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Abstract. This paper continues the analysis of the quantum states introduced in previous works and determined
by the universal asymptotic structure of four-dimensional asymptotically flat vacuum spacetimes at null infinity
M . It is now focused on the quantum state λM , of a conformally coupled scalar field propagating in M . λM is
“holographically” induced in the bulk by the universal BMS-invariant state λ at infinity =

+ of M . It is done by
means of the correspondence between observables in the bulk and those on the boundary at null infinity discussed
in previous papers. This induction is possible when some requirements are fulfilled. This happens in particular
whenever the spacetime M and the associated unphysical one, M̃ , are globally hyperbolic and M admits future
infinity i

+. As is known λM coincides with Minkowski vacuum if M is Minkowski spacetime. It is now proved
that, in the general case, λM enjoys the following further remarkable properties.
(i) λM is invariant under the (unit component of the Lie) group of isometries of the bulk spacetime M .
(ii) λM fulfills a natural energy-positivity condition with respect to every notion of Killing time (if any) in the bulk
spacetime M : If M admits a complete time-like Killing vector, the associated one-parameter group of isometries
is represented by a strongly-continuous unitary group in the GNS representation of λM . The unitary group has
positive self-adjoint generator without zero modes in the one-particle space.
(iii) λM is (globally) Hadamard and thus it can be used as starting point for perturbative renormalization
procedure.

1 Introduction

In this paper we continue the analysis of the states determined by the asymptotic structure of four-
dimensional asymptotically flat spacetimes at null infinity started in [DMP06] and fully developed in
[Mo06]. Part of those result will be summarized in Sec.2. In [DMP06] and [Mo06] it has been established
that the null boundary at future infinity =+ of an asymptotically flat spacetime admits a natural formu-
lation of bosonic linear QFT living therein. A preferred quasifree pure state λ has been picked out in the
plethora of algebraic states defined on the algebra of Weyl observables W(=+) of the QFT on =+. That
state enjoys remarkable properties, in particular it is invariant under the action of the natural group of
symmetries of =+ – the so-called (infinite-dimensional) BMS group – describing the asymptotic symme-
tries of the physical spacetime M . λ is the vacuum state for BMS-massless particles if one analyzes the
unitary representation of the BMS group within the Wigner-Mackey approach [DMP06]. λ is uniquely
determined by a positive BMS-energy requirement in addition to the above-mentioned BMS invariance
[Mo06] (actually the latter requirement can be weakened considerably). Finally, in the folium of λ there
are no further pure BMS-invariant (not necessarily quasifree or positive energy) states. λ is universal: it

1E-mail: moretti@science.unitn.it

1



does not depend on the particular asymptotically flat spacetime under consideration but it is defined in
terms of the asymptotic extent which is the same for all asymptotically flat spacetimes.
However, in every fixed asymptotically flat spacetime M and under suitable hypotheses on M and M̃ ,
λ it induces a preferred quasifree state λM on the algebra W(M) of the Weyl observables of a (bosonic
massless conformally coupled linear) field propagating in the bulk M . This is because, due to a sort
of holographic correspondence discussed in [DMP06, Mo06], the algebra of bulk observables W(M) is
one-to-one mapped into a subalgebra of boundary observables W(=+) by means of a isometric ∗-algebra
homomorphism ı : W(M) → W(=+). In this way λM is defined as λM (a) := λ(ı(a)) for all a ∈ W(M).
The existence of ı is assured if some further conditions defined in [DMP06] are fulfilled for the spacetime
M and the associated unphysical spacetime M̃ (see (b) of Proposition 2.1). In particular both M and
M̃ are required to be globally hyperbolic. Those requirements are valid when M is Minkowski spacetime
and, in that case, λM turns out to coincide with Minkowski vacuum [DMP06]. However, it has been es-
tablished in [Mo06], that the conditions are verified in a wide class of spacetimes (supposed to be globally
hyperbolic with the unphysical spacetime M̃) individuated by Friedrich [Fri86-88]: the asymptotically
flat vacuum spacetimes admitting future infinity i+.
This paper is devoted to study the general features of the state λM . In particular, is Sec.3 we focus
on isometry-invariance properties of λM and on the energy positivity condition with respect to timelike
Killing vectors in any bulk spacetime M (Theorem 3.1): we show that λM is invariant under the unit
component of the Lie group of isometries of the bulk spacetime M . This fact holds true also replacing
λM with any other state λ′M uniquely defined by assuming that λ′M (a) := λ′(ı(a)) for all a ∈ W(M),
where λ′ is any (not necessarily quasi free or pure) BMS invariant state defined on W(=+). Furthermore
λM fulfills a natural energy-positivity condition with respect to every notion of Killing time in the bulk
spacetime M : If M posses a complete time-like Killing vector ξ, the associated one-parameter group of
isometries is represented by a strongly continuous unitary group in the GNS representation of λM , that
group admits a positive self-adjoint generator H and H has no zero modes in the one particle space. In
this sense the quasifree state λM is a regular ground state for H [KW91]. Actually these properties are
proved to hold also if ξ is causal and future directed, but not necessarily timelike.
Sec.4 is devoted to discuss the validity of the Hadamard condition for the state λ. First we show that the
two-point function of λM is a proper distribution of D ′(M ×M) (Theorem 4.2) when the asymptotically
flat spacetime M admits future infinity i+. It is interesting noticing that the explicit expression of the two
point function of λM we present strongly resembles that of Hadamard states in manifolds with bifurcate
Killing horizons studied by Kay and Wald [KW91] when restricted to the algebra of observables localized
on a Killing horizon.
The last result we establish in this work is that λM is Hadamard (Theorem 4.3). In this case the kernel
of the two-point function of λM satisfies the global Hadamard condition [KW91]. The proof – performed
within the microlocal framework taking advantage of some well known result established by Radzikowski
[Ra96a, Ra96b] – is based on a “from local to global” argument and the analysis of the wavefront sets of
the involved distributions.
The rest of this section is devoted to remind the reader the basic geometric structures in asymptotically
flat spacetimes.

1.1. Notations, mathematical conventions. Throughout R
+ := [0,+∞), N := {0, 1, 2, . . .}. For smooth

manifolds M,N , C∞(M ;N) (omitting N whenever N = R) is the space of smooth functions f : M → N .
C∞

0 (M ;N) ⊂ C∞(M ;N) is the subspace of compactly-supported functions. If χ : M → N is a diffeo-
morphism, χ∗ is the natural extension to tensor bundles (counter-, co-variant and mixed) from M to
N (Appendix C in [Wa84]). A spacetime is a four-dimensional semi-Riemannian (smooth if no specifi-
cation is supplied) connected manifold (M, g), whose metric has signature − + ++, and it is assumed
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to be oriented and time oriented. We adopt definitions of causal structures of Chap. 8 in [Wa84]. If
S ⊂M ∩ M̃ , (M, g) and (M̃, g̃) being spacetimes, J±(S;M) (I±(S;M)) and J±(S; M̃) (I±(S; M̃)) indi-
cate the causal (chronological) sets associated to S and respectively referred to the spacetime M or M̃ .
Concerning distribution and wavefront-set theory we essentially adopt standard definitions and notation
used in [Hö89, Hör71] and in the last chapter of [FJ98].

1.2. Asymptotic flatness at future null infinity and =+. Following [AH78, As80, Wa84], a smooth
spacetime (M, g) is called asymptotically flat vacuum spacetime at future null infinity if there
is a second smooth spacetime (M̃, g̃) such that M can be viewed as an open embedded submanifold of
M̃ with boundary =+ ⊂ M̃ . =+ is an embedded submanifold of M̃ satisfying =+ ∩ J−(M ; M̃) = ∅.
(M̃, g̃) is required to be strongly causal in a neighborhood of =+ and it has to hold g̃�M= Ω2�M g�M
where Ω ∈ C∞(M̃) is strictly positive on M . On =+ one has Ω = 0 and dΩ 6= 0. Moreover, defining
na := g̃ab∂bΩ, there must be a smooth function, ω, defined in M̃ with ω > 0 on M ∪ =+, such that
∇̃a(ω

4na) = 0 on = and the integral lines of ω−1n are complete on =+. The topology of =+ has to be
that of S

2×R. Finally vacuum Einstein equations are assumed to be fulfilled for (M, g) in a neighborhood
of =+ or, more weakly, “approaching” =+ as discussed on p.278 of [Wa84].
Summarizing =+ is a 3-dimensional submanifold of M̃ which is the union of integral lines of the nonva-
nishing null field nµ := g̃µν∇νΩ, these lines are complete for a certain regular rescaling of n, and =+ is
equipped with a degenerate metric h̃ induced by g̃. =+ is called future infinity of M .
Remark 1.1. For brevity, from now on asymptotically flat spacetime means vacuum spacetime
asymptotically flat at future null infinity.

Minkowski spacetime and Schwarzschild spacetime are well-known examples of asymptotically flat
spacetimes. It is simply proved – for instance reducing to the Minkowski space case – that, with our
conventions, the null vector n is always future directed with respect to the time-orientation of (M̃, g̃)
induced from that of (M, g).
As far as the only geometric structure on =+ is concerned, changes of the unphysical spacetime (M̃, g̃)
associated with a fixed asymptotically flat spacetime (M, g), are completely encompassed by gauge
transformations Ω → ωΩ valid in a neighborhood of =+, with ω smooth and strictly positive. Under
these gauge transformations the triple (=+, h̃, n) transforms as

=+ → =+ , h̃→ ω2h̃ , n→ ω−1n . (1)

If C is the class of the triples (=+, h̃, n) transforming as in (1) for a fixed asymptotically flat spacetime,
there is no general physical principle to single out a preferred element in C. On the other hand, C is
universal for all asymptotically flat spacetimes [Wa84]: If C1 and C2 are the classes of triples associated
respectively to (M1, g2) and (M2, g2), there is a diffeomorphism γ : =+

1 → =+
2 such that for suitable

(=+
1 , h̃1, n1) ∈ C1 and (=+

2 , h̃2, n2) ∈ C2: γ(=+
1 ) = =+

2 , γ∗h̃1 = h̃2 , γ∗n1 = n2.
Choosing ω such that ∇̃a(ω

4na) = 0 – this choice exists in view of the very definition of asymptotically flat
spacetime – and using the fact that vacuum Einstein’s equations are fulfilled in a neighborhood of =+, the
tangent vector n turns out to be that of complete null geodesics with respect to g̃ (see Sec. 11.1 in [Wa84]).
ω is completely fixed by requiring that, in addition, the non-degenerate metric on the transverse section
of =+ is the standard metric of S2 in R3 constantly along geodesics. We indicate by ωB and (=+, h̃B , nB)
that value of ω and the associated triple respectively. For ω = ωB, a Bondi frame on =+ is a global
coordinate system (u, ζ, ζ) on =+, where u ∈ R is an affine parameter of the complete null g̃-geodesics
whose union is =+ (n = ∂/∂u in these coordinates) and ζ, ζ ∈ S2 ≡ C∪ {∞} are complex coordinates on
the cross section of =+: ζ = eiϕ cot(θ/2) with θ, ϕ usual spherical coordinates of S2. With these choices,
the metric on the transverse section of =+ reads 2(1+ζζ)−2(dζ⊗dζ+dζ⊗dζ) = dθ⊗dθ+sin2 θ dϕ⊗dϕ.
By definition χ : =+ → =+ belongs to the BMS group, GBMS [Pe63, Pe74, Ge77, AS81], if χ is a

3



diffeomorphism and χ∗h̃ and χ∗n differ from h̃ and n by a rescaling (1) at most. Henceforth, whenever it
is not explicitly stated otherwise, we consider as admissible realizations of the unphysical metric on =+

only those metrics h̃ which are accessible from a metric with associate triple (=+, h̃B , nB), by means of
a transformations in GBMS .

In coordinates of a fixed Bondi frame (u, ζ, ζ), the group GBMS is realized as semi-direct group
product SO(3, 1)↑nC∞(S2), where (Λ, f) ∈ SO(3, 1)↑ ×C∞(S2) acts as

u → u′ := KΛ(ζ, ζ)(u+ f(ζ, ζ)) , (2)

ζ → ζ ′ := Λζ :=
aΛζ + bΛ
cΛζ + dΛ

, ζ → ζ
′
:= Λζ :=

aΛζ + bΛ

cΛζ + dΛ

. (3)

KΛ is the smooth positive function on S2

KΛ(ζ, ζ) :=
(1 + ζζ)

(aΛζ + bΛ)(aΛζ + bΛ) + (cΛζ + dΛ)(cΛζ + dΛ)
and

[
aΛ bΛ
cΛ dΛ

]
= Π−1(Λ) . (4)

Above Π is the well-known surjective covering homomorphism SL(2,C) → SO(3, 1)↑ (see [DMP06] for
further details). Two Bondi frames are connected each other through the transformations (2),(3) with

Λ ∈ SU(2). Conversely, any coordinate frame (u′, ζ ′, ζ
′
) on =+ connected to a Bondi frame by means of

an arbitrary BMS transformation (2),(3) is physically equivalent to the latter from the point of view of

General Relativity, but it is not necessarily a Bondi frame in turn. A global reference frame (u′, ζ ′, ζ
′
)

on =+ related with a Bondi frame (u, ζ, ζ) by means of a BMS transformation (2)-(3) will be called
admissible frame. By construction, the action of GBMS takes the form (2)-(3) in admissible fames too.
The notion of Bondi frame is useful but conventional. Any physical object must be invariant under the
whole BMS group and not only under the subgroup of GBMS connecting Bondi frames.

The local one-parameter group of diffeomorphisms generated by a (smooth) vector field ξ defined in an
asymptotically flat spacetime (M, g) is called asymptotic Killing symmetry if (i) ξ extends smoothly
to a field ξ̃ tangent to =+ and (ii) Ω2£ξg has a smooth extension to =+ which vanishes there. This is the
best approximation of a Killing symmetry for a generic asymptotically flat spacetime which does not ad-
mits proper Killing symmetries (see e.g. [Wa84]). The following well-known result illustrates how GBMS

describes asymptotic Killing symmetries valid for every asymptotically flat spacetime. [Ge77, Wa84].

Proposition 1.1. Consider any asymptotically flat spacetime (M, g). The one-parameter group of
diffeomorphisms generated by a vector field ξ tangent ot =+ is a subgroup of GBMS if and only if ξ̃ is the
smooth extension of some vector field of (M, g) defining an asymptotic Killing symmetry.

2 Summary of some previously achieved results.

2.1. Quantum fields on =+. Let us summarize how a natural linear QFT can be defined on =+ employing
the algebraic approach and the GNS reconstruction theorem. Motivations for the following theoretical
construction and more details can be found in [DMP06, Mo06].
Referring to a fixed Bondi frame on =+, consider the real symplectic space (S(=+), σ), where

S(=+) :=
{
ψ ∈ C∞(=+)

∣∣ ψ , ∂uψ ∈ L2(R × S
2, du ∧ εS2(ζ, ζ))

}
, εS2(ζ, ζ) :=

2dζ ∧ dζ
i(1 + ζζ)2

, (5)
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εS2(ζ, ζ) being the standard volume form of the unit 2-sphere, and the nondegenerate symplectic form σ
is given by, if ψ1, ψ2 ∈ S(=+)

σ(ψ1, ψ2) :=

∫

R×S2

(
ψ2
∂ψ1

∂u
− ψ1

∂ψ2

∂u

)
du ∧ εS2(ζ, ζ) . (6)

There is a natural representation of GBMS acting on (S(=+), σ) discussed in [DMP06, Mo06]. Start
from the representation A of GBMS made of transformations on functions ψ ∈ C∞(=+)

(Agψ)(u, ζ, ζ) := KΛ

(
g−1(u, ζ, ζ)

)−1
ψ

(
g−1(u, ζ, ζ)

)
, where g = (Λ, f). (7)

It turns out that Ag(S(=+)) ⊂ S(=+). Moreover, due to the weight K−1
Λ , the GBMS representation A

preserves the symplectic form σ. As a consequence the space (S(=+), σ) does not depend on the used
Bondi frame. In this context it is convenient to assume that the elements of S(=+) are densities which
transform under the action of A when one changes admissible frame. In the following the restriction
Ag�S(=+) will be indicated by Ag for sake of simplicity. Naturalness and relevance of the representation
A follows from the content of proposition 3.4 below as discussed in [DMP06, Mo06].

