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Abstract. In this paper, we propose a system for monitoring abnorma NO, emissons in
troposphere by using remote-sensing sensors. In particular, the system aims at estimating the amount
of NO, resulting from biomass burning by exploiting the synergies between the GOME and the
ATSR-2 sensors mounted on board of the ERS-2 satellite. Two different gpproaches to the
esimation of NO, are proposed: the former, which is the Smplest one, assumes a linear relationship
between the GOME and ATSR-2 measurements and the NO, concentration. The latter exploits a
nonlinear and nonparametric method based on a radia basis function (RBF) neura network. The
architecture of such a network is defined in order to retrieve the vaues of NO, concentration on the
bass of the GOME and ATSR-2 measurements, as well as of other ancillary input parameters.
Experimental results, obtained on ared data set, confirm the effectiveness of the proposed system,

which represents a promising tool for operationa gpplications.



1. Introduction

The European Remote Sensing Satdllite (ERS) Programme has been provided Earth Observation
measurements to the international user community over atime range of ten years. This has simulated
the development of Science, Public Utility and Commercid Applications in a variety of disciplines
related to the monitoring of the Earth’s environment. Nowadays, a very critica gpplication concerns
the monitoring of ar pollution, since only few gspecific remote-sensing sensors are available to
accomplish this task. For this reason, important efforts should be devoted to the development of
remote-sensing sensors and processing methods capable to provide an accurate evauation of air
pollution. One of the most important issues concerns the development of autometic systems being
able to monitor on a globa scale the Nitrogen Dioxide (NO,) emissons in the troposphere. In this
context, the Globa Ozone Monitoring Experiment (GOME) sensor mounted on board of the ERS-2
satellite turns out to be an effective and unique monitoring resource. The GOME products, generated
operationdly at the German Processing and Archiving Facility (D-PAF) at the German Aerospace
Center (DLR) comprise cdibrated earthshine radiances and the extra-terrestrid solar irradiance
(Leve 1 products) together with total column concentrations (stratosphere + troposphere) of ozone
and nitrogen dioxide as well as cloud information (Level 2 products). To retrieve the tropospheric
contribution to the column dengties of trace gases in nadir viewing, additiond information and
processing are required. To this purpose, the GOME data have been treated in a variety of waysto
obtain tropospheric information. A possible gpproach is to use the knowledge of the different
tempora and horizontal scales of congtituents in the stratosphere and troposphere. In particular, on
the one hand, the tropospheric amount of NO, usudly exhibits specific loca behaviours, on the other

hand, the stratospheric amount of NO, exhibits a generd globa behaviour. Also the trangport in the



sratosphere is gppreciably greater than in the troposphere, so that a homogeneity of the NO,
stratospheric column is to be expected (Leue, C. et d., 1999). An dternative vertica column (VC)
gpproach for retrieving tropospheric information is to use measurements "oncloud” and "off-cdloud"
to determine the amount of NO, below the cloud. However, the different abedos and the resulting
photolyss field above the cloud introduce complications (TROPOSAT, 2000). Another method for
the retrieval of tropospheric NO; is based on a combined assmilation retrieval gpproach, which
takes into account the stratospheric background, the sengtivity to the vertical profile, clouds and the
surface abedo.

Although saveral components contribute to NO, emissions (e.g. urban pollution), biomass burning is
the most important source of Nitrogen Dioxide (Casadio et d. 1999, Zehner et d. 1999). For this
reason, in this work we focus on biomass burning. In particular, anovel methodology is presented,
which performs NO, emisson esimation by exploiting the synergy between the GOME and the
Along Track Scanning Radiometer (ATSR-2) instruments, both mounted on board of the ERS-2
satellite. In particular, two main approaches to NO, estimation are proposed: i) a Smple linear
approach that provides estimations of NO, emissions on the basis of GOME and ATSR-2 dataon a
regiond scae; ii) a nonlinear gpproach that provides NO, estimations on agloba scae by exploiting
both a large set of input parameters and aradid basis function (RBF) neura network. The resulting
system represents a nove attempt to retrieve NO, emissions due to biomass burning on aregiond or
globd scde by exploiting the synergy between GOME and ATSR-2 sensors.

