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Abstract. In this paper, we propose a system for monitoring abnormal NO2 emissions in 

troposphere by using remote-sensing sensors. In particular, the system aims at estimating the amount 

of NO2 resulting from biomass burning by exploiting the synergies between the GOME and the 

ATSR-2 sensors mounted on board of the ERS-2 satellite. Two different approaches to the 

estimation of NO2 are proposed: the former, which is the simplest one, assumes a linear relationship 

between the GOME and ATSR-2 measurements and the NO2 concentration. The latter exploits a 

nonlinear and nonparametric method based on a radial basis function (RBF) neural network. The 

architecture of such a network is defined in order to retrieve the values of NO2 concentration on the 

basis of the GOME and ATSR-2 measurements, as well as of other ancillary input parameters. 

Experimental results, obtained on a real data set, confirm the effectiveness of the proposed system, 

which represents a promising tool for operational applications. 

 



1. Introduction 

The European Remote Sensing Satellite (ERS) Programme has been provided Earth Observation 

measurements to the international user community over a time range of ten years. This has stimulated 

the development of Science, Public Utility and Commercial Applications in a variety of disciplines 

related to the monitoring of the Earth’s environment. Nowadays, a very critical application concerns 

the monitoring of air pollution, since only few specific remote-sensing sensors are available to 

accomplish this task. For this reason, important efforts should be devoted to the development of 

remote-sensing sensors and processing methods capable to provide an accurate evaluation of air 

pollution. One of the most important issues concerns the development of automatic systems being 

able to monitor on a global scale the Nitrogen Dioxide (NO2) emissions in the troposphere. In this 

context, the Global Ozone Monitoring Experiment (GOME) sensor mounted on board of the ERS-2 

satellite turns out to be an effective and unique monitoring resource. The GOME products, generated 

operationally at the German Processing and Archiving Facility (D-PAF) at the German Aerospace 

Center (DLR) comprise calibrated earthshine radiances and the extra-terrestrial solar irradiance 

(Level 1 products) together with total column concentrations (stratosphere + troposphere) of ozone 

and nitrogen dioxide as well as cloud information (Level 2 products). To retrieve the tropospheric 

contribution to the column densities of trace gases in nadir viewing, additional information and 

processing are required. To this purpose, the GOME data have been treated in a variety of ways to 

obtain tropospheric information. A possible approach is to use the knowledge of the different 

temporal and horizontal scales of constituents in the stratosphere and troposphere. In particular, on 

the one hand, the tropospheric amount of NO2 usually exhibits specific local behaviours; on the other 

hand, the stratospheric amount of NO2 exhibits a general global behaviour. Also the transport in the 



stratosphere is appreciably greater than in the troposphere, so that a homogeneity of the NO2 

stratospheric column is to be expected (Leue, C. et al., 1999). An alternative vertical column (VC) 

approach for retrieving tropospheric information is to use measurements "on-cloud" and "off-cloud" 

to determine the amount of NO2 below the cloud. However, the different albedos and the resulting 

photolysis field above the cloud introduce complications (TROPOSAT, 2000). Another method for 

the retrieval of tropospheric NO2 is based on a combined assimilation retrieval approach, which 

takes into account the stratospheric background, the sensitivity to the vertical profile, clouds and the 

surface albedo.  

Although several components contribute to NO2 emissions (e.g. urban pollution), biomass burning is 

the most important source of Nitrogen Dioxide (Casadio et al. 1999, Zehner et al. 1999). For this 

reason, in this work we focus on biomass burning. In particular, a novel methodology is presented, 

which performs NO2 emission estimation by exploiting the synergy between the GOME and the 

Along Track Scanning Radiometer (ATSR-2) instruments, both mounted on board of the ERS-2 

satellite. In particular, two main approaches to NO2 estimation are proposed: i) a simple linear 

approach that provides estimations of NO2 emissions on the basis of GOME and ATSR-2 data on a 

regional scale; ii) a nonlinear approach that provides NO2 estimations on a global scale by exploiting 

both a large set of input parameters and a radial basis function (RBF) neural network. The resulting 

system represents a novel attempt to retrieve NO2 emissions due to biomass burning on a regional or 

global scale by exploiting the synergy between GOME and ATSR-2 sensors.   