As is well known [BR021, BR022], it possible to associate canonically any symplectic space, for instance
(S(=+), σ), with a Weyl C∗-algebra, W(S(=+), σ). This is the, unique up to (isometric) ∗-isomorphisms,
C∗-algebra with generators W (ψ) 6= 0, ψ ∈ S(=+), satisfying Weyl commutation relations (we use
here conventions adopted in [Wa94])

W (−ψ) = W (ψ)∗ , W (ψ)W (ψ′) = eiσ(ψ,ψ′)/2W (ψ + ψ′) . (8)

Here W(S(=+)) := W(S(=+), σ) has the natural interpretation of the algebra of observables for a linear
bosonic QFT defined on =+ as discussed in [DMP06, Mo06] (see also the appendix A of [Mo06]).
As discussed in [DMP06, Mo06], the representationA induces [BR022] a ∗-automorphismGBMS-representation
α : W(S(=+)) → W(S(=+)), uniquely individuated (by linearity and continuity) by the requirement
αg(W (ψ)) := W (Ag−1ψ) for all ψ ∈ S(=+) and g ∈ GBMS .

Since we expect that physics is BMS-invariant we face the issue about the existence of α-invariant
algebraic states on W(S(=+)). To this end it has been established in [DMP06] that there is at least one
algebraic quasifree2 pure state λ defined on W(S(=+)) which is invariant under GBMS . It is that uniquely
induced by linearity and continuity from:

λ(W (ψ)) = e−µλ(ψ,ψ)/2 , µλ(ψ1, ψ2) := −iσ(ψ1+, ψ2+) , ψ ∈ S(=+) (9)

the bar over ψ+ denotes the complex conjugation, ψ+ being the positive u-frequency part of ψ
computed with respect to the Fourier-Plancherel transform defined in section 4.2:

ψ+(u, ζ, ζ) :=

∫

R

e−iku√
2π

Θ(k)ψ̂(k, ζ, ζ)dk , (k, ζ, ζ) ∈ R × S
2 .

Everything is referred to an arbitrarily fixed Bondi frame (u, ζ, ζ) and Θ(k) = 0 for k < 0 and Θ(k) = 1
for k ≥ 0. Consider the GNS representation of λ, (H,Π,Υ). Since λ is quasifree, H is a bosonic Fock
space F+(H) with cyclic vector Υ given by the Fock vacuum and 1-particle Hilbert H space generated by

2We adopt the definition of quasifree state given in [KW91] and also adopted in [DMP06, Mo06], see the appendix A of
[Mo06].
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the positive-frequency parts of u-Fourier-Plancherel transforms ψ̂+ := Θψ̂. In other words one has that
H ≡ L2(R+ × S2; 2kdk ∧ εS2). Indeed it arises from (9):

〈ψ+, ψ
′
+〉 =

∫

R×S2

2kΘ(k)ψ̂(k, ζ, ζ)ψ̂′(k, ζ, ζ)dk ∧ εS2(ζ, ζ) . (10)

In [DMP06, Mo06] we used a different, but unitarily equivalent, definition of positive frequency part in

Fourier variables (therein we used positive frequency parts defined, in Fourier variables, as ψ̃+(E, ζ, ζ) :=√
2Eψ̂+(E, ζ, ζ) so that H ≡ L2(R+ × S

2; dE ∧ εS2).)
λ is a regular state, that is self-adjoint symplectically-smeared field operators σ(Ψ, ψ) are defined

via Stone’s theorem: Π(W (tψ)) = eitσ(Ψ,ψ) with t ∈ R and ψ ∈ S(=+).
As a remarkable result, it has been established in [DMP06] that, equipping GBMS with a suitable

Fréchet topology, the unique unitary representation U of GBMS leaving Υ invariant and implementing
α is strongly continuous. Its restriction to H (which is invariant under U) is an irreducible and strongly
continuous Wigner-Mackey representation associated with a scalar representation of the little group given
by the double covering of 2D Euclidean group. The little group is the same as in the case of massless
Poincaré particles. As a matter of facts, in the space of characters of GBMS , where a generalization of
Mackey machinery works [MC72-75, AD05, Da04, Da05, Da06] (notice that GBMS is not locally compact),
there is a a notion of mass, mBMS , which is invariant under the action of GBMS . It turns out that the
found GBMS representation is defined over an orbit in the space of characters with mBMS = 0. So we
are dealing with BMS-invariant massless particles.

λ enjoys some further properties, in particular a uniqueness property, which will be re-visited shortly
from a point of view different from that adopted in [Mo06].

2.2. Interplay with massless particles propagating in the bulk spacetime. We want now to summarize
some achieved results in [DMP06, Mo06]) on the interplay of QFT defined on =+ and that defined in the
bulk M , for a massless conformally coupled scalar field. Consider an asymptotically flat spacetime (M, g)
with associated unphysical spacetime (M̃, g̃ = Ω2g). In addition to asymptotic flatness assume also that
both M, M̃ be globally hyperbolic. Consider standard bosonic QFT in (M, g) based on the symplectic
space (S(M), σM ), where S(M) is the space of real smooth, compactly supported on Cauchy surfaces,
solutions φ of massless, conformally-coupled, Klein-Gordon equation in M :

Pφ = 0 , where P is the Klein-Gordon operator P = 2g − 1
6R , (11)

with Cauchy-surface independent symplectic form:

σM (φ1, φ2) :=

∫

S

(φ2∇Nφ1 − φ1∇Nφ2) dµ
(S)
g (12)

S being any Cauchy surface of M with normal unit future-directed vector N and 3-volume measure dµ
(S)
g

induced by g. Henceforth the Weyl algebra associated with the symplectic space (S(M), σM ),
whose Weyl generators are indicated byWM (φ), φ ∈ S(M), will be denoted by W(M). That C∗-algebra
represents the basic set of quantum observables associated with the bosonic field φ propagating in the
bulk spacetime (M, g). The generators WM (φ) are formally interpreted as the exponentials e−iσM (Φ,φ)

where σM (Φ, φ) = −σM (φ,Φ) is the field operator symplectically smeared with a solution φ ∈ S(M)
of field equations (concerning the sign of σ we employ conventions used in [Wa94] which differ from those
adopted in [KW91]). The interpretation has a rigorous meaning referring to a GNS representation of
W(M). If the considered state ω is regular, −iσM (Φ, φ) can be defined as the self-adjoint generator
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of the subgroup R 3 t 7→ Πω(W (tψ)). The more usual field operator Φ(f) smeared with functions
f ∈ C∞

0 (M) is related with σM (Φ, φ) by means of Φ(f) := σM (Φ, E(f)), where the causal propaga-
tor E : C∞

0 (M) → C∞(M) is the difference of the advanced and retarded fundamental solutions of
Klein-Gordon equation which exist in every globally hyperbolic spacetime [Le53, Di80, BGP96]. Φ solves
Klein-Gordon equation in distributional sense: Φ(Pf) = 0 because E ◦ P = 0 by definition.
The relation between QFT in M and that defined on =+ can be now illustrated as follows (simplified
form of proposition proposition 1.1 in [Mo06]) joined to proposition 2.5 in [DMP06].

Proposition 2.1. Assume that both the asymptotically flat spacetime (M, g) and the unphysical space-
time (M̃, g̃) are globally hyperbolic. The following holds.
(a) Every φ ∈ S(M) vanishes approaching =+ but (ωΩ)−1φ extenders to a smooth field, ω being any
(arbitrarily fixed) positive function defined in a neighborhood of =+ allowed by gauge transformation of
the geometry on =+ (see section 1.1). For the special case ω = ωB we define the R-linear map

ΓM : S(M) 3 φ 7→
(
(ωBΩ)−1φ

)
�=+ .

(b) If ΓM fulfills both the following requirements:
(i) ΓM (S(M)) ⊂ S(=+) and (ii) symplectic forms are preserved by ΓM , that is, for all φ1, φ2 ∈ S(M),
it holds σM (φ1, φ2) = σ(ΓMφ1,ΓMφ2), then W(M) can be identified with a sub C∗-algebra of W(=+) by
means of a C∗-algebra isomorphism ı uniquely determined by the requirement

ı(WM (φ)) = W (ΓMφ) , for all φ ∈ S(M) . (13)

In other words, if (i) and (ii) are valid, the field observables of the bulk M can be identified with
observables of the boundary =+. This is a sort of holographic correspondence.
If (M, g) is Minkowski spacetime (so that (M̃, g̃) is Einstein closed universe), hypotheses (i) and (ii)
are fulfilled so that ı exists [DMP06]. However there is a large class of asymptotically flat spacetimes
which fulfill hypotheses (i) and (ii) as proved in Theorem 4.1 in [Mo06]. They are the asymptotically flat
spacetimes, which are globally hyperbolic together with the associated unphysical spacetime and such
that admit future time infinity i+ in the sense of Friedirich [Fri86-88]. Roughly speaking we may define
an asymptotically flat vacuum spacetime with future time infinity i+ as an asymptotically flat
vacuum spacetime at future null infinity (M, g) such that there is a point i+ ∈ M̃ ∩ I+(M) (i+ 6∈ =+)
such that the geometric extent of =+ ∪ {i+} about i+ “is the same as that in a region about the tip i+

of a light cone in a (curved) spacetime”. The precise definition is stated in the appendix B (see also the
discussion in [Mo06]).

3 The state λM : invariance under isometries and energy posi-

tivity.

A straightforward but very important consequence of proposition 2.1 is that, whenever (i) and (ii) are
fulfilled, the GBMS-invariant quasifree pure state λ defined on =+ can be pulled back to a state λM
(quasifree by construction) acting on bulk observables defined by:

λM (a) := λ(ı(a)) for all a ∈ W(M) . (14)

If (M, g) is Minkowski spacetime, it turns out that λM coincides with Minkowski vacuum. The main
goal of this paper is to study the general properties of λM whenever it can be defined, i.e. for those
asymptotically flat spacetimes which fulfill the requirements (i) and (ii) of proposition 2.1, in particular,
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asymptotically flat spacetimes admitting i+.

3.1. The spaces of supertranslations, 4-translations and interplay with bulk symmetries. In this section
we introduce some notions and results, missed in [DMP06, Mo06], which play a central role in studying
the properties of λM . We focus on the internal action of GBMS GBMS 3 α 7→ g ◦ α ◦ g−1, for any
fixed g ∈ GBMS . The decomposition of h ∈ GBMS as a pair (Λ, f) ∈ SO(3, 1)↑ ×C∞(S2) depends on
the used admissible frame. However the factor Σ := C∞(S2) is BMS-invariant, i.e. invariant under
the above-mentioned internal action for every fixed g ∈ GBMS

3 and thus it is well-defined independently
from the used admissible frame, since admissible frames are connected to each other by BMS transfor-
mations: If h ∈ GBMS belongs to C∞(S2) (i.e. has the form (I, α) with α ∈ Σ) when referring to an
admissible frame, the same result holds referring to any other admissible frame. Σ is called the group
of supertranslations. However there is another, more important normal subgroup of both GBMS and
Σ. That is the group of 4-translations:

T 4 :=



α =

∑

j=0,1

∑

|m|≤j

cjmYjm

∣∣∣∣∣∣
cjm ∈ C , α(p) ∈ R , ∀p ∈ S

2



 , (15)

Yjm being the standard spherical harmonics normalized with respect to the measure of the unit sphere S
2.

T 4 turns out to be –once-again – BMS-invariant and thus, like Σ, it is well-defined independently from
the used admissible frame. Notice that T 4 enjoys the structure of real vector space in addition to that
of additive group. By direct inspection one sees that the internal action of GBMS on T 4 defines in fact
a representation of GBMS made of linear transformations with respect to the real-vector-space structure
of T 4. It is possible to pass from the complex basis of T 4, {Yjm}j=0,1,|m|≤J to a real basis {Yµ}m=0,1,2,3

(see [DMP06] and references cited therein for more details4), with Y0 :=
√

2/π , Y1 = −
√

2/π sin θ cosϕ,

Y2 = −
√

2/π sin θ sinϕ, Y3 = −
√

2/π cos θ. Referring to that basis, if α :=
∑

µ α
µYµ and α̃ :=

∑
µ α̃

µYµ
the Lorentzian scalar product < α, α̃ >BMS := −α0α̃0 + α1α̃1 + α2α̃2 + α3α̃3, turns out to be BMS-
invariant with respect to the above-mentioned internal (and linear) action of GBMS . As a consequence
T 4 results to be equipped with a light cone structure: there is a BMS-invariant decomposition of T 4\{0}
into spacelike, timelike and null 4-translations. Every fixed admissible frame (u, ζ, ζ) individuates
a time-orientation of T 4. Indeed, consider the BMS diffeomorphism associated with a positive rigid
translations of =+, ατ : R×S2 3 (u, ζ, ζ) 7→ (u+ τ, ζ, ζ), (τ > 0 fixed). Looking at (2)-(3) one finds that,
trivially, ατ identifies with τ

√
π/2Y0 ∈ T 4. Since τ > 0, ατ picks out the same half of the light-cone

not depending on τ . This choice for time-orientation is not affected by changes in the used admissible
frame. This is because n = ∂/∂u is always future-directed with respect to the time-orientation of (M̃, g̃)
induced by that of (M, g) when working in a Bondi frame. The action of BMS group, to pass to a
generic admissible frame, does not changes the extent as a consequence of (2)-(3) as one can check by
direct inspection. Therefore the light cone in T 4 has a natural preferred time-orientation. With our
definition of time-orientation of T 4, if α ∈ T 4 is causal and future-directed, its action on =+ displaces
the points towards the very future defined in (M̃, g̃) by the time orientation of (M, g).

The GBMS-subgroup SO(3, 1)↑nT 4 is isomorphic to the proper orthochronous Poincaré group. How-
ever, differently from T 4, that group is not normal and different admissible frames select different copies
of GBMS-subgroup isomorphic to the proper orthochronous Poincaré group.

We are now ready to state a key result concerning the interplay of BMS group and symmetries. The
following proposition is obtained by collecting together several known results but spread in the literature.

3In other words Σ and the subsequent subgroup T 4 are normal subgroups of GBMS .
4In Eq. (3.19) in [DMP06] the statement “if 1 < k ≤ l” has to be corrected to “if 1 ≤ k ≤ l”, whereas in the right-hand

side of subsequent Eq. (3.20), Yl −k and Yl k have to be corrected to Yl −(k−l) and Yl (k−l) respectively.
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In the Appendix B there is a proof of the statement (c). The results in (a)-(b) can be made much more
strong as established in [AX78]. However we do not need here stronger statements than (a)-(b).

Proposition 3.1. Let (M, g) be an asymptotically flat spacetime. The following facts hold.
(a) [Ge77] If ξ is a Killing vector field of (M, g), then ξ smoothly extends to a vector field on M̃ . The
restriction to =+, ξ̃, of such an extension is tangent to =+, is uniquely determined by ξ, and generates
a one-parameter subgroup of GBMS .
(b) [AX78] The linear map ξ 7→ ξ̃ defined in (a) fulfills the following properties:

(i) it is injective (ξ̃ is the zero vector field on =+ only if ξ is the zero vector field in M);
(iii) if, for a fixed ξ, the one-parameter GBMS-subgroup generated by ξ̃ lies in Σ then, more strictly,

it must be a subgroup of T 4.
(c) Consider a one-parameter subgroup of GBMS , {gt}t∈R ⊂ Σ. Suppose that {gt}t∈R arises from the
integral curves of a smooth vector ξ̃ tangent to =+. In any fixed Bondy frame:

gt : R × S
2 3 (u, ζ, ζ) 7→

(
u+ tf(ζ, ζ), ζ, ζ

)
,

where the function f ∈ C∞(S2) ≡ Σ individuates completely the subgroup .