The paper is organized into SX sections. The next section briefly describes the GOME and ATSR-2
sensors and the related data Section 3 introduces the problem formulation and the smplifying

assumptions considered in the development of the proposed system. Section 4 deds with the



proposed linear and nonlinear approaches. The data sets used in the experiments are detailed in

Section 5, together with the experiments results. Finaly, conclusons are drawn in Section 6.

2. Sensor and data description

The methodology proposed exploits the synergy between GOME and ATSR-2 sensors mounted on
board of the ERS-2 satdlite. In the following, these sensors and the related data are briefly
described.

Owing its nadir viewing geometry, GOME sensor provides the possibility to measure the total
column amount of atmaospheric congtituents down to the Earth’s surface. Its main scientific objective
is to measure the globd digtribution of ozone and other trace gases through spectral andysis of the
sunlight scattered from the Earth’s atmosphere and/or reflected by the surface in the spectra region
240-790 nm. The GOME instrument is a double monochromator and the entering light is split into
four separate spectra bands. In each of the four spectral bands, the light is dispersed by adiffraction
grating and focused onto monoalithic silicon linear detector array comprising 1024 individua detector
pixels. Detailed description of the instrument design and operation can be found in (GOME Users
Manual, 1995). GOME Levd 2 products condst of dant and verticd amount of atmospheric
condituents (ozone and nitrogen dioxide), and related uncertainties, retrieved from cdibrated
geolocated radiances. They dso include essentia information on cloud parameters. Here, we use
both NO, vertica column data and the cloud information to sdect cloud free scenes (this task is
accomplished by imposing a threshold equa to 0.3 on the GOME cloud fraction factor). It isdifficult
to evauate precisdy the accuracy of the GOME nitrogen dioxide product due to various problems,

such asthe diurnd variation of NO, and the profile shape effect on the Air Mass Factor (AMF). The



overal accuracy of the GOME NO, tota column is estimated to fal within the 5% to 20% ranges
(http://earth.esa.int/gome_report99).

The conical scan of the ATSR-2 radiometer messures nadir and forward reflectances in four solar
and three therma channds with a spatid resolution of 1 km. An important application of ATSR-2
data is the detection of forest fires and other hotspots on the Earth's surface. To this end, a widdly
used approach is to associate pixels with an average temperature greater than 312K to hotspots.
The ATSR-2 product used here is the Monthly Globa Fire Maps (Level 3 product, downloadable
a http://sharkl.esrin.esait/FIRE/AF/ATSR/). The user of the Fire product must take into account
both the agorithm limitations due to the presence of clouds and atmospheric effects, and the fact that
the fire temperature and extension are not taken into account in the processng. The ATSR night-time
data used to determine the presence of hotspots (fires) are compose of four spectral bands: 1.6, 3.7,
11.0, 12.0 nm. The detection capabilities depend on the fire temperature; they can be estimated as
follows: from 0.1 ha a 600K to 0.01 ha at 800K, for a background temperature of 300K. The
advantages of ATSR-2 are that, due to the night-time detection, no artefacts due to solar reflection
are possible. Moreover, the absence of drift of the ERS orbit allows year-to-year comparisons, and
the high radiometric sengtivity alows one the detection of little/not extended fires. Two well-known
problems in the hotspot retrieva by usng ATSR-2 data are: i) ATSR-2 frames overlap (some fires
can be detected twice); ii) only night-time fires are detected (this involves a globa underestimation of
the number of hotgpots). It is worth noting that an ATSR FIRE Atlas product is presently in a

validation phase (Arino et d. 2001).



3.

Problem formulation and smplifying assumptions

The problem of the estimation of the amount of NO in the troposphere by using data acquired by

the GOME and ATSR-2 sensors is very complex. The complexity depends on severd factors that

decrease the precison of the measurements acquired by the sensors and increase the difficulty in the

sensor integration. In particular, the following factors should be considered in addition to those

described in the previous section (i.e. presence of clouds, uncertainties of data):

a)

b)

d)

GOME and ATSR-2 instruments acquire measurements at different times. In particular, GOME
collects data during the day, whereas AT SR acquires data about hotspots during the night.
GOME measurements are related to the tota column amount of atmosphere congtituents down
to the Earth surface. Consequently, they are influenced both from the stratospheric and the
tropospheric components of NO,. This makes it complex to isolate the NO, component present
in the troposphere.