The paper is organized into six sections. The next section briefly describes the GOME and ATSR-2 

sensors and the related data. Section 3 introduces the problem formulation and the simplifying 

assumptions considered in the development of the proposed system. Section 4 deals with the 



proposed linear and nonlinear approaches. The data sets used in the experiments are detailed in 

Section 5, together with the experiments results. Finally, conclusions are drawn in Section 6. 

 

2. Sensor and data description 

The methodology proposed exploits the synergy between GOME and ATSR-2 sensors mounted on 

board of the ERS-2 satellite. In the following, these sensors and the related data are briefly 

described. 

Owing its nadir viewing geometry, GOME sensor provides the possibility to measure the total 

column amount of atmospheric constituents down to the Earth’s surface. Its main scientific objective 

is to measure the global distribution of ozone and other trace gases through spectral analysis of the 

sunlight scattered from the Earth’s atmosphere and/or reflected by the surface in the spectral region 

240-790 nm. The GOME instrument is a double monochromator and the entering light is split into 

four separate spectral bands. In each of the four spectral bands, the light is dispersed by a diffraction 

grating and focused onto monolithic silicon linear detector array comprising 1024 individual detector 

pixels. Detailed description of the instrument design and operation can be found in (GOME Users 

Manual, 1995). GOME Level 2 products consist of slant and vertical amount of atmospheric 

constituents (ozone and nitrogen dioxide), and related uncertainties, retrieved from calibrated 

geolocated radiances. They also include essential information on cloud parameters. Here, we use 

both NO2 vertical column data and the cloud information to select cloud free scenes (this task is 

accomplished by imposing a threshold equal to 0.3 on the GOME cloud fraction factor). It is difficult 

to evaluate precisely the accuracy of the GOME nitrogen dioxide product due to various problems, 

such as the diurnal variation of NO2 and the profile shape effect on the Air Mass Factor (AMF). The 



overall accuracy of the GOME NO2 total column is estimated to fall within the 5% to 20% ranges 

(http://earth.esa.int/gome_report99). 

The conical scan of the ATSR-2 radiometer measures nadir and forward reflectances in four solar 

and three thermal channels with a spatial resolution of 1 km. An important application of ATSR-2 

data is the detection of forest fires and other hotspots on the Earth's surface. To this end, a widely 

used approach is to associate pixels with an average temperature greater than 312K to hotspots. 

The ATSR-2 product used here is the Monthly Global Fire Maps (Level 3 product, downloadable 

at http://shark1.esrin.esa.it/FIRE/AF/ATSR/). The user of the Fire product must take into account 

both the algorithm limitations due to the presence of clouds and atmospheric effects, and the fact that 

the fire temperature and extension are not taken into account in the processing. The ATSR night-time 

data used to determine the presence of hotspots (fires) are compose of four spectral bands: 1.6, 3.7, 

11.0, 12.0 µm. The detection capabilities depend on the fire temperature; they can be estimated as 

follows: from 0.1 ha at 600K to 0.01 ha at 800K, for a background temperature of 300K. The 

advantages of ATSR-2 are that, due to the night-time detection, no artefacts due to solar reflection 

are possible. Moreover, the absence of drift of the ERS orbit allows year-to-year comparisons, and 

the high radiometric sensitivity allows one the detection of little/not extended fires. Two well-known 

problems in the hotspot retrieval by using ATSR-2 data are: i) ATSR-2 frames overlap (some fires 

can be detected twice); ii) only night-time fires are detected (this involves a global underestimation of 

the number of hotspots). It is worth noting that an ATSR FIRE Atlas product is presently in a 

validation phase (Arino et al. 2001). 