Remark 3.1. The fields ξ̃ associated with one-parameter subgroup of GBMS are always complete
since the parameter of the generated one-parameter subgroup ranges in the whole real line by definition.
This would be false in case of incompleteness of the field n.

The following proposition can be established by direct inspection from (c) in Proposition 3.1 and (2)-(3).

Proposition 3.2. Consider a nontrivial one-parameter subgroup of GBMS , {gt}t∈R ⊂ T 4 generated by
a smooth complete vector ξ̃ tangent to =+. The following facts hold true referring to the the time-oriented
light-cone structure of T 4 defined above.
(a) {gt}t∈R is made of future-directed timelike 4-translations if and only if there is an admissible frame
(u, ζ, ζ) such that the action of {gt}t∈R reduces there to: gt : (u, ζ, ζ) 7→ (u+ t, ζ, ζ) , ∀t ∈ R .
(b) {gt}t∈R is made of future-directed causal 4-translations if and only if there is a Bondi frame (u, ζ, ζ)
and constants c > 0, a ∈ R with |a| ≤ 1, such that the action of {gt}t∈R reduces there to

gt : (u, ζ, ζ) 7→
(
u+ tc

(
1− a

ζζ − 1

ζζ + 1

)
, ζ, ζ

)
, ∀t ∈ R . (16)

These translations are null if and only if |a| = 1. They are timelike for |a| < 1.
(c) A 4-translation of T 4\{0} viewed as a function f ∈ C∞(S2) in any arbitrarily fixed admissible frame:

(i) is spacelike if and only if f attains both signs,
(ii) is timelike and future-directed if and only if f is strictly positive,
(iii) is null and future-directed if and only if f is positive and vanishes on a single point of S

2.

Propositions 3.2 and 3.1 have the following technical consequence relevant for our goal whose proof is in
the appendix B.

Proposition 3.3. Let ξ be a Killing vector of an asymptotically flat spacetime (M, g). Then:
(a) ξ defines an asymptotic Killing symmetry as expected;
(b) If ξ is everywhere causal future-oriented, the associated one-parameter subgroup of GBMS is made of
causal future-directed elements of T 4.
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3.2. Isometry invariance and energy positivity of λM . We go to prove that the state λM is invariant
under any isometry generated by every complete Killing vector ξ of the bulk spacetime M . Moreover we
prove that the spectrum of the self-adjoint generator associated with ξ is positive whenever ξ is timelike
and thus the generator may be interpreted as an Hamiltonian with positive energy as it is expected from
physics. Positivity of the spectrum of the Hamiltonian is a stability requirement: it guarantees that,
under small (external) perturbations, the system does not collapse to lower and lower energy states.
The proof of invariance of λM is based on the following remarkable result whose proof is in the Appendix B.

Proposition 3.4. Assume that both the asymptotically flat spacetime (M, g) and the unphysical space-
time (M̃, g̃) are globally hyperbolic and consider the linear map ΓM : S(M) → C∞(=+) in proposition
2.1 and the BMS representation A defined in (7).
If the vector field ξ on (M, g) is complete, smoothly extends to M̃ and defines the asymptotic Killing

symmetry {g(ξ)
t }t∈R, then the action of that asymptotic symmetry on the field φ in M is equivalent to the

action of a BMS-symmetry on the associated field ψ := ΓMφ on =+ via the representation A:

ΓM (φ ◦ g(ξ)
−t ) = A

g
(ξ̃)
t

(ψ) for all t ∈ R if ψ = ΓMφ with φ ∈ S(M) , (17)

where {g(ξ̃)
t }t∈R is the one-parameter subgroup of GBMS generated by the smooth extension ξ̃ to =+ of ξ.

Notice that, in general, φ ◦ g(ξ)
−t does not belong to S(M) if φ does. However it happens when g

(ξ)
t is an

isometry, since Klein-Gordon equation and thus S(M) are invariant under isometries of (M, g).
We now prove one of the main results of this work. As is known the identity component G1 of a Lie group
G is the subgroup made of the connected component of G containing the unit element of G.

Theorem 3.1. Assume that both the asymptotically flat spacetime (M, g) and the unphysical spacetime
(M̃, g̃) are globally hyperbolic and conditions (i) and (ii) in (b) of proposition 2.1 are fulfilled. Consider
the quasifree state λM canonically induced on W(M) from the BMS-invariant quasifree pure state λ
defined on =+. The following facts are valid.
(a) λM coincides with (free) Minkowski vacuum if (M, g) is Minkowski spacetime.
(b) λM is invariant under the identity component G1 of the Lie group G of isometries of M :

λM (βga) = λM (a) , for all a ∈ W(M) and every g ∈ G1 , (18)

where β is the (isometric) ∗-algebra isomorphism representation of G uniquely induced (imposing linearity
and continuity) by the requirement on Weyl generators

βg(W (φ)) := W (φ ◦ g−1) , for every φ ∈ S(M) and g ∈ G .

Thus, in particular the Lie-subgroup G1 admits unitary implementation in the GNS representation of λM .
(b)’ The statement (b) holds true as it stands replacing λM with any other state λ′M with λ′M (a) :=
λ′(ı(a)), for all a ∈ W(M), where λ′ is any BMS invariant state (not necessarily quasifree or pure or
satisfying some positivity-energy condition) defined on W(=+).
(c) Assume that (M, g) admits a complete causal future-directed Killing vector ξ. The unitary one-
parameter group which leaves the cyclic vector fixed and implements the one-parameter group of isometries
generated by ξ in the GNS (Fock) space of λM satisfies the following properties:

(i) it is strongly continuous,
(ii) the associated self-adjoint generator, H (ξ), has nonnegative spectrum,
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(iii) the restriction of H(ξ) to the one-particle space has no zero modes.

Remark 3.2. Concerning in particular the statement (c), when ξ is timelike and future-directed, H (ξ)

provides a natural (positive) notion of energy, associated with ξ displacements.
Since λM is quasifree, its GNS representation is a Fock representation. When ξ is timelike, the collection
of properties (i), (ii) are summarized [KW91] by saying that λM is a ground state. Then property (iii)
states that λM is a regular ground state if adopting terminology in [KW91].

Proof of Theorem 3.1. (a) It was proved in theorem 4.5 [DMP06]. (b) It is well-known [O’N83] that
there is a unique way to assign a Lie-group structure to the group of isometries G of a (semi-)Riemannian
manifold (M, g) in order that the action of the one-parameter subgroup is jointly smooth when acting
on the manifold. Moreover the Lie algebra of G is that of complete Killing vectors of (M, g). Finally
using the exponential map one sees that every element of the identity component G1 can be obtained as a
finite product of elements which belong to one-parameter subgroups. As a consequence, to establish the
validity of (b) it is sufficient to prove that λM is invariant under the one-parameter subgroups generated
by complete Killing vectors of (M, g). Let us prove it. Let ξ be a complete Killing vector of (M, g) and
ξ̃ the associated generator of GBMS on =+ in view of Proposition 3.1. Employing the same notation as
in Proposition 3.4 and using the definition (14), one achieves:

λM

(
WM (φ ◦ g(ξ)

−t )
)

= λ
(
W (A

g
(ξ̃)
t

(ψ))
)
.

The right hand side is, by definition,

λ
(
α
g
(ξ̃)
t

(W (ψ))
)

= λ (W (ψ)) ,

where, in the last step we have used the invariance of λ under the representation α of BMS-group defined
in section 2.1. Since ψ = ΓMφ and using (14) again we have finally obtained that

λM

(
WM (φ ◦ g(ξ)

−t )
)

= λM (WM (φ)) .

By linearity and continuity this result extends the the whole algebra W(M):

λM (β
g
(ξ)
t

(a)) = λM (a) , for every a ∈ W(M) .

Since the state is invariant, in its GNS representation, there is a unique unitary implementation of the
representation β which leaves fixed the cyclic vector (e.g. see [Ar99]). The proof of (b)’ is the same as
that given for (b), replacing λM with λ′M .
(c) As λM being quasifree, its GNS representation is a Fock representation (e.g. see the appendix A of
[Mo06] and references cited therein, especially [KW91]). As a consequence it is sufficient to prove the
positivity property for the restriction of the unitary group which represents the group of isometries in
the one-particle space HM . The GNS triple of λM is obtained as follows. Consider the GNS triple of
λ, (H,Π,Υ) where H = F+(H) is the bosonic Fock space with one-particle space H. As said above,
that space, is isomorphic to the space of (Fourier transforms of the) u-positive frequency parts L2(R+ ×
S2, 2kdk ∧ εS2(ζ, ζ)) when a Bondi frame (u, ζ, ζ) is fixed, k being the Fourier variable associated with
u. Consider the Hilbert subspace HM of H obtained by taking the closure of the complex span of the
u-positive-frequency parts of the wavefunctions ΓMφ, for every φ ∈ S(M). Let HM = F+(HM ) be the
Fock space generated by HM which, in turn, is a Hilbert subspace of H. Notice that we are assuming
that the vacuum vectors ΥM and Υ coincide. By construction HM is invariant under Π and ΠM := Π�HM
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is a ∗-representation of ı(W(M)). Moreover ΠM (ı(W(M)))ΥM = ΠM (ı(W(M)))Υ is dense in HM by
construction. By the uniqueness (up to unitary maps) property of the GNS triple, we conclude that
(HM ,ΠM ,ΥM ) is the GNS triple of λM

5.
Consider the unique unitary GBMS representation U which acts on H implementing α and leaving Υ(=
ΥM ) fixed. It is the unitary BMS representation defined by linearity and continuity by the requirement:

UgΠ(W (ψ))Υ := Π(αg(W (ψ)))Υ , for all ψ ∈ S(=+) and g ∈ GBMS . (19)

Since the space S(M) is invariant under the group of isometries g
(ξ)
t and (17) holds true, it arises that

α
g
(ξ̃)
t

(W (ψ)) ∈ ı(W(M)) if W (ψ) ∈ ı(W(M)) and thus (19) entails

U
g
(ξ̃)
t

ΠM (WM (φ))ΥM := Π(β
g
(ξ)
t

(WM (φ)))ΥM , for all φ ∈ S(M) and t ∈ R . (20)

As a consequence of (20) we can conclude that the unique unitary representation U (ξ) of {g(ξ)
t }t∈R on

HM which leaves ΥM invariant, is nothing but the restriction of U to {g(ξ̃)
t }t∈R ⊂ GBMS and HM ⊂ H.

This result allows us to compute explicitly the self-adjoint generator of the unitary representation of

{g(ξ)
t }t∈R. The representation U is obtained by tensorialization of a unitary representation of GBMS

working in the one particle space [DMP06, Mo06] (notice that in those papers, as one-particle space, we
used the unitarily isomorphic space L2(R+ × S2; dk ∧ εS2) instead of L2(R+ × S2; 2kdk ∧ εS2) therefore
the expression above looks different, but it is equivalent to that given in [DMP06, Mo06]):

(
U

(1)
(Λ,f)ϕ

)
(k, ζ, ζ) = eikKΛ(Λ−1(ζ,ζ))f(Λ−1(ζ,ζ))ϕ

(
kKΛ

(
Λ−1(ζ, ζ)

)
,Λ−1(ζ, ζ)

)
, (21)

for every ϕ ∈ L2(R+ × S2; 2kdk ∧ εS2) and GBMS 3 g ≡ (Λ, f). The restriction of U (1) to {g(ξ̃)
t }t∈R and

HM defines a unitary representation of {g(ξ)
t }t∈R whose tensorialization on F+(HM ) is the very represen-

tation U (ξ). Notice that U (1) restricted to {g(ξ̃)
t }t∈R leaves invariant HM by construction because HM is

the closure of the span of vectors d/dt|t=0Π(W (tψ))Υ for ψ ∈ ΓM (S(M)) (the derivative being computed
using the Hilbert topology). To conclude the proof it is sufficient to prove that the self-adjoint generator

of
{
U (1)

g
(ξ̃)
t

�HM

}
t∈R

exists and has positive spectrum.

In our hypotheses {g(ξ̃)
t } is a one-parameter group of causal future-directed 4-translations. As a conse-

quence, selecting the Bondi frame as in (b) in Proposition 3.2, we have that there are a fixed real a with
with |a| ≤ 1 and a fixed real c > 0 such that, for every t ∈ R

g
(ξ̃)
t : (u, ζ, ζ) 7→

(
u+ tc

(
1 − a

ζζ − 1

ζζ + 1

)
, ζ, ζ

)
.

Therefore, if ϕ ∈ H ≡ L2(R+ × S2; 2kdk ∧ εS2)
(
U

(1)

g
(ξ̃)
t

ϕ

)
(k, ζ, ζ) = e

itkc
“

1−a ζζ−1

ζζ+1

”

ϕ
(
k, ζ, ζ

)
. (22)

Strong continuity is obvious (also after restriction to HM ). Finally, using Lebesgue’s dominate conver-

gence to evaluate the strong-operator topology derivative at t = 0 of U
(1)

g
(ξ̃)
t

, one obtains that this derivative

is ih(ξ) where the self-adjoint operator h(ξ) is

(h(ξ)ϕ)(k, ζ, ζ) := kc

(
1 − a

ζζ − 1

ζζ + 1

)
ϕ(k, ζ, ζ) , (23)

5Notice that ΠM may be reducible also if Π is irreducible: in other words λM may be a mixture also if λ is pure.
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defined in the dense domain D(h(ξ)) made of the vectors ϕ ∈ L2(R+ × S2; 2kdk ∧ εS2) such that the
right-hand side of (23) belongs to L2(R+ × S2; 2kdk ∧ εS2) again. In view of Stone theorem h(ξ) is the

self-adjoint generator of U
(1)

g
(ξ̃)
t

. Notice that passing to work in polar coordinates:

kc

(
1 − a

ζζ − 1

ζζ + 1

)
= kc (1 − a cos θ) ≥ 0 (24)

because k ∈ [0 + ∞), c > 0 and a ∈ R with |a| ≤ 1. Therefore interpreting the integral below as a
Lebesgue integral in F := [0,+∞) × [0, π] × [−π, π]:

〈
ϕ, h(ξ)ϕ

〉
= 2c

∫

F

|ϕ(k, θ, φ)|2 (1 − a cos θ) k2 sin2 θ dkdθdφ ≥ 0 , for all ϕ ∈ D(h(ξ)). (25)

This fact entails that the spectrum of h(ξ) is included in [0,+∞) via spectral theorem. The result remains

unchanged when restricting U
(1)

g
(ξ̃)
t

(and thus h(ξ)) to the invariant Hilbert-subspace HM .