The NO, production in absence of fires (let us cal it “'normad’), which should not be considered
in our estimation because uncorrelated with burning biomass, has a seasond cycle that depends
on the latitude of the geographicd areainvestigated.

The NO, plumes generated by combustion may be transported by the wind dso far from the
area of production. This may affect the spatid accuracy of the GOME measurements.

The NO, produced by aforest fire depends on the amount of burned biomass, and hence on the

land-cover of the area considered.

By taking into account the aforementioned issues, in the definition of the proposed sysem we

congdered the fallowing smplifying assumptions:



1) The plume movements can be modelled with a Gaussian distribution: we modd with a
Gaussian digribution the diffusve behaviour of NO, in the troposphere (Sharan et a. 1996).

2) No significant changes took place between the acquisitions of GOME and ATSR data: this
assumption, that in some cases may be critica, makes it possble to establish a correlation
between the GOME and the ATSR measurements.

3) The stratospheric amount of NO, is constant over time: according with Leue et a. (1999),
we make the assumption that the stratospheric amount of NO, does not change over time. This
ressonable assumption results very useful in the formulation of the proposed approach to

separate the tropospheric and stratospheric NO, components.

4. Proposed System

In the proposed system, the GOME and ATSR measurements are integrated in order to establish a
correlation between the amount of NO, present in the troposphere and hotspots related to active
fires on the ground. Two different gpproaches to the NO, estimation are presented: alinear approach
and a nonlinear approach based on RBF neura networks. The two approaches are described in the

following sub-sections.

4.1. Linear approach

The linear approach is the smplest one. The rationade of such an gpproach is that the amount of NO,
produced in a given area by biomass burning has a linear dependence on the number of hotspots
detected in the consdered area. This involves the assumption that a sngle hotspot emits a fixed

amount a of NO,. Even though such an assumption may be criticdl, it alows one to obtain estimate



of NO, produced in a given area by biomass burning with a level of accuracy acceptable for many

applications.

The linear approach is composed of two phases edtimation of the average amount a of NO,

emissions related to each hotspot (training phase); estimation of NO, emissons on the bass of both

the number of hotspots detected by ATSR-2 sensor and the a vaue previoudy estimated (operative
phase).

The training hase is carried out in three steps: 1) detection of abnorma amounts of NGO, in the

troposphere by usng GOME data; ii) integration of GOME and ATSR-2 data for estimating the

relationship between fires and GOME measurements; iii) estimation of the coefficient a. These steps
are described in gregter details in the following.

i) On the basis of the assumption that the stratospheric amount of NO, can be considered amost
congtant in time, we propose to estimate the tropospheric abnormal NO, emissions by computing
tempora variations of GOME measurements versus the behaviour of hitorica series of data

i) Since biomass burning produces NO, gases, the amount of NO, in agiven areais related to the

number of hotspots detected in the considered site. Let us denote x;*°F

the position of the pixd
centre related to the j-th GOME measure and x;"™" the position of the i-th hotspot detected by
the ATSR-2 sensor. In order to estimate the influence that the i-th hotspot has on the j-th
GOME messure, the following weighting function £ (x2°ME xA7%) is adopted:

d2

i
f(XIQOME%ATSR): :,.e do g g d, (1)
I
i

{0 d>d,

where d is the distance between x,°& and x"™, and dy, is a threshold value that is computed

to take into account the diffusion of NO, gases. By summing the components related to dl the



detected hotspots, we obtain an estimation of the total influence F (x?OME) of forest fires on thej-
th GOME measure;

= (X?OME): é f(x(jBOME ’)QATSR) )

Consequently, F (x‘fOME) can be considered as an equivalent number of hotspots located in x;*°MF

and producing an amount of NO, equa to the one actually measured by the GOME sensor.

i) A linear regression between abnormal NO; values identified in i) and the correspondent F (x3o¥€)
vaues computed in ii) is goplied in order to estimate the average amount a of NO, emissons
related to each hotspot.

It is worth noting that in the training phase of the linear gpproach it is mandatory to have higorical

seriesof GOME and ATSR-2 data of the investigated area.

During the operative phase, only ATSR-2 data are required. The estimation of NO, emissons

related to the considered geographica area (let NO;°° denote such an amount) is carried out

according to the following smple equation:

NOJ*? = aN 3
where N is the total number of hotspots detected in the considered geographical area by andysing
the ATSR-2 data.