 



3. Problem formulation and simplifying assumptions 

The problem of the estimation of the amount of NO2 in the troposphere by using data acquired by 

the GOME and ATSR-2 sensors is very complex. The complexity depends on several factors that 

decrease the precision of the measurements acquired by the sensors and increase the difficulty in the 

sensor integration. In particular, the following factors should be considered in addition to those 

described in the previous section (i.e. presence of clouds, uncertainties of data): 

a) GOME and ATSR-2 instruments acquire measurements at different times. In particular, GOME 

collects data during the day, whereas ATSR acquires data about hotspots during the night. 

b) GOME measurements are related to the total column amount of atmosphere constituents down 

to the Earth surface. Consequently, they are influenced both from the stratospheric and the 

tropospheric components of NO2. This makes it complex to isolate the NO2 component present 

in the troposphere. 

c) The NO2 production in absence of fires (let us call it “'normal”), which should not be considered 

in our estimation because uncorrelated with burning biomass, has a seasonal cycle that depends 

on the latitude of the geographical area investigated. 

d) The NO2 plumes generated by combustion may be transported by the wind also far from the 

area of production. This may affect the spatial accuracy of the GOME measurements.  

e) The NO2 produced by a forest fire depends on the amount of burned biomass, and hence on the 

land-cover of the area considered.  

By taking into account the aforementioned issues, in the definition of the proposed system we 

considered the following simplifying assumptions:  



1) The plume movements can be modelled with a Gaussian distribution: we model with a 

Gaussian distribution the diffusive behaviour of NO2 in the troposphere (Sharan et al. 1996).  

2) No significant changes took place between the acquisitions of GOME and ATSR data: this 

assumption, that in some cases may be critical, makes it possible to establish a correlation 

between the GOME and the ATSR measurements. 

3) The stratospheric amount of NO2 is constant over time: according with Leue et al. (1999), 

we make the assumption that the stratospheric amount of NO2 does not change over time. This 

reasonable assumption results very useful in the formulation of the proposed approach to 

separate the tropospheric and stratospheric NO2 components. 

 

4. Proposed System 

In the proposed system, the GOME and ATSR measurements are integrated in order to establish a 

correlation between the amount of NO2 present in the troposphere and hotspots related to active 

fires on the ground. Two different approaches to the NO2 estimation are presented: a linear approach 

and a nonlinear approach based on RBF neural networks. The two approaches are described in the 

following sub-sections. 

 

4.1. Linear approach 

The linear approach is the simplest one. The rationale of such an approach is that the amount of NO2 

produced in a given area by biomass burning has a linear dependence on the number of hotspots 

detected in the considered area. This involves the assumption that a single hotspot emits a fixed 

amount α of NO2. Even though such an assumption may be critical, it allows one to obtain estimate 



of NO2 produced in a given area by biomass burning with a level of accuracy acceptable for many 

applications. 

The linear approach is composed of two phases: estimation of the average amount α of NO2 

emissions related to each hotspot (training phase); estimation of NO2 emissions on the basis of both 

the number of hotspots detected by ATSR-2 sensor and the α value previously estimated (operative 

phase).   

The training phase is carried out in three steps: i) detection of abnormal amounts of NO2 in the 

troposphere by using GOME data; ii) integration of GOME and ATSR-2 data for estimating the 

relationship between fires and GOME measurements; iii) estimation of the coefficient α. These steps 

are described in greater details in the following. 

i)  On the basis of the assumption that the stratospheric amount of NO2 can be considered almost 

constant in time, we propose to estimate the tropospheric abnormal NO2 emissions by computing 

temporal variations of GOME measurements versus the behaviour of historical series of data.  

ii)  Since biomass burning produces NO2 gases, the amount of NO2 in a given area is related to the 

number of hotspots detected in the considered site. Let us denote x j
GOME the position of the pixel 

centre related to the j-th GOME measure and x i
ATSR the position of the i-th hotspot detected by 

the ATSR-2 sensor. In order to estimate the influence that the i-th hotspot has on the j-th 