Suppose there is a zero mode of h(ξ), that is ϕ ∈ HM \ {0} with h(ξ)ϕ = 0. By (25),

∫

F

|ϕ(k, θ, φ)|2 (1 − a cos θ) k2 sin2 θ dkdθdφ = 0 ,

The integrand is nonnegative on F by construction in particular because (24) is valid, therefore we con-
clude that the integrand vanishes almost everywhere in the Lebesgue measure of R3. Since the function
(k, θ, φ) 7→ (1 − a cos θ) k2 sin2 θ is almost-everywhere strictly positive on F , ϕ must vanish almost every-
where therein, so that ϕ = 0 when one thinks of ϕ as an element of L2(R+ × S2; 2kdk ∧ εS2). In other
words h(ξ) has no zero modes. 2

3.3. Reformulation of the uniqueness theorem for λ. It is clear that there are asymptotically flat space-
times which do not admit isometries at all. In that case the invariance property stated in (a) and the
positivity energy condition (c) of Theorem 3.1 are meaningless. However those statements remain valid if
referring to the asymptotic theory based on QFT on =+ and the universal state λ. Indeed λ is invariant
under the whole GBMS group – which represents asymptotic symmetries of every asymptotically flat
spacetime – and λ satisfies a positivity energy condition with respect to every smooth one-parameter
subgroup og GBMS made of future-directed timelike or null 4-translations – which correspond to Killing-
time evolutions whenever the spacetime admits a timelike Killing field, as established above.
As proved in theorem 3.1 in [Mo06], the energy positivity condition with respect to timelike 4-translations
determines uniquely λ. We may restate it into a more invariant form as follows. The possibility of such
a re-formulation was already noticed in a comment in [Mo06], here we do it explicitly6.

Theorem 3.2. Consider a nontrivial one-parameter subgroup of GBMS , G := {gt}t∈R made of future-
directed timelike 4-translations, associated with a smooth complete vector tangent to =+ and let α(G) be
the one-parameter group of ∗-isomorphisms induced by G on W(=+).
(a) The BMS-invariant state λ is the unique pure quasifree state on W(=+) satisfying both:

(i) it is invariant under α(G),
(ii) the unitary group which implements α(G) leaving fixed the cyclic GNS vector is strongly continuous

with nonnegative generator.

6The author is grateful to A. Ashtekar for suggesting this improved formulation of the theorem.
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(b) Let ω be a pure (not necessarily quasifree) state on W(=+) which is BMS-invariant or, more weakly,
α(G)-invariant. ω is the unique state on W(=+) satisfying both:

(i) it is invariant under α(G),
(ii) it belongs to the folium of ω.

Proof. The proof is that given for theorem 3.1 in [Mo06] working in the admissible frame, individuated
in (a) of Proposition 3.2, where G reduces there to

gt : (u, ζ, ζ) 7→ (u+ t, ζ, ζ) , ∀t ∈ R . 2

4 The Hadamard property.

4.1. Hadamard states. It is well known that Hadamard states [KW91, Wa94] have particular physical
interest in relation with the definition of physical quantities which, as the stress-energy tensor operator
(e.g. see [Mo03, HW04]), cannot be represented in terms of elements of the Weyl algebra or the associated
∗-algebra of products of smeared field operators. In the last decade the deep and strong relevance
of Hadamard states in local generally covariant QFT in curved spacetime has been emphasized from
different points of view (e.g. see [HW01, BFV03]). The rigorous definition of Hadamard state ω –
referring to a quantum scalar real bosonic field φ propagating in a globally hyperbolic spacetime (M, g)
satisfying Klein-Gordon equation with Klein-Gordon operator P := 2+V (x) (V being any fixed smooth
real function) – has been given in [KW91] in terms of a requirement on the behaviour of the singular part
of the integral kernel of two-point function defined as the bi-linear functional ω : C∞

0 (M)×C∞
0 (M) → C

with:

ω(f, g) := − ∂2

∂s∂t

{
ω (WM (sEf + tEg)) eistσM (Ef,Eg)/2

}∣∣∣∣
s=t=0

, f, g ∈ C∞
0 (M) × C∞

0 (M). (26)

Above E : C∞
0 (M) → S(M) ⊂ C∞(M) is the previously mentioned causal propagator, the two-point

function ω(f, g) exists if and only if the right-hand side makes sense for every pair f, g. This happens in
particular whenever the GNS representation of ω is a Fock representation (for instance, that is the case
if ω is quasifree [KW91] see also appendix A in [Mo06]). In that case – the proof is straightforward and
it provides an heuristic motivation for the definition (26) – one finds

ω(f, g) = 〈Υω,Φ(f)Φ(g)Υω〉 , (27)

where Υω is the cyclic GNS vector which, in this case, coincides with the Fock vacuum vector and Φ(f)
denotes the self-adjoint field operator smeared with the smooth function f defined in the GNS Hilbert
space Hω. Notice that, since E ◦ P = P ◦E = 0 if the two-point function exists one gets [Wa94]:

ω(Pf, g) = ω(f, Pg) = 0 (KG)

and, directly from (26),

ω(f, g) − ω(g, f) = −i
∫

M

f(x) (E(g)) (x) dµg(x) (Com) .

If the a two-point function ω(f, g) is well-defined, the integral kernel ω(x, y) is defined (if it exists at all)
as the function, generally singular and affected by some ε→ 0+ prescription, such that

∫

M×M

ω(x, y)f(x)g(y) dµg(x)dµg(y) = ω(f, g) , for all f, g ∈ C∞
0 (M) . (28)
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Referring to a quantum scalar real bosonic field φ propagating in a globally hyperbolic spacetime (M, g)
satisfying Klein-Gordon equation, a quasifree state ω which admits two-point function (indicated with
the same symbol) is said to be Hadamard if the integral kernel of its two-point function ω(x, y) exists
and satisfies the global Hadamard prescription. That prescription requires that the integral kernel
ω(x, y) takes a certain – quite complicated – form in a neighborhood of a Cauchy surface of the spacetime
discussed in details in Sec. 3.3 of [KW91]. The global Hadamard condition implies the local Hadamard
condition which states that, for every point p ∈ M there is a (geodesically convex normal) neighborhood
Gp, such that

ω(x, y) = w-lim
ε→0+

{
U(x, y)

σ(x, y) + 2iε(T (x)− T (y)) + ε2
+ V (x, y) ln(σ(x, y) + 2iε(T (x) − T (y)) + ε2)

}

+ωreg(x, y) , if (x, y) ∈ Gp ×Gp, (LH)

where σ(x, y) is the squared geodesic distance of x from y, T is any, arbitrarily fixed, time function
increasing to the future and U and V are locally well-defined quantities depending on the local geometry
only. Finally ωreg is smooth and is, in fact the part of the two-point function determining the state.
w-limε→0+ indicates that the limit as ε→ 0+ as to be understood in weak sense, i.e. after the integration
of ω(x, y) with smooth compactly supported functions f and g.
In a pair of very remarkable papers [Ra96a, Ra96b] Radzikowski established several important results
about Hadamard states, in particular he found out a microlocal characterization of Hadamard states
(part of theorem 5.1 in [Ra96a]):

Proposition 4.1. In a globally hyperbolic spacetime (M, g), consider a quasifree state with two-point
function ω (so that (KG) and (Com) are valid) defining a distribution of D ′(M × M). The state is
Hadamard if and only if the wavefront set WF (ω) of the distribution is

WF (ω) = {((x, kx), (y,−ky)) ∈ T ∗M \ 0 × T ∗M \ 0 | (x, kx) ∼ (y, ky) , kx B 0} (29)

where (x, kx) ∼ (y, ky) means that there is a null geodesic joining x and y with co-tangent vectors at x
and y given by kx and ky respectively, whereas k B 0 means that k is causal and future directed. 0 is the
zero section of the cotangent bundle.

A second result by Radzikowski, which in fact proved a conjecture by Kay, establishes that (immediate
consequence of Corollary 11.1 in [Ra96b]):

Proposition 4.2. In a globally hyperbolic spacetime (M, g), if the two-point function of a quasifree
state is a distribution of D(M ×M) whose (Schwartz) kernel satisfies (LH) in some neighborhood GP of
every point p ∈ M , then the state is Hadamard.

In the following we shall prove that, in the presence of i+, the following results hold true. (i) λM is a
distribution of D′(M ×M) and, making use of Radzikowski results, (ii) λM is Hadamard. To tackle the
item (i) we have to introduce some notions concerning a straightforward extension of Fourier-Plancherel
transform theory for functions and distributions defined on =+ ≡ R × S2.

4.2. Fourier-Plancherel transform on R×S2. Define S (=+) as the complex linear space of the smooth
functions ψ : =+ → C such that, in a fixed Bondi frame, ψ with all derivatives vanish as |u| → +∞,
uniformly in ζ, ζ , faster than |u|−k, ∀k ∈ N. The space S (=+) generalizes straightforwardly Schwartz’
distribution space on Rn, S ′(Rn). It can be equipped with the Hausdorff topology induced from the
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countable class seminorms – they depend on the Bondi frame but the topology does not – p, q,m, n ∈ N,

||ψ||p,q,m,n := sup
(u,ζ,ζ)∈=+

∣∣∣|u|p∂qu∂mζ ∂nζ ψ(u, ζ, ζ)
∣∣∣ .

S (=+) is dense in both L1(R × S
2, du ∧ εS2(ζ, ζ)) and L2(R × S

2, du ∧ εS2(ζ, ζ)) (with the topology of
these spaces which are weaker than that of S (=+)), because it includes the dense space C∞

0 (R×S2; C) of
smooth compactly-supported complex-valued functions. We also define the space of distributions S ′(=+)
containing all the linear functionals from R × S2 to C which are weakly continuous with respect to the
topology of S (=+). Obviously S (=+) ⊂ S ′(=+) and Lp(R × S2, du ∧ εS2(ζ, ζ)) ⊂ S ′(=+) for p = 1, 2.
We introduce the Fourier transforms F±[f ] of f ∈ S (=+)

F±[f ](k, ζ, ζ) :=

∫

R

e±iku√
2π

f(u, ζ, ζ)du , (k, ζ, ζ) ∈ R × S
2 .

F± enjoy the properties listed below which are straightforward extensions of the analogs for standard
Fourier transform in Rn. The proof of the following theorem is in the Appendix B. It is possible, but
useless for our present goal, to state an analog of Riemann-Lebesgue lemma in L1(R×S2, du∧ εS2(ζ, ζ))7.

Theorem 4.1. The maps F± satisfy the following properties.
(a) for all p,m, n ∈ N and every ψ ∈ S (=+) it holds

F±

[
∂pu∂

m
ζ ∂

n
ζ
ψ

]
(k, ζ, ζ) = (±i)pkp∂mζ ∂nζ ψF±[ψ](k, ζ, ζ) .

(b) F± are continuous bijections onto S (=+) and F− = (F+)−1.
(c) If ψ, φ ∈ S (=+) one has

∫

R

F±[ψ](k, ζ, ζ)F±[φ](k, ζ, ζ)dk =

∫

R

ψ(u, ζ, ζ)φ(u, ζ, ζ)du , for all (ζ, ζ) ∈ S2 , (30)

∫

R×S2

F±[ψ](k, ζ, ζ)F±[φ](k, ζ, ζ)dk ∧ εS2(ζ, ζ) =

∫

R×S2

ψ(u, ζ, ζ)φ(u, ζ, ζ)du ∧ εS2(ζ, ζ) . (31)

(d) If T ∈ S ′(=+) the definition F±T [f ] := T (F±[f ]) , for all f ∈ S ′(=+) is well-posed, gives rise to
the unique weakly continuous linear extension of F± to S ′(=+) and one has, with the usual definition
of derivative of a distribution,

F±

[
∂pu∂

m
ζ ∂

n
ζ
T

]
= (±i)pkp∂mζ ∂nζ F±[T ] , for all p,m, n ∈ N .

(e) Plancherel theorem. F± extend uniquely to unitary transformations from the Hilbert space L2(R×
S2, du∧εS2(ζ, ζ)) to L2(R×S2, du∧εS2(ζ, ζ)) and the extension of F− is the inverse of that of F+. These
extensions coincide respectively with the restrictions to L2(R × S2, du ∧ εS2(ζ, ζ)) of the action of F± on
distributions as in (4).
(f) If F̃± : L2(R, du) → L2(R, du) denotes the standard Fourier transform on the line, for every ψ ∈
L2(R × S2, du ∧ εS2(ζ, ζ)) it holds:

F±[ψ](k, ζ, ζ) = F̃±(ψ(·, ζ, ζ))(k) , almost everywhere on R × S2. (32)

7The corresponding statement of (6) in Theorem C1 in Appendix C of [Mo06] is erroneous, but this fact affects by no
means the results achieved in [Mo06] since that statement did not enter the paper anywhere.

16



As a consequence, if ψ, φ ∈ L2(R× S2, du∧ εS2(ζ, ζ)), one may say that almost everywhere in (ζ, ζ) ∈ S2:

∫

R

F±[ψ](k, ζ, ζ)F±[φ](k, ζ, ζ)dk =

∫

R

ψ(u, ζ, ζ)φ(u, ζ, ζ)du . (33)

(g) If m ∈ N and T ∈ S ′(=+), F+[T ] is a measurable function satisfying

∫

R×S2

(1 + |k|2)m|F+[T ]|2dk ∧ εS2(ζ, ζ) < +∞

if and only if the u-derivatives of T in the sense of distributions, are measurable functions with

∂nuT ∈ L2(R × S
2, du ∧ εS2) , for n = 0, 1, . . . ,m.

From now on F : S ′(=+) → S ′(=+) denotes the extension to distributions of F+ as stated in (d) in
theorem 4.1 whose inverse, F−1, is the analogous extension of F−. We call F Fourier-Plancherel
transformation, also if, properly speaking this name should be reserved to its restriction to L2(R ×
S2, du ∧ εS2(ζ, ζ)) defined in (e) in theorem 4.1. We also use the formal distributional notation for F

(and the analog for F−1)

F [ψ](k, ζ, ζ) :=

∫

R

eiku√
2π
ψ(u, ζ, ζ)du ,

regardless if f is a function or a distribution. Throughout the paper the notation ψ̂(k, ζ, ζ) is also used
for the Fourier(-Plancherel, extension to distributions) transform F [ψ](k, ζ, ζ).

4.3. The integral kernel of λM is a distribution when (M, g) admits i+. Since the considered spacetimes
are equipped, by definitions, with metrics and thus preferred volume measures, here we assume that
distributions of D ′(M×M) work on smooth compactly-supported scalar fields of D(M) := C∞

0 (M) as in
[Fr75] instead of smooth compactly-supported scalar densities as in [Hör71]. As is well known this choice
is pure matter of convention.
First of all we prove that λM individuates a distribution in D ′(M×M), i.e. it is continuous in the relevant
weak topology [Fr75], whenever the spacetime (M, g) is a vacuum asymptotically flat at null infinity space-
time and admits future temporal infinity i+. We give also a useful explicit expression for the distribution.

Theorem 4.2. Assume that the spacetime (M, g) is an asymptotically flat vacuum spacetime with
future time infinity i+ (Definition A.1) and that both (M, g) and the unphysical spacetime (M̃, g̃) are
globally hyperbolic. Let E : C∞

0 (M) → S(M) be the causal propagator associated with the real massless,
conformally coupled Klein-Gordon operator P defined by Eq.(11) on (M, g). Then the following facts are
valid concerning the state λM defined in Eq.(14).
(a) Referring to a Bondi frame (u, ζ, ζ) one has

λM (f, g) = lim
ε→0+

− 1

π

∫

R2×S2

ψf (u, ζ, ζ)ψg(u
′, ζ, ζ)

(u− u′ − iε)
2 du ∧ du′ ∧ εS2(ζ, ζ) , (34)

where ψh := ΓM (Eh) for all h ∈ C∞
0 (M) with ΓM : S(M) → S(=+) defined in Proposition 2.1.

(b) The two-point function of the state λM individuates a distribution of D ′(M ×M).
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Remark 4.1. It is intriguing noticing that the expression (34) is the same as that for two-point func-
tions of quasifree Hadamard states obtained in [KW91] (Eq. (4.13)) in globally hyperbolic spacetimes
with bifurcate Killing horizon. In that case the null 3-manifold =+ is replaced by a bifurcate Killing
horizon, the 2-dimensional cross section S2 with spacelike metric corresponds to the bifurcation surface
Σ with spacelike metric and the null geodesics forming =+, parametrized by the affine parameter u,
correspond to the null geodesics forming the Killing horizon parametrized by the affine parameter U .