Since the andysis of different geographica areas reveds that the amount of NO, produced by a

single hotspot depends on severd factors (e.g. the latitude and the land-cover type that characterise

the investigated area), the a value estimated for a specific geographica Ste can be used only in a

neighbourhood of the considered area.



4.2 Nonlinear approach based on RBF neural networks

The proposed approach based on RBF neura networks considers the abnormal amount of NO,

produced in troposphere ( NO; ) as anonlinear function depending on severd parameters, i.e.

NO;**=g(J) (4)

where each component of the vector J isaphysica parameter that influences the NO, generated. In

the this approach, we consider the following input parameters for the NO, estimation:

Vegetation index: different types of land-covers (e.g. different types of "fue") produce different

amounts of NO..

Latitude: important indication on the amount of NO, produced by biomass-burning and present
in the troposphere can be retrieved by the knowledge of the investigated area latitude. In fact,
latitude provides hints about: i) the combustion speed (such a parameter depends on the heat); ii)
the land coverage; iii) the seasond cycle characterising the norma amount of NO..

Number of fires in the considered area: the NOY° increases when the number of fires

increases. Therefore, the information on the number of hotspots provided by the ATSR-2 sensor
plays afundamentd role in the estimation process.

Spatial position of fires with respect to the GOME measurements the sengtivity of the

GOME measurements to hotspots depends on the relative position between the GOME IFOV
and fires.
Season: the seasond period influences the naturd cycle of the NO,. Consequently, it should be

consdered in the estimation process.



The function g(.), which defines the relation between the aforementioned input parameters and the
estimated NO,, is learned by the neurd network in the training phase on the basis of selected
examples.

The choice of adopting an RBF neura modd depends on the ability of this kind of network to solve
nonlinear problems of function estimation and regresson (Powell 1987, Broomhead and Lowe
1988, Hatman et a. 1990, Park and Sandberg 1991) and on the advantages exhibited by this kind
of neurd modd over other ones. In particular, one of the main advantages consstsin agood trade-
off between the complexity of the training phase and the obtained accuracy (Bruzzone and
Fernandez Prieto 1999). Generdly, a Gaussan RBF neurd network is composed of three layers (an
input, a hidden and an output layer). Input neurons (as many as input festures) just propagate input
features to the next layer. Each neuron in the hidden layer is associated with a radia bass kernel

function (usuelly a Gaussan function j ; characterised by a centre m and awidth s;). In one-

dimensiond regression problems, the output layer is composed of one neuron that computes asmple
welghted summation of the responses of the hidden neurons to a given pattern described by the input
feature vector. The connections between the hidden neurons and the output neuron are associated
with numerica vaues cdled “weights’ (Figure 1 shows the architecture of the RBF neura network
used in the proposed nonlinear system). In the training phase, the centre nhand the width s; of each
gaussian activation function of hidden units, as well as the weights between the hidden units and the
output unit, are computed. This can be accomplished according to classcal training procedures
(Moody and Darken 1989, Park and Sandberg 1991, Bruzzone and Fernandez Prieto 1999). In

particular, in our gpproach, the smple agorithm proposed by Moody and Darken (1989) is



adopted. We refer the reader to (Bianchini et d. 1995, Bruzzone and Fernandez Prieto 1999) for
greater details on RBF neura networks and on their training procedures.

The training on the neura network is based on the previoudy discussed assumption that the
sratospheric amount of NO, can be consdered dmost congtant in time. Accordingly, the
tropospheric abnorma NO, emissions can be estimated by computing tempora variations of GOME
measurements versus the behaviour of historical series of data Such estimations are used in the
learning of the network. In particular, the neural network learns the function g(.) that relates dl the
input parameters to the different estimates of the tropospheric abnorma NO, emissons During the
operative phase, the neurd architecture provides the estimation of NO, emissons given the
correspondent input vector.

As compared to the linear gpproach, the nonlinear approach exhibits some important advantages.

1. itisnot based on the assumption that the relation between the tropospheric NO, emissons
due to biomass burning and the forest fires that affect the consdered geographical areais
linear. Consequently, more accurate estimates of the tropospheric abnorma NO, amount are
expected;

2. it is able estimate emissions dso in aress different from the ones used in the training phase
(thanks to the generdisation ability of the neura network). As a consequence, the nonlinear
approach can be aso applied to geographica areas where time series of GOME and
ATSR-2 datafor the estimation of a are not available.