GOME measure, the following weighting function ( )ATSR
i

GOME
j x,xf  is adopted: 
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where d is the distance between x j
GOME  and x i

ATSR, and dth is a threshold value that is computed 

to take into account the diffusion of NO2 gases. By summing the components related to all the 



detected hotspots, we obtain an estimation of the total influence ( )GOME
jxF  of forest fires on the j-

th GOME measure: 
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i

ATSR
i
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j

GOME
j x,xfxF  (2) 

Consequently, ( )GOME
jxF  can be considered as an equivalent number of hotspots located in x j

GOME 

and producing an amount of NO2 equal to the one actually measured by the GOME sensor.  

iii)  A linear regression between abnormal NO2 values identified in i) and the correspondent ( )GOME
jxF  

values computed in ii) is applied in order to estimate the average amount α of NO2 emissions 

related to each hotspot. 

It is worth noting that in the training phase of the linear approach it is mandatory to have historical 

series of GOME and ATSR-2 data of the investigated area. 

During the operative phase, only ATSR-2 data are required. The estimation of NO2 emissions 

related to the considered geographical area (let tropNO2  denote such an amount) is carried out 

according to the following simple equation: 

 NNOtrop α=2  (3) 

where N is the total number of hotspots detected in the considered geographical area by analysing 

the ATSR-2 data. 

Since the analysis of different geographical areas reveals that the amount of NO2 produced by a 

single hotspot depends on several factors (e.g. the latitude and the land-cover type that characterise 

the investigated area), the α value estimated for a specific geographical site can be used only in a 

neighbourhood of the considered area. 

 



4.2 Nonlinear approach based on RBF neural networks 

The proposed approach based on RBF neural networks considers the abnormal amount of NO2 

produced in troposphere ( tropNO2 ) as a nonlinear function depending on several parameters, i.e. 

 )(gNOtrop ϑ=2  (4) 

where each component of the vector ϑ  is a physical parameter that influences the NO2 generated. In 

the this approach, we consider the following input parameters for the NO2 estimation: 

§ Vegetation index: different types of land-covers (e.g. different types of "fuel") produce different 

amounts of NO2. 

§ Latitude: important indication on the amount of NO2 produced by biomass-burning and present 

in the troposphere can be retrieved by the knowledge of the investigated area latitude. In fact, 

latitude provides hints about: i) the combustion speed (such a parameter depends on the heat); ii) 

the land coverage; iii) the seasonal cycle characterising the normal amount of NO2.  

§ Number of fires in the considered area: the tropNO2  increases when the number of fires 

increases. Therefore, the information on the number of hotspots provided by the ATSR-2 sensor 

plays a fundamental role in the estimation process.  

§ Spatial position of fires with respect to the GOME measurements: the sensitivity of the 

GOME measurements to hotspots depends on the relative position between the GOME IFOV 

and fires. 

§ Season: the seasonal period influences the natural cycle of the NO2. Consequently, it should be 

considered in the estimation process. 



The function g(.), which defines the relation between the aforementioned input parameters and the 

estimated NO2, is learned by the neural network in the training phase on the basis of selected 

examples. 

The choice of adopting an RBF neural model depends on the ability of this kind of network to solve 

nonlinear problems of function estimation and regression (Powell 1987, Broomhead and Lowe 

1988, Hatman et al. 1990, Park and Sandberg 1991) and on the advantages exhibited by this kind 

of neural model over other ones. In particular, one of the main advantages consists in a good trade-

off between the complexity of the training phase and the obtained accuracy (Bruzzone and 