Proof of theorem 4.2. We start with a useful lemma whose proof is in the Appendix B.

Lemma 4.1. In the hypotheses of theorem above, if h ∈ C∞
0 (M), the following holds.

(a) ψh can be written in terms of the causal propagator Ẽ for the massless conformally coupled Klein-
Gordon operator P̃ in (M̃, g̃ = Ω2g) and the smooth function ωB > 0 defined on =+ introduced in Section
1.2:

ψh(u, ζ, ζ) = ωB(u, ζ, ζ)−1Ẽ(Ω−3h)�+
= (u, ζ, ζ) , for u ∈ R and (ζ, ζ) ∈ S2. (35)

(b) For any compact K ⊂ M there is u0 ∈ R such that ψh(u, ζ, ζ) = 0 for all (ζ, ζ) ∈ S2 and u < u0 if
supp h ⊂ K.

Let us pass to the main proof. From now on we use the content section 4.2.
(a) We start from the fact that, as found in the proof of Theorem 3.1, the Fock GNS triple of λM ,
(HM ,ΠM ,ΥM ) is such that ΥM = Υ and ΠM (WM (ψ)) = ΠM (W (ΓM (ψ))) In our hypotheses, since λM
is quasifree, one has referring to its GNS representation (HM ,ΠM ,ΥM ):

λM (f, g) = 〈ΥM ,Φ(f)Φ(g)ΥM 〉 = 〈Υ, σ(Ψ,ΓM (Ef))σ(Ψ,ΓM (Eg))Υ〉 = 〈ψf+, ψg+〉 .

where ψh+ is the u-positive frequency part of ΓM (Eh). Using (10), if ψ̂f is the Fourier-Plancherel
transform of ψh one has finally:

λM (f, g) =

∫

R+×S2

2kψ̂f (k, ζ, ζ)ψ̂g(k, ζ, ζ)dk ∧ εS2(ζ, ζ) .

If Θ(k) = 0 for k ≤ 0 and Θ(k) = 1 for k > 0, the identity above can be rewritten as

λM (f, g) =

∫

R×S2

ψ̂f (k, ζ, ζ)2kΘ(k)ψ̂g(k, ζ, ζ)dk ∧ εS2(ζ, ζ) . (36)

We remind the reader that, by definition of S(=+), ψf and ψg are real, smooth and ψf , ψg , ∂uψf , ∂uψg
belong to L2(R × S

2, dk ∧ εS2(ζ, ζ)). Using the fact that Fourier-Plancherel transform on the real line is
unitary one gets:

∫

R

ψ̂f (k, ζ, ζ)2kΘ(k)ψ̂g(k, ζ, ζ)dk ∧ εS2(ζ, ζ) =

∫

R

ψf (u, ζ, ζ)F
−1[2Θkψ̂g](u, ζ, ζ)du ∧ εS2(ζ, ζ) . (37)

Notice that the identity above makes sense because both ψf , ∂uψg ∈ L2(R×S2, dk∧εS2(ζ, ζ)), by definition

of the space S(=+), so that the Fourier-Plancherel transform of ∂uψg , which is kψ̂g up to a constant factor,

and the restriction to the latter to k ∈ R
+ do it. Now, since Θ(k)e−kεψ̂g(k, ζ, ζ) converges, as ε → 0+,

to Θ(k)ψ̂g(k, ζ, ζ) in the sense of L2(R× S2, dk ∧ εS2(ζ, ζ)), and using the fact that the (inverse) Fourier-
Plancherel transform is continuous, one has

F
−1[Θe−kεkψ̂g] → F

−1[Θkψ̂g] , as ε→ 0+ in the topology of L2(R × S2, dk ∧ εS2(ζ, ζ)) . (38)
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The left-hand side can be computed by means of convolution theorem (the convolution restricted to

the variable u) since both functions k 7→ ψ̂g(k, ζ, ζ) and k 7→ Θ(k)e−εk belong to L2(R × S2, dk) by
construction almost everywhere in (ζ, ζ) fixed (for the former function it follows from Fubini-Tonelli

theorem using the fact that ψ̂g ∈ L2(R × S2, dk ∧ εS2(ζ, ζ)) since ψg ∈ L2(R × S2, du ∧ εS2(ζ, ζ))). In this
way, by direct inspection one finds

F
−1[Θe−kεkψ̂g ](u, ζ, ζ) =

1

2π

∫

R

∂u′ψg(u
′, ζ, ζ)

u− u′ − iε
du′ .

Inserting in (38) we have achieved that, as ε→ 0+ in the topology of L2(R × S
2, dk ∧ εS2(ζ, ζ)),

1

2π

∫

R

∂u′ψg(u
′, ζ, ζ)

u− u′ − iε
du′ → F

−1[Θkψ̂g] .

Inserting in the right-hand side of (37) we have:

λM (f, g) =
1

π

∫

R×S2

du ∧ εS2(ζ, ζ) lim
ε→0+

∫

R

ψf (u, ζ, ζ)∂u′ψg(u
′, ζ, ζ)

u− u′ − iε
du′ , (39)

then, using the continuity of the scalar product of the Hilbert space L2(R×S2, dk∧εS2(ζ, ζ)) one obtains:

λM (f, g) = lim
ε→0+

1

π

∫

R×S2

du ∧ εS2(ζ, ζ)

∫

R

ψf (u, ζ, ζ)∂u′ψg(u
′, ζ, ζ)

u− u′ − iε
du′ . (40)

Since both ψg , ∂uψg belong to C∞(R) ∩ L2(R, du) by hypotheses, almost everywhere in (ζ, ζ) fixed, one
has ψg(u, ζ, ζ) → 0 for u→ ±∞8. Integrating by parts the last integral one obtains in that way

λM (f, g) = lim
ε→0+

− 1

π

∫

R×S2

du ∧ εS2(ζ, ζ)

∫

R

ψf (u, ζ, ζ)ψg(u
′, ζ, ζ)

(u− u′ − iε)2
du′ (41)

To conclude the proof it is sufficient to show that, for ε > 0 the function

(u, u′ζ, ζ) 7→ |ψf (u, ζ, ζ)||ψg(u′, ζ, ζ)|
(u− u′)2 + ε2

=: H(u, u′, ζ, ζ)

is integrable in the joint measure of R × R × S2. Since the function is positive, it is equivalent to prove
that the function is integrable under iterated integrations, first in du′ and then respect to du ∧ εS2(ζ, ζ).
We decompose the iterated integration in four terms:

∫

[0,u1)×S2

du ∧ εS2(ζ, ζ)

∫

[0,u1)

du′H(u, u′, ζ, ζ) +

∫

[u1,+∞)×S2

du ∧ εS2(ζ, ζ)

∫

[0,u1)

du′H(u, u′, ζ, ζ)

+

∫

[0,u1)×S2

du ∧ εS2(ζ, ζ)

∫

[u1,+∞)

du′H(u, u′, ζ, ζ) +

∫

[u1,+∞)×S2

du ∧ εS2(ζ, ζ)

∫

[u1,+∞)

du′H(u, u′, ζ, ζ) . (42)

8Work at fixed (ζ, ζ). Using elementary calculus, by continuity of ∂uψg and Cauchy-Schwarz inequality, one has |ψg(u′)−
ψg(u)| ≤ ||ψg||L2(R,du)|u− u′| so that u 7→ ψg(u) is uniformly continuous. If were ψg 6→ 0 as u → +∞ (the other case is

analogous) one would find a sequence of intervals Ik centered on k = 1, 2, . . . with
R

Ik
du > ε and |ψg |�Ik

> M for some

M > 0 and ε > 0. As a consequence it would be
R

R
|ψg(u)|2du = +∞.
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Above we have fixed the origin of u and u′ away in the past of the support of ψf and ψg on =+. This is
possible due to the last statement in Lemma 4.1. The point u1 is taken as follows. It has been established
in the proof of Lemma 4.4 in [Mo06] the following result that we restate in improved form.

Lemma 4.2. Assume that the spacetime (M, g) is an asymptotically flat vacuum spacetime with future
time infinity i+ (Definition A.1). Referring to a Bondi frame, for every β ∈ [1, 2) there are u1 > 0, a
compact ball B centered in i+ defined with respect a suitable coordinate patch x1, x2, x3, x4 in M̃ centered
on i+, and constants a, b > 0 such that if u ≥ u1, (ζ, ζ) ∈ S2:

∣∣ω−1
B Ψ �+

= (u, ζ, ζ)
∣∣ ≤ aMΨ

|u− b| ,
∣∣∂u(ω−1

B Ψ �+
=)(u, ζ, ζ)

∣∣ ≤ aMΨ

|u− b|β , (43)

where

MΨ := max

(
sup
B

|Ψ|, sup
B

|∂x1Ψ|, · · · , sup
B

|∂x4Ψ|
)
. (44)

for every Ψ ∈ C∞(M̃).

Proof. The proof is exactly that given for Lemma 4.4 in [Mo06]. There the smooth function Ψ ∈ C∞(M̃)
was specialized to the case Ψ = ΓM (φ) for some φ ∈ S(M), however such a restriction can be removed
without affecting the proof as it is evident from the proof of Lemma 4.4 in [Mo06]. The improvement
concerning the exponent β is obtained by noticing that in the last estimation before Eq. (44) in [Mo06],
e−λ(4+ε) can be replaced by the improved bound e−βλ(4+ε) for every β ∈ [1, 2) provided the free parameter
ε > 0 fulfills ε < 4(2 − β)/(β + 4). 2

If h ∈ C∞
0 (M), the lemma above entails that (with β = 1), for some constants a, b > 0: taking :

|ψh(u, ζ, ζ)|, |∂uψh(u, ζ, ζ)| ≤
aMh

u− b
, (45)

where

Mh := max

(
sup
B

|Ẽ(h)|, sup
B

|∂x1Ẽ(h)|, · · · , sup
B

|∂x4Ẽ(h)|
)
. (46)

Enlarging u1 if necessary, we can always assume that u1 > u0, b. In the decomposition (42) we use that
value for u1. Therein the first integral converges trivially. Concerning the last integral, due to Eq. (45),
we have the estimation in its domain of integration

H(u, u′, ζ, ζ) ≤ a2

(u− u′)2 + ε2
MfMg

(u− b)(u′ − b)
.

Using that and the fact that the volume of S2 is finite, by direct computation one finds

∫

[u1,+∞)×S2

du ∧ εS2(ζ, ζ)

∫

[u1,+∞)

du′H(u, u′, ζ, ζ)

≤
∫ +∞

u1

du
4πa2MfMg

(u− b)(1 + u− b)

{
π
2 + tan−1

(
u−u1

ε

)

ε
− 1

2(u− b)
ln

(u1 − b)2

(u1 − u)2 + ε2

}
< +∞ .
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By Fubini-Tonelli theorem (H is positive) the second iterated integral in (42) converges if the third does.
Concerning the third one we have the estimation in its domain of integration (notice that ψf is smooth
in [0, u1] × S2 and thus bounded and u′ ≥ u1 > b.)

H(u, u′, ζ, ζ) ≤ C

[(u− u′)2 + ε2](u′ − b)
≤ C ′

(u− u′)2 + ε2

for some constants C,C ′ ≥ 0. Therefore, computing the integral in u′ and using the finite volume of S2

we found:

∫

[0,u1)×S2

du ∧ εS2(ζ, ζ)

∫

[u1,+∞)

du′H(u, u′, ζ, ζ) ≤ C ′

∫ u1

0

du
π
2 + tan−1

(
u−u1

ε

)

ε
< +∞ .

We conclude that the function H is integrable in the joint measure of R×R×S2 so that (41) entails (34).
(b) Due to Schwartz kernel theorem, the statement (b) is equivalent to prove that (i) for every g ∈
C∞

0 (M), C∞
0 (M) 3 f 7→ λM (f, g) is continuous in the topology of C∞

0 (M) and (ii) the linear map
C∞

0 (M) 3 g 7→ λM (·, g) ∈ D ′(M) is weakly continuous. (ii) means that, for every fixed f ∈ C∞
0 (M),

if {gn}n∈N ⊂ C∞
0 (M) converges to 0, as n → +∞, in the topology of C∞

0 (M), then λM (f, gn) → 0 as
n→ +∞. To prove that the couple of requirements is fulfilled notice that, by Cauchy-Schwarz inequality
and (36) one finds

|λM (f, g)| ≤
∣∣∣
∣∣∣ψ̂f

∣∣∣
∣∣∣
L2(R×S2,dk∧ε

S2 )

∣∣∣
∣∣∣kΘψ̂g

∣∣∣
∣∣∣
L2(R×S2,dk∧ε

S2 )
≤ Cg ||ψf ||L2(R×S2,du∧ε

S2) (47)

and

|λM (f, g)| ≤
∣∣∣
∣∣∣kΘψ̂f

∣∣∣
∣∣∣
L2(R×S2,dk∧ε

S2 )

∣∣∣
∣∣∣ψ̂g

∣∣∣
∣∣∣
L2(R×S2,dk∧ε

S2 )
≤ Cf ||ψg ||L2(R×S2,du∧ε

S2) (48)

where, in the last passages Cf := ||kΘψ̂f ||L2(R×S2), Cg := ||kΘψ̂g||L2(R×S2) and we have used the fact
that Fourier-Plancherel transform is isometric. Thus, the statement (b) is true if ||ψgn

||L2(R×S2) → 0 for
gn → 0 in the topology of C∞

0 (M). Let us prove this fact exploiting (35) and (45) for h = gn. It is
known that the causal propagator defined in a globally hyperbolic spacetime Ẽ : C∞

0 (M̃) → C∞(M̃) is
continuous in the standard compactly-supported test-function topology in the domain and the natural
Fréchet topology in C∞(M̃) (see [Le53, Di80, BGP96]). Fix f ∈ C∞

0 (M), a compact set K ⊂ M and
a sequence {gn}n∈N ⊂ C∞

0 (M) supported in K. From (b) in Lemma 4.1 there is u0 ∈ R such that the
support of every ψgn

is included in the set u ≥ u0. Moreover form Lemma 4.2, we know that, if u1 > 0
is sufficiently large, there is a compact ball B centered in i+ defined with respect a suitable coordinate
patch centered on i+, and constants a, b > 0 such that if u ≥ u1, (ζ, ζ) ∈ S2 (45) hold for u = gn (for
every n), where

Mgn
:= max

(
sup
B

|Ẽ(gn)|, sup
B

|∂x1Ẽ(gn)|, · · · , sup
B

|∂x4Ẽ(gn)|
)
.

Enlarging u1 if necessary, we can always assume that u1 > u0, b.
Continuity of Ẽ implies that Mgn

→ 0 as n → +∞. If B′ ⊂ M̃ is another compact set such that

B′ ⊃ {(u, ζ, ζ) ∈ =+ | u1 > u > u0}, since ω−1
B is bounded therein, continuity of Ẽ entails by (35) that

ψgn
vanishes uniformly as n→ +∞ in B′. Now

||ψgn
||2L2(R×S2,du∧ε

S2 ) =

∫

[u0,+∞)×S2

∣∣ψgn
(u, ζ, ζ)

∣∣2 du ∧ εS2(ζ, ζ)
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Decompose the last integral into two terms, the former corresponding to the integration from u0 to u1

and the latter from u1 to +∞. Both parts vanish as n→ +∞. The former vanishes because ψgn
vanishes

uniformly on {(u, ζ, ζ) ∈ =+ | u1 > u > u0} as n→ +∞, the latter vanishes as consequence of (45) with
h = gn, since Mgn

→ 0 as n→ +∞ and
∫

[u1,+∞)×S2

∣∣ψgn
(u, ζ, ζ)

∣∣2 du ∧ εS2(ζ, ζ) ≤ a2M2
gn

4π

∫ +∞

u1

1

(u− b)2
du .