Concerning the last point, as described in Section 4.1, the linear gpproach requires the computation
of an a vaue that depends on the specific geographica area considered. The function g(.) (i.e, the

relaion between the set of all the parameters J and the amount of NO, estimated by the nonlinear



approach) implicitly dedls with this dependence, thus alowing one to anadyse geographica aress for
which the a vaue is not explicitly known. Consequently, an important difference between the two
approaches is the scale a which they are operative. On the one hand, the linear gpproach adlows one
to estimate the amount of NO, at aloca scale, on the other hand, the nonlinear gpproach is suitable

for developing agloba scale monitoring system.

5. Experimental results

In order to assess the effectiveness of the proposed method, a data set related to different
geographica areas was conddered. In particular, five areas (i.e. Africa Coast, Audraia, Congo,
Mexico and North Brazil) characterised by different land-cover types and latitudes were selected.
Multitempora sequences of GOME and ATSR-2 data acquired on the selected areas between
November 1996 and May 1999 were considered.

To evduate the effectiveness of both the linear and the non-linear gpproaches, multitempora data
were divided into two different series. Data acquired between November 1996 and June 1998 were
used for the training phase; data acquired between July 1998 and May 1999 were used for the test
of the proposed methods. A detailed description of the training and test setsis given in Table 1. In
addition, in Table 2, the minimum and maximum NO, concentration values derived from the GOME

measurements for each one of the considered areas are reported.



5.1 Results obtained with the linear approach

The linear approach was applied separately to each area. Firg of dl, anomaous amounts of NO, in
the troposphere were detected on the basis of the analysis of training samples. In particular, samples
of the training deta not affected by biomass burning (i.e. pixel with F(x2¥€)= 0) were idertified.
Then the average (computed both in the time and in the spatid domains) of the NO, vaues measured
by the GOME sensor on these samples was derived. Under the assumptions considered in Section
3, the resulting average points out the norma amount of NO; present in the aimosphere over the
consdered area. Abnorma amounts in the troposphere were thus obtained by differencing the
GOME measurements and the aforementioned norma amount of NO,. As an example, Figure 2
shows the abnorma amounts of NO, computed for a specific pixe of the Africa Coast areain the
period between November 1996 and June 1998 (see the green profile). In the same figure, red

marks point out the vaues assumed by the function F(x?OME). At this point, the vaue of the a

coefficient was retrieved according to the methodology described in section 4.1. Finaly, the amount
of NO, produced in the consdered area is estimated according to equation (3). Figure 3 shows the
profile of such an amount computed for the Africa Coast area in the period between July 1%, 1998
and May 31%, 1999.

In order to obtain a quantitative evauation of the effectiveness of the proposed approach, the
amounts of NO, due to biomass burning were compared with the reference values (i.e. the abnormd
amounts of NO, estimated by computing the tempord variations of GOME measurements versus the
behaviour of the series of test data). The resulting errorsfor al the consdered geographica aress are
reported in Table 3. As one can see, the percentage error is globdly quite satifactory. In fact, even

if the Congo and the Mexico areas are characterised by errors equa to 43.6% and 35.7%,



respectively, dl the other errors are rather small. It is worth noting that this evaluation of results is
done by t&king into account that the linear method condders just ATSR-2 data in the test phase.
Consequently, it is not reasonable to expect that this method provides very high accuracies, on the
contrary, it should be used for deriving generd indications about the NO, emissons behaviour in the
different test Stes. In order to understand in greater detail the behaviour of the gpproach on the
Congo and Mexico areas, a deeper andlysis of the GOME time series was carried out. Concerning
the Congo area, the andysis revealed that the behaviour of the NO, emissons was very unstable
during the considered higtorica period. Consequently, the length of the series of data used was not
aufficient to compute with a good gpproximation the norma value of NO, present in the atmosphere.
In this case, to increase the estimation accuracy, a longer historica series of GOME measurements
would be necessary. With regard to the Mexico dte, it includes the Mexico City area, which is
affected by a high urban pollution. Consequently, as confirmed by additional experiments not
reported in this paper, the error incurred in this Ste mainly depends on the urban pollution present in
the aforementioned city.