Fernández Prieto 1999). Generally, a Gaussian RBF neural network is composed of three layers (an 

input, a hidden and an output layer). Input neurons (as many as input features) just propagate input 

features to the next layer. Each neuron in the hidden layer is associated with a radial basis kernel 

function (usually a Gaussian function iϕ  characterised by a centre iµ  and a width iσ ). In one-

dimensional regression problems, the output layer is composed of one neuron that computes a simple 

weighted summation of the responses of the hidden neurons to a given pattern described by the input 

feature vector.  The connections between the hidden neurons and the output neuron are associated 

with numerical values called “weights” (Figure 1 shows the architecture of the RBF neural network 

used in the proposed nonlinear system). In the training phase, the centre µj and the width σj of each 

gaussian activation function of hidden units, as well as the weights between the hidden units and the 

output unit, are computed. This can be accomplished according to classical training procedures 

(Moody and Darken 1989, Park and Sandberg 1991, Bruzzone and Fernández Prieto 1999). In 

particular, in our approach, the simple algorithm proposed by Moody and Darken (1989) is 



adopted. We refer the reader to (Bianchini et al. 1995, Bruzzone and Fernández Prieto 1999) for 

greater details on RBF neural networks and on their training procedures.  

The training on the neural network is based on the previously discussed assumption that the 

stratospheric amount of NO2 can be considered almost constant in time. Accordingly, the 

tropospheric abnormal NO2 emissions can be estimated by computing temporal variations of GOME 

measurements versus the behaviour of historical series of data. Such estimations are used in the 

learning of the network. In particular, the neural network learns the function g(.) that relates all the 

input parameters to the different estimates of the tropospheric abnormal NO2 emissions. During the 

operative phase, the neural architecture provides the estimation of NO2 emissions, given the 

correspondent input vector.  

As compared to the linear approach, the nonlinear approach exhibits some important advantages: 

1. it is not based on the assumption that the relation between the tropospheric NO2 emissions 

due to biomass burning and the forest fires that affect the considered geographical area is 

linear. Consequently, more accurate estimates of the tropospheric abnormal NO2 amount are 

expected;  

2. it is able estimate emissions also in areas different from the ones used in the training phase 

(thanks to the generalisation ability of the neural network). As a consequence, the nonlinear 

approach can be also applied to geographical areas where time series of GOME and 

ATSR-2 data for the estimation of α  are not available.   

Concerning the last point, as described in Section 4.1, the linear approach requires the computation 

of an α value that depends on the specific geographical area considered. The function g(.) (i.e., the 

relation between the set of all the parameters ϑ  and the amount of NO2 estimated by the nonlinear 



approach) implicitly deals with this dependence, thus allowing one to analyse geographical areas for 

which the α value is not explicitly known. Consequently, an important difference between the two 

approaches is the scale at which they are operative. On the one hand, the linear approach allows one 

to estimate the amount of NO2 at a local scale, on the other hand, the nonlinear approach is suitable 

for developing a global scale monitoring system.  

 

5. Experimental results 

In order to assess the effectiveness of the proposed method, a data set related to different 

geographical areas was considered. In particular, five areas (i.e. Africa Coast, Australia, Congo, 

Mexico and North Brazil) characterised by different land-cover types and latitudes were selected. 

Multitemporal sequences of GOME and ATSR-2 data acquired on the selected areas between 

November 1996 and May 1999 were considered.  

To evaluate the effectiveness of both the linear and the non-linear approaches, multitemporal data 

were divided into two different series. Data acquired between November 1996 and June 1998 were 

used for the training phase; data acquired between July 1998 and May 1999 were used for the test 

of the proposed methods. A detailed description of the training and test sets is given in Table 1. In 

addition, in Table 2, the minimum and maximum NO2 concentration values derived from the GOME 

measurements for each one of the considered areas are reported. 

 



 
5.1 Results obtained with the linear approach 

The linear approach was applied separately to each area. First of all, anomalous amounts of NO2 in 

the troposphere were detected on the basis of the analysis of training samples. In particular, samples 

of the training data not affected by biomass burning (i.e. pixel with ( ) 0=GOME
jxF ) were identified. 