This concludes the proof. 2

4.4. λM is Hadamard when (M, g) admits i+.. We are in place to state and prove the main result of
this section and perhaps of this work.

Theorem 4.3. Assume that the spacetime (M, g) is an asymptotically flat vacuum spacetime with
future time infinity i+ (Definition A.1) and that both (M, g) and the unphysical spacetime (M̃, g̃) are
globally hyperbolic. Consider the quasifree state λM – on the Wayl algebra W(M) of the massless con-
formally coupled real scalar field propagating in M – canonically induced by the BMS-invariant state λ
on =+.
λM is Hadamard.

Proof. The proof is based on properties of the restriction of λM to sets I−(p;M) ∩ I+(q;M).
Since the class of all the sets I−(r;M) ∩ I+(s;M) define a topological base of the topology of a strongly
causal spacetime (M, g), and since the geodesically convex normal neighborhoods define an analogous
base, if p′ is sufficiently close to q′, I−(p′;M) ∩ I+(q′;M) must be contained in a geodesically convex
normal neighborhood U . Taking p, q ∈ I−(p′;M) ∩ I+(q′;M) with p ∈ I+(q,M) we have J−(p;M) ∩
J+(q;M) ⊂ I−(p′;M) ∩ I+(q′;M) ⊂ U .
In the following, a set I−(p;M) ∩ I+(q;M) ⊂ M such that both I−(p;M) ∩ I+(q;M) and J−(p;M) ∩
J+(q;M) are contained in a geodesically convex normal neighborhood will be called a standard domain.
Standard domains form a base of the topology of every strongly causal spacetime. A strongly causal
spacetime (M, g) is globally hyperbolic if and only if every set J−(p;M) ∩ J+(q;M) is compact [Wa84].
In this case J−(p;M) ∩ J+(q;M) = I−(p;M) ∩ I+(q;M) holds as well [Wa84]. Therefore, if (M, g) is
globally hyperbolic, the standard domains form a topological base made of globally hyperbolic (when
considered spacetimes in their own right if equipped with the restriction of the metric g) open set with
compact closure.

In the hypotheses of Theorem 4.3, consider a standard domain N ⊂M and the restriction of the two
point function of λM to C∞

0 (N) × C∞
0 (N). Since we know that λM is a distribution by Theorem 4.2,

this is equivalent to restrict the distribution λM ∈ D′(M ×M) to C∞
0 (M ×M) producing a distribution

of D′(N ×N). We have a first central result whose proof, given in the Appendix B, relies on the know
wavefront set of the causal propagator Ẽ, on several pieces of information on the wavefront set of λM
extracted from (34) and on standard results about composition of wavefront sets [Hö89].

Proposition 4.3. In the hypotheses of Theorem 4.3, consider a standard domain N ⊂ M . If λ
(N)
M is

the restriction of the distribution λM ∈ D′(M ×M) to C∞
0 (N ×N), then

WF (λ
(N)
M ) ⊂ {((x, kx), (y,−ky)) ∈ T ∗N \ 0× T ∗N \ 0 | (x, kx) ∼ (y, ky) , kx B 0} . (49)

Next using the fact that λ
(N)
M satisfies (Com) and (KG), using the theorem of propagation of singularities

[Hör71, Ra96a] one can make stronger the proposition above obtaining the following result.
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Proposition 4.4. In the hypotheses of Theorem 4.3, consider a standard domain N ⊂ M . If λ
(N)
M is

the restriction of the distribution λM ∈ D′(M ×M) to C∞
0 (N ×N), then

WF (λ
(N)
M ) = {((x, kx), (y,−ky)) ∈ T ∗N \ 0× T ∗N \ 0 | (x, kx) ∼ (y, ky) , kx B 0} . (50)

Proof. Let EN ∈ D′(N × N) be the causal propagator associated with Klein-Gordon equation in the
globally hyperbolic spacetime N and, in the following we denote by sing supp(T ) the singular support of
a distribution T . In this proof p ∼ q means that there is, in the considered spacetime, at least one null
geodesic joining p and q.
We prove the thesis by a reductio ad absurdum. Our per absurdum claim is that there be p, q ∈ N with

p ∼ q but ((p, kp), (q,−kq)) 6∈ WF (λ
(N)
M ), where kp and kq are the cotangent vectors to a null geodesic

joining p and q with kp B 0. Actually that geodesic is uniquely determined – for both N and M – by p
and q, from the very definition of standard domain N . (Notice that the wavefront set is conic and thus
the vectors kp, kq are determined up to a common, strictly positive, factor completely irrelevant in our
discussion.) Since the singular support of a distribution of D′(N×N) is the projection onN×N the of the

wavefront set of the distribution, we must conclude that, in view of (49), (p, q) 6∈ sing supp(λ
(N)
M ). How-

ever, as p ∼ q, (p, q) must belong to sing suppEN (this is because EN is the difference of the advanced and
the retarded fundamentals solutions whose known wavefronts and causal properties of supports [Ra96a]
entails that sing supp(EN ) is made exactly by the pairs (p, q) ∈ N ×N with p ∼ q). Since (Com) holds

true, we conclude that (q, p) ∈ sing supp(λ
(N)
M ), and thus there are kp ∈ T ∗

pN and kq ∈ T ∗
qN such that

((q, kq), (p,−kp)) ∈ WF (λ
(N)
M ), and so, via proposition 4.3, kp and kq are vectors cotangent to the null

geodesic joining p and q (the same as before since it is unique) and, finally, kq B 0.

The distribution λ
(N)
M satisfies Klein-Gordon equation in both arguments (in other words (KG) holds),

therefore the propagation of singularities theorem [Hör71] (see discussion after Theorem 4.6 in [Ra96a])

implies that the wavefront set of λ
(N)
M is the union of sets of the form B(x, kx) × B(y, ky). Here B(z, h)

is the unique null complete geodesic (viewed as a curve in T ∗N) passing through z ∈ N with co-tangent

vector h ∈ T ∗
xN . As ((q, kq), (p,−kp)) ∈ WF (λ

(N)
M ) and since q and p belong to the same null geodesic,

we are committed to conclude that ((p, k′p), (q,−k′q)) ∈WF (λ
(N)
M ) where the cotangent vector k′p has the

same time orientation as kq , so that k′p B 0, and the vector k′q is cotangent to the geodesic at q. In other

words, changing the used names for cotangent vectors: ((p, kp), (q,−kq)) ∈ WF (λ
(N)
M ) where kp B 0.

This is in contradiction with our initial claim. 2

We are now in place to take advantage of Radzikowski’s results illustrated in Section 4.1. Since λ
(N)
M

determines a quasifree state for the Klein-Gordon field confined to the globally hyperbolic subspace N ,

the result established in (50) entails that λ
(N)
M is Hadamard on N in view of Proposition 4.1. Therefore

it verifies the local Hadamard condition (LH) in a neighborhood of every point p ∈ N . Since the sets N

form a base of the topology of M and the Schwartz kernel of λ
(N)
M is nothing but the restriction of the

kernel of λM to N , we conclude that the Schwartz kernel of λM satisfies (LH) in a neighborhood of every
point p of M . Due to Proposition 4.2, we can conclude that λM is Hadamard on M . 2

5 Final Comments: summary and open issues.

Let us summarize the main results achieved in this work. We started from the unique, positive energy,
BMS-invariant, quasifree, pure state λ acting on a natural Weyl algebra defined on =+. That state is
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completely defined using the universal structure of the class of (vacuum) asymptotic flat spacetimes at
null infinity, no reference to any particular spacetime is necessary. In this sense λ is universal. It is the
vacuum state for a representation of BMS group with vanishing BMS mass. Afterwords, we have seen
that λ induces in any fixed (globally hyperbolic) bulk spacetime M , a preferred state λM . This happens
if M admits future infinity i+ (and the unphysical spacetime M̃ is globally hyperbolic as well). The
induction of a state takes place by means of an injective isometric ∗ homomorphism ı : W(M) → W(=+)
which identifies Weyl observables of the bulk with some Weyl observables of the boundary =+.

λM (a) := λ(ı(a)) for all a ∈ W(M) .

Using a very inflated term, we may say that this is a holographic correspondence.
The picked out state λM enjoys quite natural, as well as interesting, properties. These properties (barring
the first one) have been established in this paper:

(i) λM coincides with Minkowski vacuum when M is Minkowski spacetime,
(ii) λM is invariant under every isometry of M (if any);
(iii) λM fulfills the requirement of energy positivity with respect to every timelike Killing field in

M and, in the one-particle space, there are no zero modes for the self-adjoint generator of Killing-time
displacements,

(iv) λM is Hadamard and therefore the state may be used as background for perturbative procedures
(renormalization in particular).
The statement (ii) holds as it stands replacing λM with any other state λ′M uniquely defined by assuming
that λ′M (a) := λ′(ı(a)) for all a ∈ W(M) provided that λ′ be a BMS-invariant state (not necessarily
quasifree or pure or satisfying some positivity-energy condition) defined on W(=+).
The state λM may have the natural interpretation of outgoing scattering vacuum, but also it provides a
natural and preferred notion of massless particle in the absence of Poincaré symmetry. Indeed, all the
construction works for massless conformally coupled scalar fields propagating in M . Notice that the two
notions of mass arising in our picture, that in the bulk based on properties of Klein-Gordon operator
(and on Wigner analysis if M is Minkowski spacetime) and that referred to the extent on =+ relying
upon Mackey-McCarthy analysis of BMS group unitary representations, are in perfect agreement: both
vanishes. A natural question which deserves future investigation is now: what about massive fields? How
to connect, if possible, massive particle defined in M to fields on =+ associated with known unitary BMS
representations with positive BMS mass?

Acknowledgments. I would like to give a special thank to R. M. Wald for an important technical
suggestions (see footnote in the proof of Lemma B.2). I am grateful to A. Ashtekar for comments and
suggestions after the appearance of [Mo06]. I am grateful to R. Brunetti for usefull comments.

A Asymptotically flat spacetime with future time infinity

Definition A.1. A time-oriented four-dimensional smooth spacetime (M, g) is called asymptotically
flat vacuum spacetime with future time infinity i+, if there is a smooth spacetime (M̃, g̃) with
a preferred point i+, a diffeomorphism ψ : M → ψ(M) ⊂ M̃ and a map Ω : ψ(M) → [0,+∞) so that
g̃ = Ω2ψ∗g and the following facts hold. (We omit to write explicitly ψ and ψ∗ in the following).
(1) J−(i+; M̃) is closed and M = J−(i+) \ ∂J−(i+; M̃). (Thus M = I−(i+; M̃), i+ is in the future of
and time-like related with all the points of M and =+ ∩ J−(M ; M̃) = ∅.) Moreover ∂M = =+ ∪ {i+}
where =+ := ∂J−(i+; M̃) \ {i+} is the future null infinity.
(2) M is strongly causal and satisfies vacuum Einstein solutions in a neighborhood of =+ at least.
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(3) Ω can be extended to a smooth function on M̃ .
(4) Ω�∂J−(i+;M̃)= 0, but dΩ(x) 6= 0 for x ∈ =+, and dΩ(i+) = 0, but ∇̃µ∇̃νΩ(i+) = −2g̃µν(i

+).

(5) If nµ := g̃µν∇̃νΩ, for a strictly positive smooth function ω, defined in a neighborhood of =+ and
satisfying ∇̃µ(ω

4nµ) = 0 on =+, the integral curves of ω−1n are complete on =+.

Remark A.1. Notice that ω in (5) can be fixed to be the factor ωB mentioned in Section 1.2.

B Proofs of some technical propositions.

Proof of (c) in Proposition 3.1. Consider a one-parameter subgroup of GBMS , {gt}t∈R ⊂ Σ. Suppose
that {gt}t∈R arises from the integral curves of a complete smooth vector ξ̃ tangent to =+. In every Bondi
frame (u, ζ, ζ) one finds: gt : R × S2 3 (u, ζ, ζ) 7→

(
u+ ft(ζ, ζ), ζ, ζ

)
, where, due to smoothness of ξ̃

and because of standard theorems of dynamical system theory, the function (t, u, ζ, ζ) 7→ u + ft(ζ, ζ)
is jointly smooth. In particular f is jointly smooth and thus continuous in the parameter t, satisfies
ft ∈ C∞(S2) ≡ Σ and verifies ft(ζ, ζ)+ ft′(ζ, ζ) = ft+t′(ζ, ζ) for all t, t′ ∈ R and (ζ, ζ) ∈ S2. The relation
above entails f p

q
t(ζ, ζ) = p

q ft(ζ, ζ) for all t ∈ R, p, q ∈ Z, q 6= 0 and (ζ, ζ) ∈ S2. Using continuity in t

one finally gets: aft(ζ, ζ) + bft′(ζ, ζ) = fat+bt′(ζ, ζ) for all t, t′ ∈ R, a, b ∈ R and (ζ, ζ) ∈ S2. Therefore it
holds: ft(ζ, ζ) = tf1(ζ, ζ) . We conclude that if the one-parameter sub-group {gt}t∈R ⊂ Σ ⊂ GBMS arises
from the complete integral curves of a smooth vector ξ̃ tangent to =+, in any fixed Bondy frame:

gt : R × S
2 3 (u, ζ, ζ) 7→

(
u+ tf1(ζ, ζ), ζ, ζ

)
,

where the function f1 ∈ C∞(S2) ≡ Σ individuates completely the subgroup. 2

Proof of Proposition 3.3. (a) is an immediate consequence of (a) of proposition 3.1 and the definition
of asymptotic symmetry. (b) Since the extension of ξ to =+, ξ̃, has to be tangent to =+, referring to a
fixed Bondi frame, it must hold

ξ̃ = α∂/∂u+ β∂/∂ζ + β∂/∂ζ .

Since the angular part of the degenerate metric on =+ is positive, whereas that on the space spanned
by ∂/∂u (which is orthogonal to the angular part) vanishes, one has g̃(ξ̃, ξ̃) ≥ 0 – with g̃(ξ̃, ξ̃) = 0 if
and only if β = β = 0. On the other hand we know that g(ξ, ξ) ≤ 0 in M by hypotheses and thus
g̃(ξ, ξ) ≤ 0 as well. Hence approaching =+, by continuity, it must be g̃(ξ̃, ξ̃) = 0. We have found that:
ξ̃(u, ζ, ζ) = α(u, ζ, ζ)∂/∂u. The (generally local) one-parameter group of transformations gt obtained by
integration of ξ̃ acts only on the variable u: u 7→ ut and so it has to hold

dut(u, ζ, ζ)

dt
|t=0 = α(u, ζ, ζ) . (51)

On the other hand this one-parameter group must coincide with a suitable one-parameter subgroup of
BMS group because ξ̃ is a one-parameter generator of such an action by (a) in proposition 3.1. By
comparison with the action (2)-(3) of BMS group on coordinates (u, ζ, ζ), noticing that the subgroup
leaves fixed the angular coordinates, the only possible action is ut = u+ f(t, ζ, ζ) for some smooth class
of functions {f(t, ·, ·)}t∈R ⊂ C∞(S2). Therefore

dut(u, ζ, ζ)

dt
|t=0 =

∂f(t, ζ, ζ)

∂t
|t=0 .
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Comparing with (51) we conclude that α cannot depend on u. (b) in proposition 3.1 also entails that α
cannot vanish identically on =+. In other words, ξ̃ is a generator of a nontrivial subgroup of Σ. Next,
by (b) in proposition 3.1 we conclude that ξ̃ is a generator of a nontrivial subgroup of T 4. That is
equivalent to say that α ∈ T 4 \ {0}. To conclude, as a consequence of by (c) of proposition 3.2, it is
sufficient to prove that α cannot attain both signs. Since ξ is future directed with respect to g and g̃,
the limit values of ξ toward =+, α∂/∂u must either vanish or be future directed. Since ∂/∂u is future
directed with respect to g̃ too, the factor given by the smooth function α cannot be negative anywhere. 2

Proof of Proposition 3.4. In this proof ΩB := ωBΩ. Consider a smooth vector field v defined on M̃
which reduces to ξ in M and reduces to ξ̃ on =+. By construction the jointly smooth one-parameter
subgroup generated by v reduces to those generated by the relevant restrictions. The orbits of v in
M ∪ =+ are complete by hypotheses. Indeed, if an orbit starts in M it remains in M and it is complete
by hypotheses, if it starts on =+ it must remain in =+ and must be complete anyway, since ξ̃ generates
a (complete) one-parameter subgroup of GBMS . This fact entails, in turn, that the one-parameter group
of diffeomorphisms generated by v in M ∪=+ is global and thus its pull-back action on functions defined
over M ∪ =+ is well defined. If y ∈ =+ and x ∈ M one has, by continuity of the flux of v:

lim
x→y

g(ξ)
τ (x) = lim

x→y
g(v)
τ (x) = g(v)

τ (y) = g(ξ̃)
τ (y) .