Table 3 a0 reports the values of the a coefficient obtained for the different areas. As one can see,
these vaues strongly depend on the geographical area consdered. Consequently, the a vaue
estimated for a specific geographical site can be used only in a neighbourhood of the consdered
zone, hence, the linear gpproach can be applied only at a regiond scale. In order to support this
conclusion, afurther experiment was carried out. In particular, the linear gpproach was jointly trained
on the five consdered areas and then tested on dl the geographical sites. The error obtained is
reported in Table 4, where the estimated global value of the a codfficient is dso given for

comparisons with the values presented in Table 3. As one can see, the error yielded is sharply higher



than the overdl error achieved by anadysing separately the five aress (i.e., 41.9% vs 25.5%). This

confirms the linear gpproach as a local-scae monitoring tool.

5.2 Results obtained with the nonlinear approach

In order to assess the effectiveness of the nonlinear gpproach, two main experiments were carried
out. The first experiment was amed at comparing the accuracies provided by the nonlinear gpproach
with the ones exhibited by the linear method. The second experiment was devoted at investigating the
effectiveness of the nonlinear approach for developing a globa-scde monitoring system. In
particular, the capability of the nonlinear gpproach to estimate emissons in a geographical area
different from the ones used in the training phase was assessed.

As the objective of the nonlinear gpproach is to derive a globa-scae monitoring system, such an
gpproach was jointly applied to dl the sdected areas. In this way, the RBF neura network can learn

the complex relaion existing between the set of dl the input parameters J  and the amount of NO,

emissons due to biomass burning.

Let us congder the first experiment. The training phase was carried out as follows. For each one of
the five selected geographica areas, the abnorma amounts of NO, were estimated by computing
tempord variations of GOME measurements on the training data according to the method described
in the previous subsection. Such variations were computed separately on each consdered area. The
obtained estimates were used for the training of the network. Different RBF neurad network
architectures (i.e. architectures with different numbers d hidden neurons) were consdered. At this
point, the effectiveness of the nonlinear approach was evauated by consdering the test samples. The
estimated amounts of NO, were compared with the reference vaues (i.e. amounts of NO, computed

by consdering the tempord variations of GOME measurements versus the norma amount of NO,



estimated on the test data). The percentage errors obtained are given in Table 5. A comparison
between Table 3 and Table 5 points out that generdly the nonlinear approach dlows ae to
sgnificantly reduce the errors in the estimated NO, with respect to the linear method. In gresater
detall, the nonlinear gpproach increases the accuracy in dl the areas but the North Brazil one (for
which in any case the error is acceptable). The decrease of performances on the North Brazil area
mainly depends on the fact that the neural network redlizes a trade-off between errors incurred on
each sngle area and generdisation capabilities.

In the second experiment (i.e., anadlysis of the capability of the nonlinear approach to estimate NO; in
aress different from the ones congdered in the training set), five trials were carried out by using a
leaving-one-out method. In particular, in each trid, the learning of the RBF neurd network was
caried out by consdering four of the five avalable geogrephicad aress, while the tet was
accomplished on the remaining Site. The obtained results are shown in Table 6. As one can see, the
ability of neural network to generalise alows the nonlinear approach to estimate with a high accuracy
NO, emissons aso on geographica aress different for the ones used for the training. In particular,

we can observe that the decrease of accuracies between Table 5 and Table 6 are not significant.

6. Discussion and conclusions

In this paper, a nove system for estimating NO, emissions resulting from biomass burning has been
proposed. The system performs the estimation process by integrating data acquired by the GOME
and the ATSR-2 sensors mounted on board of the ERS-2 satdllite.

Two different approaches have been presented for estimating NO,: an approach based on a linear

mode and a nonlinear approach based on RBF neura networks.



The linear gpproach is based on the assumption that an equivaent amount of NO, emissions for each
generic fire can be estimated. This estimation is carried out according to a linear regression between
GOME and ATSR-2 measurements gpplied to historical series of remotely sensed data. In the
estimation process, a specific model for deeting the stratospheric NO, component by the GOME
measurements has been considered. On the one hand, this gpproach exhibits two main advantages: i)
it is very ample; ii) in the operative phase the NO, estimation is carried out on the basis of ATSR-2
data (GOME data are only usad in the training of the system for computing the equivaent amount of
NO, associated with each fire). On the other hand, the main disadvantages of this estimation
procedure congst of: i) it does not take into account the differences in the production of NO, often
associated with different hotspots; ii) it is not able to take into account the complex relationship
between the amount of NO, emissons present in the troposphere and the large number of parameters
that influence this vaue iii) it requires historical series of training data for al the geographical aress
studied.