Then the average (computed both in the time and in the spatial domains) of the NO2 values measured 

by the GOME sensor on these samples was derived. Under the assumptions considered in Section 

3, the resulting average points out the normal amount of NO2 present in the atmosphere over the 

considered area. Abnormal amounts in the troposphere were thus obtained by differencing the 

GOME measurements and the aforementioned normal amount of NO2. As an example, Figure 2 

shows the abnormal amounts of NO2 computed for a specific pixel of the Africa Coast area in the 

period between November 1996 and June 1998 (see the green profile). In the same figure, red 

marks point out the values assumed by the function ( )GOME
jxF . At this point, the value of the α 

coefficient was retrieved according to the methodology described in section 4.1. Finally, the amount 

of NO2 produced in the considered area is estimated according to equation (3). Figure 3 shows the 

profile of such an amount computed for the Africa Coast area in the period between July 1st, 1998 

and May 31st, 1999.  

In order to obtain a quantitative evaluation of the effectiveness of the proposed approach, the 

amounts of NO2 due to biomass burning were compared with the reference values (i.e. the abnormal 

amounts of NO2 estimated by computing the temporal variations of GOME measurements versus the 

behaviour of the series of test data). The resulting errors for all the considered geographical areas are 

reported in Table 3.  As one can see, the percentage error is globally quite satisfactory. In fact, even 

if the Congo and the Mexico areas are characterised by errors equal to 43.6% and 35.7%, 



respectively, all the other errors are rather small. It is worth noting that this evaluation of results is 

done by taking into account that the linear method considers just ATSR-2 data in the test phase. 

Consequently, it is not reasonable to expect that this method provides very high accuracies; on the 

contrary, it should be used for deriving general indications about the NO2 emissions behaviour in the 

different test sites. In order to understand in greater detail the behaviour of the approach on the 

Congo and Mexico areas, a deeper analysis of the GOME time series was carried out. Concerning 

the Congo area, the analysis revealed that the behaviour of the NO2 emissions was very unstable 

during the considered historical period. Consequently, the length of the series of data used was not 

sufficient to compute with a good approximation the normal value of NO2 present in the atmosphere. 

In this case, to increase the estimation accuracy, a longer historical series of GOME measurements 

would be necessary. With regard to the Mexico site, it includes the Mexico City area, which is 

affected by a high urban pollution. Consequently, as confirmed by additional experiments not 

reported in this paper, the error incurred in this site mainly depends on the urban pollution present in 

the aforementioned city.  

Table 3 also reports the values of the α coefficient obtained for the different areas. As one can see, 

these values strongly depend on the geographical area considered. Consequently, the α value 

estimated for a specific geographical site can be used only in a neighbourhood of the considered 

zone; hence, the linear approach can be applied only at a regional scale. In order to support this 

conclusion, a further experiment was carried out. In particular, the linear approach was jointly trained 

on the five considered areas and then tested on all the geographical sites. The error obtained is 

reported in Table 4, where the estimated global value of the α coefficient is also given for 

comparisons with the values presented in Table 3. As one can see, the error yielded is sharply higher 



than the overall error achieved by analysing separately the five areas (i.e., 41.9% vs 25.5%). This 

confirms the linear approach as a local-scale monitoring tool.  

 
5.2 Results obtained with the nonlinear approach 

In order to assess the effectiveness of the nonlinear approach, two main experiments were carried 

out. The first experiment was aimed at comparing the accuracies provided by the nonlinear approach 

with the ones exhibited by the linear method. The second experiment was devoted at investigating the 

effectiveness of the nonlinear approach for developing a global-scale monitoring system. In 

particular, the capability of the nonlinear approach to estimate emissions in a geographical area 

different from the ones used in the training phase was assessed.  

As the objective of the nonlinear approach is to derive a global-scale monitoring system, such an 

approach was jointly applied to all the selected areas. In this way, the RBF neural network can learn 

the complex relation existing between the set of all the input parameters ϑ  and the amount of NO2 

emissions due to biomass burning.  