In the proof of Proposition 2.7 in [DMP06] (within a more generalized context) we have found that,

referring to a Bondi-frame where g
(ξ̃)
τ =

(
Λ

(ξ̃)
τ , f

(ξ̃)
τ

)
and y ≡ (u, ζ, ζ),

lim
x→(u,ζ,ζ)

ΩB

(
g
(ξ)
−t (x)

)

ΩB(x)
= K

Λ
(ξ̃)
−t

(
g
(ξ̃)
−t (u, ζ, ζ)

)−1

.

Therefore one has trivially that Γ(φ ◦ g(ξ)
−t )(y) coincides with

lim
x→y

φ
(
g
(ξ)
−t (x)

)

ΩB(x)
= lim

x→y

φ
(
g
(ξ)
−t (x)

)

ΩB

(
g
(ξ)
−t (x)

) lim
x→y

ΩB

(
g
(ξ)
−t (x)

)

ΩB(x)
= K

Λ
(ξ̃)
−t

(
g
(ξ̃)
−t (u, ζ, ζ)

)−1

ψ
(
g
(ξ̃)
−t (y)

)
.

Comparing with defined in (7), we have finally established that:

Γ(φ ◦ g(ξ)
−t ) = A

g
(ξ̃)
t

(ψ) .

This concludes the proof. 2

Proof of Theorem 4.1. (a) and (b) the statements can be proved with the same procedure used in
Rm in Theorem IX.1 in [RS75] with trivial changes, passing ζ, ζ-derivatives under the relevant symbols
of integration in dk and du since it is allowed by compactness of S2 and fast ζ, ζ-uniform decaying for
large |u|. (30) is a trivial consequence of the analogous statement in R

1 noticing that if f ∈ S (R × S
2)

then, form fixed ζ, ζ , the restriction u 7→ f(u, ζ, ζ) is a function of S (R). Hence (31) follows from (30)
via Fubini-Tonelli theorem using the ζ, ζ-uniform decaying for large u of the integrands in both sides of
(30) and the fact that S

2 has finite measure. (d) has the same proof as the analog in R
n in Theorem

IX.2 [RS75]. (e) Has the same proof as in the Rn case (Theorem IX.6 in [RS75]) noticing that (31)
holds true and that S (=+) is dense in the Hilbert space L2(R × S2, du ∧ εS2(ζ, ζ)). The identity (32)
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in (f) is trivially fulfilled for ψ ∈ S (R × S2) by construction. Moreover, by Plancherel theorem on R, if
ψ ∈ L2(R× S2, du∧ εS2(ζ, ζ)) (so that its restrictions at ζ, ζ fixed belongs to L2(R, du) by Fubini-Tonelli
theorem), one has ∫

R

|F̃±[ψ(·, ζ, ζ)](k)|2dk =

∫

R

|ψ(u, ζ, ζ)|2du

almost everywhere in ζ, ζ . By Fubini-Tonelli theorem the right-hand side, and thus also the left-hand
side is ζ, ζ integrable. By Fubini-Tonelli theorem one finally has that the integrands are u, ζ, ζ jointly
integrable so that:

∫

R×S2

|F̃±(ψ(·, ζ, ζ))(k)|2dk ∧ εS2(ζ, ζ) =

∫

R×S2

|ψ(u, ζ, ζ)|2du ∧ εS2(ζ, ζ) .

We conclude that the map that associates every ψ ∈ L2(R × S2, du ∧ εS2(ζ, ζ)) with the function (in the
same space) (k, ζ, ζ) 7→ F̃±(ψ(·, ζ, ζ))(k) is continuous and isometric and coincides with F± in the dense
subspace S (R× S2), therefore it must coincide with F± extended to L2(R× S2, du∧ εS2(ζ, ζ)). In other
words (32) holds true. Now (33) can be re-written replacing F± by F̃± and in this form is nothing but
Plancherel theorem on the real line. The proof of (g) is immediate from (d) and (e). 2

Proof of Lemma 4.1. (a) Using the definition of ΓM (see Proposition 2.1) and the fact that E maps
compactly-supported smooth functions to smooth solutions of Klein-Gordon equation with compactly-
supported Cauchy data, it arises:

ψh(u, ζ, ζ) = ωB(u, ζ, ζ)−1

(
lim
→=+

Ω−1E(h)

)
�+
= (u, ζ, ζ) . (52)

On the other hand since also (M̃, g̃) is globally hyperbolic, the causal propagator Ẽ for the massless
conformally coupled Klein-Gordon operator P̃ in (M̃, g̃) is well defined. Using the following facts: (1)
that E and Ẽ are the difference of the advanced and retarded fundamental solutions in the corresponding
spaces (M, g) and (M̃, g̃ = Ω2g), and (2) that the following identity holds

P̃ (Ω−1φ) = Ω−3Pφ

and (3) that the causality relations are preserved under (positive) rescaling of the metric, one achieves
the following identity valid on M

Ω−1E(h) = Ẽ(Ω−3h) , if h ∈ C∞
0 (M) .

The right-hand side is anyhow smoothly defined also in the larger manifold M̃ and on =+ in particular.
Therefore, exploiting Eq. (52), the expression of ψh(u, ζ, ζ) found above can be re-written into a more
suitable form given by (35). The singularity of Ω−3 on =+ is harmless because the support of h does not
intersect =+ by construction and Ω > 0 in M . Notice that supp (Ω−3h) = supp h if h ∈ C∞

0 (M).
(b) To prove the thesis take h ∈ C∞

0 (M) and a compact K ⊂ M with supp h ⊂ K. We use Definition
A.1 from now on. By definition Ẽ(Ω−3h) (equivalently Ẽ(h) since supp (Ω−3h) = supp h) is supported
in J+(supp h; M̃) ∪ J−(supp h; M̃) and thus in J+(K; M̃) ∪ J−(K; M̃). However J−(K; M̃) has no
intersection with =+ since K ⊂ I−(i+; M̃) and =+ ⊂ ∂J−(i+; M̃), we conclude that the support of the
solution Ẽ(Ω−3h) intersects =+ in a set completely included in J+(K; M̃) and thus in =+ ∩ J+(K; M̃).
As a consequence

the support of ψh = ωB(u, ζ, ζ)−1Ẽ(Ω−3h)�+
= is included in =+ ∩ J+(K; M̃). (53)
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Now consider a spacelike Cauchy surface S of (M̃, g̃) with K completely contained in the chronological
future of S (such a Cauchy surface does exists due to global hyperbolicity of (M̃, g̃) and because K is
compact, it is sufficient to use any Cauchy foliation of R × S ≡ M̃ taking the value of the smooth global
time function t ∈ R far enough in the past). By standard properties of causal sets (e.g. see [Wa84]) it arises
that J+(K; M̃) ⊂ I+(S; M̃) ⊂ J+(S, M̃). Notice that the set C := S ∩ (=+ ∪ {i+}) = S ∩ ∂J−(i+; M̃) is
compact because it is a closed subset of J−(i+; M̃)∩ J+(S; M̃) which is compact since (M̃, g̃) is globally
hyperbolic (e.g. see [Wa84]). C cannot contain i+ because i+ ∈ I+(K; M̃), K ⊂ I+(S, M̃) and S is
achronal. Let u0 = minC u, which is finite because the coordinate u : =+ → R is smooth and C ⊂ =+ is
compact. By construction, and since u increases towards the future, we have

u(=+ ∩ J+(supp h; M̃)) ⊂ [u0,+∞) . (54)

Therefore, by (53), we have that ψh vanishes for u < u0 due to (54). 2

Proof of Proposition 4.3. Consider fixed Bondi frame (u, ζ, ζ) on =+ ≡ R × S2 and suppose that =+

is equipped with the measure du ∧ εS2 , εS2 being the standard volume form of the unit 2-sphere referred
to the coordinates (θ, ϕ) with ζ = eiϕ cot(θ/2). In the following we view the measure du ∧ εS2 as that
induced by the Riemannian metric given by gS2 ⊕ gR, gS2 being the standard Riemannian metric on the
unit 2-sphere and gR represented in coordinates (θ, ϕ) the usual Riemannian metric on R referred to the
coordinate u. In this way we can exploit the definition of distribution on manifolds equipped with a
nondegenerate metric as working on scalar fields. As stressed above this choice is matter of convention.
One may fix a different nonsingular smooth metric or define distributions as operating on scalar densities
(see discussion on [Hö89]) and it does not affect the wavefront sets. It is because different choices change
distributions by smooth nonvanishing factors and directly from the definition of wavefront set, on a given
smooth manifold M , WF(au) ⊂ WF(u) if u ∈ D ′(M) and a ∈ C∞(M) (notice that 1/a is smooth as well
in the considered case, a being nonvanishing.

The proof of Proposition 4.3 relies upon the following preliminary pair of results.

Lemma B.1. Consider the distribution T ∈ D ′(=+ ×=+) defined as

T = F ⊗D with F (u, u′) :=
1

(u− u′ − i0+)2
and D(ω, ω′) := δ(ω, ω′). , (55)

where u ∈ R with covectors k ∈ T ∗
uR, ω is a point on S2 with covectors k ∈ T ∗

ωS2 and similar notations
are valid for primed variables. With those hypotheses it holds

WF(T ) = A ∪ B (56)

where

A :=
{
((u, ω, k,k), (u′, ω′, k′,k′)) ∈ T ∗=+\ 0 × T ∗=+\ 0

∣∣ u = u′, ω = ω′, 0 < k = −k′,k = −k′
}

B :=
{
((u, ω, k,k), (u′, ω′, k′,k′)) ∈ T ∗=+\ 0 × T ∗=+\ 0

∣∣ ω = ω′, k = k′ = 0,k = −k′
}
.

Proof. It is is a straightforward consequence of the discussion after Theorem 8.2.14 in [Hö89] and the
known wavefront sets of the delta distribution and 1/(k ± i0+) (e.g. see [RS75]). 2
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Lemma B.2. Assume that the spacetime (M, g) is an asymptotically flat vacuum spacetime with future
time infinity i+ (Definition A.1) and that both (M, g) and the unphysical spacetime (M̃, g̃) are globally
hyperbolic. Consider a Bondi frame u, ζ, ζ on =+.
If N ⊂M is a standard domain, all the null geodesics (of (M̃, g̃)) joining points of N and points of =+

intersect =+ in a set contained in the compact [u0, uf ] × S2 for suitable u0, uf ∈ R.
u0 can be taken as the value u0 determined in (b) of Lemma 4.1 for K := N .

Proof. We use here the geometric structure defined in Definition A.1. The fact that all the null geodesics
joining points of N and points of =+ intersect =+ in a set contained in a set of the shape [u0,+∞)× S2,
with a suitable u0 ∈ R, is straightforward since the pairs of points on each of the considered geodesics are
contained in the (singular) support of the causal propagator Ẽ (viewed as distribution on C∞

0 (M×M) due
to Schwartz kernel theorem) when it is restricted to N in the right argument. In fact, defining K := N ,
we know that the support of the kernel of Ẽ �C∞

0 (N) is included in the set (J+(K; M̃)∪ J−(K; M̃))×K.

Therefore the considered geodesics meet =+ in a subset of J+(K; M̃)∩=+ (it being J−(K; M̃)∩=+ = ∅).
We know by the proof of (b) in Lemma 4.1 that J+(K; M̃) ∩ =+ is contained in a set of the form
(−∞, u′0] × S2. Therefore we may fix the claimed value u0 as the very value u′0.
Let us prove the existence of uf . First of all we notice that the following holds:

(A) If p ∈M , there is no null geodesic (with respect to (M̃, g̃)) joining p and i+.
Indeed, suppose there is such a geodesic γ for some p ∈M . As is known from the general theory of causal
sets in globally hyperbolic spacetimes and the structure of the boundary of J±(x) (e.g [Wa84]), after
starting from i+, γ must belong to ∂J−(i+; M̃) \ {i+} = =+ till it encounters its cut locus c ∈ =+ where
∂J−(i+; M̃) terminates along the direction of γ. We conclude, in particular, that c is the end point on =+

of one of the null geodesics forming ∂J−(i+; M̃). Afterwords γ leaves ∂J−(i+; M̃), entersM and reaches p.
In the portion of its trip which lies on =+, with a corresponding subset of the domain for its affine param-
eter t ∈ (0, b], one has Ω(γ(t)) = 0 for definition of =+. Therefore γ̇µ(t)∇µΩ(γ(t)) = γ̇µ(t)nµ(γ(t)) = 0.
Finally, since γ̇ is null as n (and both do not vanish anywhere), it has to be γ̇(t) = f(t)n(γ(t)) for
some non vanishing smooth function f . In other words, the portion of γ contained in =+ is, up to a
re-parametrization, an integral line of n. Therefore c is the (past) end point on =+ of one of the integral
lines of n forming =+. This is in contradiction with the requirement (5) in Definition A.1 which implies
that the integral lines of n cannot have endpoints on =+.
We pass to conclude the proof of existence of uf . Suppose per absurdum that, for the compact set
K := N ⊂ M , uf does not exist, so that the null geodesics starting from K can intersect =+ arbitrarily
close to i+. In this case we can consider a sequence {γn} of null geodesics through K which intersect =+

in the corresponding points pn → i+ as n→ +∞. However the following statement9 holds:
(B) The existence of the mentioned geodesics {γn} implies that there is a null geodesic γ from K ⊂ M
to i+.
Statement (B) is in contradiction with the statement (A), hence there is no sequence {γn} with the
claimed properties and thus uf must exist.
To demonstrate the statement (B) consider the sequence {γn} where the geodesics are extended maxi-
mally after i+ and before K. Choose a (M̃, g̃) spacelike Cauchy surface C through i+, and normalize
the null-geodesic tangents so that they have unit inner product with the normal to C. Let xn denote
the intersection point of the null geodesic with C and and let kn denote the normalized tangent at xn.
Then {(xn, kn)} is a sequence in a compact subset of the tangent bundle, so there is a subsequence that
converges to a point (x, k). Clearly x = i+. Let γ be the maximally extended null geodesic individuated
by (p, k) and we assume that all the used geodesics start from C with the value of the affine parameter

9The kind of argument to prove the statement (B) was suggested to the author by R. M. Wald.
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s0 = 0. Moreover, since M̃ is globally hyperbolic, rescaling the metric g̃ with a strictly positive smooth
factor, we can make complete every null geodesic (Theorem 6.5 in [BGP96]), without affecting the causal
structure of M̃ . In this way we ignore problems of domains of the parameters of the geodesics. Let C ′

be a second Cauchy surface in the past of K. Since γ is causal, one has γ(s1) ∈ C ′ for some s > 0.
Consider an auxiliary Riemannian smooth metric defined on M̃ and denote by d the distance associated
with that metric – whose metric balls, as is known, form a base of the pre-existent topology of M̃ –. Using
the jointly continuous dependence of maximal solutions of differential equations (in this case on T M̃)
from the parameter describing the curves and the initial data, and exploiting the fact that continuous
functions defined on a compact set are uniformly continuous, we gets easily the following statement: For
every ε > 0, there is a natural Nε with d(γ(s), γn(s)) < ε for all s ∈ [0, s1] if n > Nε. It is clear that,
in this way, if γ does not intersect K, one can fix ε in order that no γn meets K if n > Nε. This is in
contradiction with the hypotheses on the curves γn. 2

