dojo.
This will allow a wider range of mashup applications to be
developed using our framework. Finally, we are also investigating
how to leverage component registries (e.g. UDDI) for component
selection, and a visual authoring tool that allows the composition
model to be specified in a drag-n-drop fashion with the final
output generated in XPIL.

8. REFERENCES
[1] Abdelnur, A. and Hepper, S. Java Portlet Specification.

<jcp.org/en/jsr/detail?id=168>

[2] Alonso, G., et al. Web Services: Concepts, Architectures, and
Applications. Springer, 2004.

[3] Daniel, F., et al. Understanding UI Integration: A survey of
problems, technologies, and opportunities. Technical Report
DIT-06-064, University of Trento, Italy. Oct. 2006.

[4] Fjellheim, T., et al. A Process-based Methodology for
Designing Event-based Mobile Composite Applications.
Data and Knowledge Engineering, Elsevier Science
Publications (In Press).

[5] Fujima, J., et al. Clip, Connect, Clone: Combining
Application Elements to Build Custom Interfaces for
Information Access. UIST'04.

[6] Ito, K. and Tanaka, Y. A visual environment for dynamic
web application composition. HT'03.

[7] Merrill, D. Mashups: The new breed of Web app.
<ibm.com/developerworks/library/x-mashups.html>

[8] Myers, B. A. and Rosson, M. B. Survey on user interface
programming. SIGCHI’92.

[9] ASP.NET 2.0 Web Parts. <msdn2.microsoft.com/en-
us/library/e0s9t4ck(vs.80).aspx>

[10] ADIEU. <www.alphaworks.ibm.com/tech/adieu>

[11] BPEL4WS. <ibm.com/developerworks/library/ws-bpel/>

[12] Dojo. <dojotoolkit.org>

[13] Eclipse Rich Client Platform.
<wiki.eclipse.org/index.php/Rich_Client_Platform>

[14] Google Maps API. <www.google.com/apis/maps/>

[15] Simple AJAX Code-Kit (SACK).
<www.twilightuniverse.com/projects/sack/>

[16] Smart Client - Composite UI Application Block.
<msdn.microsoft.com/library/en-us/dnpag2/html/cab.asp>

[17] Web Services for Remote Portlets. <www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsrp>

[18] XSLT. <www.w3.org/TR/xslt>

[19] Yahoo! UI Library. <developer.yahoo.com/yui/>