Let us consider the first experiment. The training phase was carried out as follows. For each one of 

the five selected geographical areas, the abnormal amounts of NO2 were estimated by computing 

temporal variations of GOME measurements on the training data according to the method described 

in the previous subsection. Such variations were computed separately on each considered area. The 

obtained estimates were used for the training of the network. Different RBF neural network 

architectures (i.e. architectures with different numbers of hidden neurons) were considered. At this 

point, the effectiveness of the nonlinear approach was evaluated by considering the test samples. The 

estimated amounts of NO2 were compared with the reference values (i.e. amounts of NO2 computed 

by considering the temporal variations of GOME measurements versus the normal amount of NO2 



estimated on the test data). The percentage errors obtained are given in Table 5. A comparison 

between Table 3 and Table 5 points out that generally the nonlinear approach allows one to 

significantly reduce the errors in the estimated NO2 with respect to the linear method. In greater 

detail, the nonlinear approach increases the accuracy in all the areas but the North Brazil one (for 

which in any case the error is acceptable). The decrease of performances on the North Brazil area 

mainly depends on the fact that the neural network realizes a trade-off between errors incurred on 

each single area and generalisation capabilities. 

In the second experiment (i.e., analysis of the capability of the nonlinear approach to estimate NO2 in 

areas different from the ones considered in the training set), five trials were carried out by using a 

leaving-one-out method. In particular, in each trial, the learning of the RBF neural network was 

carried out by considering four of the five available geographical areas, while the test was 

accomplished on the remaining site. The obtained results are shown in Table 6. As one can see, the 

ability of neural network to generalise allows the nonlinear approach to estimate with a high accuracy 

NO2 emissions also on geographical areas different for the ones used for the training. In particular, 

we can observe that the decrease of accuracies between Table 5 and Table 6 are not significant.  

 

6. Discussion and conclusions 

In this paper, a novel system for estimating NO2 emissions resulting from biomass burning has been 

proposed. The system performs the estimation process by integrating data acquired by the GOME 

and the ATSR-2 sensors mounted on board of the ERS-2 satellite. 

Two different approaches have been presented for estimating NO2: an approach based on a linear 

model and a nonlinear approach based on RBF neural networks. 



The linear approach is based on the assumption that an equivalent amount of NO2 emissions for each 

generic fire can be estimated. This estimation is carried out according to a linear regression between 

GOME and ATSR-2 measurements applied to historical series of remotely sensed data. In the 

estimation process, a specific model for deleting the stratospheric NO2 component by the GOME 

measurements has been considered. On the one hand, this approach exhibits two main advantages: i) 

it is very simple; ii) in the operative phase the NO2 estimation is carried out on the basis of ATSR-2 

data (GOME data are only used in the training of the system for computing the equivalent amount of 

NO2 associated with each fire). On the other hand, the main disadvantages of this estimation 

procedure consist of: i) it does not take into account the differences in the production of NO2 often 

associated with different hotspots; ii) it is not able to take into account the complex relationship 

between the amount of NO2 emissions present in the troposphere and the large number of parameters 

that influence this value; iii) it requires historical series of training data for all the geographical areas 

studied. 

The nonlinear approach based on RBF neural networks overcomes the aforementioned 

disadvantages. It takes into account a set of parameters that may influence the presence of NO2 

emissions in the troposphere resulting from fires. In particular, this nonparametric approach models 

the complex nonlinear function that maps the input parameters in the output NO2 estimation. The 

neural approach exhibits two additional important advantages: i) it does not require to define a 

specific linear model for each geographical area considered in the test phase; ii) thanks to the 

generalisation ability of the neural networks, it makes it possible to estimate NO2 emissions also in 

areas for which historical series of data are not available. 