The nonlinear approach based on RBF neurd networks overcomes the aforementioned
disadvantages. It takes into account a set of parameters that may influence the presence of NO,
emissions in the troposphere resulting from fires. In particular, this nonparametric approach modds
the complex nonlinear function that maps the input parameters in the output NO, estimation. The
neura approach exhibits two additiona important advantages: i) it does not require to define a
specific linear modd for each geographical area consdered in the test phase i) thanks to the
generdisation ability of the neural networks, it makes it possible to estimate NO, emissonsdso in

areas for which historical series of data are not available.



Experimental results obtained on a data set related to five different geographicad areas point out that
the proposed approaches seem to be a promising tool for monitoring NO, emissons. As future
developments of this work, we are congidering two main issues: i) to further extend the experiments
with the neurd gpproach by congdering other input parameters, so increasing the precison of the
function used by the neurd networks for estimating NO, emissions ii) to generalise the proposed
system for detecting anomaous NO, emissons involved by environmenta pollution in large urban

areas.
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FIGURE CAPTIONS

Figure 1. Architecture of the RBF neural network used in the proposed nonlinear approach.

Figure 2. Geographical areas consdered for evauating the effectiveness of the proposed methods

(the selected areas are within the rectangles).

GOME

Figure 3. Abnormal amounts of NO, present in the troposphere versus the Julian day. The values F(x i ) are

also reported (see red marks) (Africa Coast region).

Figure 4. Amount of NO, emissions produced by biomass burning versus the date: values estimated with the

linear approach (red line); reference values (black line) (Africa Coast region).



TABLE CAPTIONS

Table 1. Description of the training and test sets for the five considered geographical areas.

Table 2. Minimum and maximum NO, concentration values affecting the considered geographical areas in the

studied period.

Table 3. Percentage errors provided by the linear approach in estimating NO, produced by biomass-burning in the

five considered geographical areas. The estimates of the a coefficient are also given.

Table 4. Overall percentage errors provided by the linear approach in estimating NO, emissions produced by
biomass-burning. The results are obtained by jointly applying the linear method to all the considered

geographical areas.

Table 5. Percentage errors provided by the nonlinear approach in estimating NO, emissions produced by
biomass-burning on the test sets related to the different geographical areas analysed (errors incurred with
different neural architectures are reported). Results are yielded by considering atraining set composed of samples

related to all thefive sites.

Table 6. Percentage errors provided by the nonlinear approach in estimating NO, emissions produced by
biomass-burning on the test sets related to the different geographical areas analysed (errors incurred with
different neural architectures are reported). Results are yielded by defining training and test sets with the leaving-

one out method.
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Tablel

Geographical area

Number of patterns

Training set Test set
Africa-coast 5298 274
Australia 6840 913
Congo 5310 381
Mexico 7283 992
North Brazil 8013 116
Table2

NO, concentration values

Geographical area [10™ mol/cnT]
Minimum Maximum
Africa-coast 0.031 35.889
Austrdia 0.007 35.889
Congo 0.002 50.657
Mexico 0.002 36.803
North Brazil 0.037 20.437
Globa 0.002 50.657
Table3
Geographical area Error (%) Estimated a coefficient
Africa-coast 18.8 6.0
Australia 29.3 16.7
Congo 43.6 8.0
Mexico 367 8.0
North Brazil 9.2 50
Overall 255 -




Table 4

Overal error (%)

Estimated a coefficient

419

10.7

Table5
Number of Error (%)
hidden neurons | AfricaCoast | Audtrdia | Congo | Mexico | North Brazil
100 125 135 388 | 142 20.1
125 11.7 12.8 393 | 142 18.8
150 11.5 11.9 393 | 138 18.9
175 11.8 11.9 411 | 141 19.0
Table6
Number of Error (%)
hidden neurons | Africa Coast Audrdia Congo Mexico North Breazil
100 191 114 36.5 18.3 26.7
125 18.5 12.8 34.3 16.8 26.5
150 18.7 12.8 35.7 17.8 26.1
175 18.0 12.9 34.0 18.3 26.0