Experimental results obtained on a data set related to five different geographical areas point out that 

the proposed approaches seem to be a promising tool for monitoring NO2 emissions. As future 

developments of this work, we are considering two main issues: i) to further extend the experiments 

with the neural approach by considering other input parameters, so increasing the precision of the 

function used by the neural networks for estimating NO2 emissions; ii) to generalise the proposed 

system for detecting anomalous NO2 emissions involved by environmental pollution in large urban 

areas.   
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FIGURE CAPTIONS 

 

Figure 1. Architecture of the RBF neural network used in the proposed nonlinear approach.  

 

Figure 2. Geographical areas considered for evaluating the effectiveness of the proposed methods 

(the selected areas are within the rectangles). 

 

Figure 3. Abnormal amounts of NO2 present in the troposphere versus the Julian day. The values ( )GOME
jxF  are 

also reported (see red marks) (Africa Coast region). 

  

Figure 4. Amount of NO2 emissions produced by biomass burning versus the date: values estimated with the 

linear approach (red line); reference values (black line) (Africa Coast region).  



TABLE CAPTIONS 

 

Table 1. Description of the training and test sets for the five considered geographical areas.  

 

Table 2. Minimum and maximum NO2 concentration values affecting the considered geographical areas in the 

studied period. 

  

Table 3. Percentage errors provided by the linear approach in estimating NO2 produced by biomass-burning in the 

five considered geographical areas. The estimates of the α coefficient are also given. 

  

Table 4. Overall percentage errors provided by the linear approach in estimating NO2 emissions produced by 

biomass-burning. The results are obtained by jointly applying the linear method to all the considered 

geographical areas.  

 

Table 5. Percentage errors provided by the nonlinear approach in estimating NO2 emissions produced by 

biomass-burning on the test sets related to the different geographical areas analysed (errors incurred with 

different neural architectures are reported). Results are yielded by considering a training set composed of samples 

related to all the five sites. 

 
Table 6. Percentage errors provided by the nonlinear approach in estimating NO2 emissions produced by 

biomass-burning on the test sets related to the different geographical areas analysed (errors incurred with 

different neural architectures are reported). Results are yielded by defining training and test sets with the leaving-

one out method.  
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Figure 4 



 
 
 
 

Table 1  
 
 

Number of patterns 
Geographical area 

Training set Test set 
Africa-coast 5298 2794 

Australia 6840 913 
Congo 5310 381 
Mexico 7283 992 

North Brazil 8013 116 
 
 
 
 
 
 
 

Table 2  
 
NO2 concentration values 

[1014 mol/cm3] Geographical area 
Minimum Maximum 

Africa-coast 0.031 35.889 
Australia 0.007 35.889 
Congo 0.002 50.657 
Mexico 0.002 36.803 

North Brazil 0.037 20.437 
Global 0.002 50.657 

 
 
 

 
 
 
 

Table 3  
 

Geographical area Error (%) Estimated α coefficient 
Africa-coast 18.8 6.0 

Australia 29.3 16.7 
Congo 43.6 8.0 
Mexico 35.7 8.0 

North Brazil 9.2 5.0 
Overall 25.5 - 

 

 
 
 
 



 
 
 

 
Table 4  

 
Overall error (%) Estimated α coefficient 

41.9 10.7 
 

 
 

 
 

Table 5  
 

Error (%) Number of  

hidden neurons Africa Coast Australia Congo Mexico North Brazil 

100 12.5 13.5 38.8 14.2 20.1 

125 11.7 12.8 39.3 14.2 18.8 

150 11.5 11.9 39.3 13.8 18.9 

175 11.8 11.9 41.1 14.1 19.0 

 
 
 

 
 

Table 6  
 

Error (%) Number of  

hidden neurons Africa Coast Australia Congo Mexico North Brazil 

100 19.1 11.4 36.5 18.3 26.7 

125 18.5 12.8 34.3 16.8 26.5 

150 18.7 12.8 35.7 17.8 26.1 

175 18.0 12.9 34.0 18.3 26.0 

 
 



 

 