Let us pass to the main statement of Proposition 4.3. Fix the standard domain N ⊂M and notice that,
from (34), λ(N)(f, g), for f, g ∈ C∞

0 (N) can be written as

λ
(N)
M (f, g) = − 1

π

∫

R2×S2

Ẽ(Ω−3f)(u, ζ, ζ)Ẽ(Ω−3g)(u′, ζ, ζ)

ωB(u, ζ, ζ)ωB(u′, ζ ′, ζ) (u− u′ − i0+)
2 du ∧ du′ ∧ εS2(ζ, ζ) , (57)

We want to rearrange (57) into a more useful expression. To this end, consider two Cauchy surfaces: S1

in the past of N such that, considering the compact set S1 ∩ =+, maxS1∩=+ u ≤ u0, S2 in the future of
N but in the past of i+ and such that, considering the compact set S2 ∩ =+, it holds minS1∩=+ u ≥ u1.
u0 and uf are those individuated in Lemma B.2 for the fixed standard domain N . By construction
no future-directed null geodesics starting from N can meet S1 and S2. Let H the compact region in
J−(i+; M̃) bounded by S1 in the past and by S2 in the future and let χ ∈ C∞

0 (M̃) with 1 ≥ χ ≥ 0 and
χ(p) = 1 in a neighborhood of H . Finally define χ′ := 1 − χ. If Ẽ(x, y) is the Schwartz kernel of Ẽ,
decompose Ẽ as

Ẽ(x, y) = χ(x)Ẽ(x, y) + χ′(x)Ẽ(x, y) . (58)

By construction χ(x)E(x, y) has a nonempty singular support, whereas χ′(x)Ẽ(x, y) is a smooth kernel
when y ∈ N and x ∈ J+(N). Therefore χ′Ẽ can be restricted to =+ × N without problems and it
determines a smooth function. Let us consider the same issue for χẼ. χẼ can in fact be restricted to
=+×N producing distribution of D′(=+×N). To show it with a judicious choice of Ω, define a coordinate
system about =+ given by coordinates Ω, u, ζ, ζ [Wa84]. In these coordinates, exactly for Ω = 0, i.e. on
=+, the metric of M̃ reads

−dΩ ⊗ du− du⊗ dΩ + dΣS2(ζ, ζ) , (59)

dΣS2(ζ, ζ) being the standard metric on a 2-sphere. Let j : =+ ×N → M̃ × M̃ be the immersion map of
=+ ×N in M̃ × M̃ . It reads simply j : (Ω, u, ζ, ζ, y) 7→ (0, u, ζ, ζ, y) about =+ and for y ∈ N . Therefore,
the set of normals of the map j in the sense of Theorem 8.2.4 in [Hö89]) is (using notations as in Lemma
B.1)

Nj = {((x, kx), (y, ky)) ∈ T ∗M × T ∗M | (y, ky) ∈ T ∗N , x ∈ =+ , kx = (kx)ΩdΩ , (kx)Ω ∈ R} .

On the other hand [Ra96a]:

WF (Ẽ) = {((x, kx), (y,−ky)) ∈ T ∗M\ 0 × T ∗M\ 0 | (x, kx) ∼ (y, ky)} . (60)
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The condition that kx ∈ T ∗M for x ∈ =+ is null and not tangent to =+ – because y ∈ N ⊂ M and
there are no null geodesics tangent to =+ and connecting =+ (and thus i+) with a point in M for
proposition (A) in the proof of Lemma B.2 – implies that the component (kx)u of kx cannot vanishing
in coordinates (Ω, u, ζ, ζ). The proof is immediate by the expression of the metric on =+ given above.
Therefore Nj ∩WF (Ẽ) = ∅ and Ẽ can be restricted to =+ × N as stated in Theorem 8.2.4 in [Hö89].

The same theorem states that WF (Ẽ �=+×N ) is made of the pairs ((x, kx), (y,−ky)) ∈ T ∗=+\0×T ∗N\0
such that (kx, ky) = tj′(x, y)(hx, hy) and (x, hx) ∼ (y, hy). Using once again the form of the metric (59),
and the fact that hx is null, one sees that it must be kx = (kx)udu the remaining components being zero,
whereas there is no restriction on the covector ky = hy. The presence of the smooth factor χ does not

affect the result by the very definition of wavefront set, so that χẼ can be restricted to =+ ×N and

WF (χE|=+×N ) ⊂
{
((x, kx), (y,−ky)) ∈ T ∗=+\ 0 × T ∗N\ 0 | (x, k̂x) ∼ (y, ky) , (kx)u 6= 0

}
, (61)

where, referring to the basis dΩx, dux, dζx, dζx of T ∗
xM̃ and dux, dζx, dζx of T ∗

x=+, the covector k̂x ∈ T ∗
xM̃

is that uniquely determined by kx ∈ T ∗
x=+ \ {0} and the condition g̃(k̂x, k̂x) = 0. k̂x is in fact the generic

tangent vector in x of a null geodesic starting in N and reaching =+ in x.
Let us came back to (57), it is convenient to introduce the distributions E ∈ D′(=+ × N) and E ∈
D′(=+ ×N) ∩ C∞(=+ ×N) individuated via Schwartz kernel theorem by

E(f)(u, ζ, ζ) := ωB(u, ζ, ζ)−1χẼ�=+×N (Ω−3f)(u, ζ, ζ) , for f ∈ C∞
0 (N) , (62)

E(f)(u, ζ, ζ) := ωB(u, ζ, ζ)−1χ′Ẽ�=+×N (Ω−3f)(u, ζ, ζ) , for f ∈ C∞
0 (N). (63)

The wavefront set of E is obviously empty, whereas as ω−1
B and Ω−3 are smooth, from (61), we get again

WF (E) ⊂
{
((x, kx), (y,−ky)) ∈ T ∗=+\ 0 × T ∗N\ 0 | (x, k̂x) ∼ (y, ky) , (kx)u 6= 0

}
. (64)

Indicating by ω the angular coordinates ζ, ζ on =+, and with dudω the measure on =+, du∧ εS2(ζ, ζ) one
has, for h ∈ C∞

0 (N),

λ
(N)
M (f, g) = − 1

π

∫

R2×S2

E(f)(u, ω)E(g)(u′, ω)

(u− u′ − i0+)
2 dudωdu′ − 1

π

∫

R2×S2

E(f)(u, ω)E(g)(u′, ω)

(u− u′ − i0+)
2 dudωdu′

− 1

π

∫

R2×S2

E(f)(u, ω)E(g)(u′, ω)

(u− u′ − i0+)
2 dudωdu′ − 1

π

∫

R2×S2

E(f)(u, ω)E(g)(u′, ω)

(u− u′ − i0+)
2 dudωdu′ . (65)

Let us focus on the first term in the right-hand side of (65). First of all we notice that it is possi-
ble to replace, without affecting the final result, the kernel (u − u′ − iε)−2 with the compactly sup-
ported kernel χ̃(u, , u′) (u − u′ − iε)−2 where χ̃ ∈ C∞

0 (R2) attains the value constant 1 on the compact
[minS1∩=+ u,maxS2∩=+ u] × [minS1∩=+ u,maxS2∩=+ u]. The first term in the right-hand side of (65) can
be re-written, formally speaking and barring the factor −1/π as

〈∫

R×R×S2×S2

dudu′dωdω′ χ̃(u, u′)δ(ω, ω′)

(u− u′ − i0+)2
E(·)(u, ω)E(·)(u′, ω′) , f ⊗ g

〉

The (bi)linear functional in the left entry looks like a distribution of D′(N ×N) obtained by the action
of the Schwartz kernel E ⊗ E ∈ D′(=+ ×N ×=+ ×N) on the distribution χ̃T :

∆1(x, x
′) :=

∫

R×R×S2×S2

dudu′dωdω′ (χ̃T )(u, u′, ω, ω′)(E ⊗ E)(u, u′, ω, ω′, x, x′) , (66)
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where T ∈ D′(=+ ×=+) has been introduced in Lemma B.1.
By Theorem 8.2.13 in [Hö89], such an interpretation makes rigorous sense and ∆1 exists as an element
of D′(N ×N) provided that (a) χ̃T has compact support – and this is assured by the introduction of the
function χ̃ which in turn may exist due to Lemma B.2 – and (b):

WF ′(E ⊗ E)=+×=+

⋂
WF (χ̃T ) = ∅ (67)

where, if K ∈ D′(X × Y ),

WF ′(K)X := {(x, ky) | ((x,−kx), (y, 0)) ∈WF (K) for some x ∈ X} .

Notice that differently from the case examined in Theorem 8.2.13 in [Hö89], in our case the kernel
K := E ⊗ E acts on the compact support function u := χ̃T via the left entry rather than the right one.
However the prof for this case is the same as that considered in the mentioned theorem with very trivial
adaptations.
Let us prove that this condition (67) is fulfilled in our case. By Theorem 8.2.9 in [Hö89] we know that

WF (E ⊗ E) ⊂ (WF (E) ⊗WF (E))
⋃

((supp E × {0})×WF (E))

⋃
(WF (E) × (supp E × {0})) . (68)

Since there are no null geodesics with vanishing tangent vector in y ∈ N joining x ∈ =+, WF ′(E ⊗
E)=+×=+ = ∅ and so (67) turns out to be fulfilled.
Finally Theorem 8.2.13 in [Hö89] gives an inclusion of WF (∆1) with ∆1 defined in (66), establishing
that:

WF (∆1) ⊂ {((x, kx), (x′, k′x)) | ((x, kx), (u, ω,−ku,−k), (x′, k′x), (u
′, ω′,−k′u,−k′)) ∈WF (E ⊗ E) ,

for some (u, ω, ku,k), (u′, ω′, k′u,k
′) ∈ WF (χ̃T )}

⋃
WF (E ⊗ E)N×N . (69)

Similarly to WF ′(E⊗E)=+×=+ one finds (with the same argument) WF ′(E⊗E)N×N = ∅. Whereas the
remaining part in the right hand side of (69), taking into account the inclusions (68), WF (χ̃T ) ⊂WF (T )
and (64), exploiting (56), produces straightforwardly the final result:

WF (∆1) is contained in the set G of pairs ((x, kx), (x
′,−k′x)) ∈ T ∗N \ 0× T ∗N \ 0 such that:

(a) (x, kx) and (x′, k′x) are points and associated cotangent vectors of the same maximal null geodesic
which reaches =+ in some point p, and

(b) kx is future directed.

(Since the coordinate u is future directed and (59) holds, kx is future directed if and only if, considering
the geodesic γ with initial conditions (x, kx) ∈ T ∗

xN , the opposite of the covector tangent to γ in the
point p where γ meets =+ has component (kp)u positive. This agrees with the condition k > 0 in the
definition of the wavefront set of the distribution T (56) concerning the subset A, the subset B gives no
contribution to G.)
Notice that, if (x, kx), (x

′, k′x) ∈ G, by construction it holds: (x, kx) ∼ (x′, k′x) with kx B 0. Conversely,
consider a pair (x, kx) ∼ (y, ky) with kx B 0. The maximal null geodesic passing through x and y
with respective cotangent vectors kx and ky must achieves =+ in some point: By known theorems the

complete null geodesic cannot remain confined in the compact J−(i+; M̃)∩D+(S) where S is a spacelike
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Cauchy surface of M̃ which intersects p or q and lies in the past of the other point, so it must get out
intersecting ∂(J−(i+; M̃) ∩D+(S)) in some point p. Since it cannot intersect twice S, the geodesic has
to meet ∂J−(i+; M̃) somewhere. The point i+ is forbidden as established in the proof of Lemma B.2.
We conclude that the geodesics must intercept some point of =+. We have found that if, for x, y ∈ N ,
(x, kx) ∼ (y, ky) with kx B 0, then it also holds (x, kx), (x

′, k′x) ∈ G. In other words, changing the names
of the points and covectors:

WF (∆1) ⊂ {((x, kx), (y,−ky)) ∈ T ∗N \ 0× T ∗N \ 0 | (x, kx) ∼ (y, ky) , kx B 0} . (70)

To go on, we remind the reader that E ∈ C∞(=+ ×N) by construction. Furthermore for E(u, ω, x) = 0
smoothly u < u0. Moreover by (63) recalling that χ′(x, y)Ẽ(x, y) has smooth kernel when y ∈ N and
x ∈ J+(N) so that it is smooth for x varying in a neighborhood of i+ when y ∈ N , we can control the
behaviour as u→ +∞ of ∂αxE(u, ω, x) and ∂αx ∂uE(u, ω, x) by Lemma 4.2 for every multi-index α and for
any fixed β ∈ [1, 2): ∂αxE(u, ω, x) and ∂αx ∂uE(u, ω, x) are bounded, respectively, by functions of the form
Mα(x)/|u−b| and Mαβ(x)/|u−b|β. The bounds Mα(x),Mαβ(x) can be made locally uniform in x taking
the sup in (44) over B ×B′, B′ being a relatively compact neighborhood of every fixed point x0 ∈ N .
By integration by parts, the last term in the right-hand side of (65) can be re-written (omitting a constant
overall factor):

lim
ε→0+

∫

R2×S2×N×N

du du′ dω dµg̃(x) dµg̃(x
′)
∂uE(u, ω, x)E(u′, ω, x′)

u− u′ − iε
f(x)g(x′) . (71)

The functional in (71) can be rearranged by using Fubini-Tonelli and Lebesgue’s dominate convergence
and computing the limit under the symbol of integration, obtaining that the last term in the right-hand
side of (65) is, in fact, up to an overall factor:

∫

N×N

K(x, x′)f(x)g(x′) dω dµg̃(x)

where the smooth kernel K(x, x′) reads:

iπ

∫

R×S2

du dω E(u, ω, x)∂uE(u, ω, x′) −
∫

R×R×S2

du du′ dω ρ(u− u′)
E(u′, ω, x′) − E(u, ω, x′)

u− u′
∂uE(u, ω, x)

−
∫

R×R×S2

du du′ dω ρ′(u− u′)
E(u′, ω, x′)

u− u′
∂uE(u, ω, x) ,

ρ′ := 1 − ρ and ρ ∈ C∞
0 (R) being any, arbitrarily fixed, function which attains the value 1 constantly in

a neighborhood of 0. Absolute convergence of the integrals and smoothness of K(x, x′) can be checked
by direct inspection taking derivatives under the symbol of integration by standard theorems based on
dominate convergence theorem together with the uniform bounds on the behaviour as u→ +∞ mentioned
above. We conclude that the last term in right-hand side of (65) gives no contribution to the wavefront

set of the two-point function of λ
(N)
M .

To conclude let us examine the third term in the right-hand side of (65), the second can be analyzed with
the same procedure obtaining the same result. As before this term can be re-arranged and the limit can
be explicitly computed obtaining that third term in the right-hand side of (65) equals (up to a constant
overall factor)

lim
ε→0+

∫

R2×S2×N

du du′ dω dµg̃(x
′)
∂uE(f)(u, ω) E(u′, ω, x′)

u− u′ − iε
g(x′) =

∫

N

dµg̃(x
′)H(f, x′)g(x′) ,
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with, for every fixed f ∈ C∞
0 (N), the smooth function H(f, x′) given by:

iπ

∫

R×S2×N

du dω E(u, ω, x′)∂uE(f)(u, ω) −
∫

R×R×S2

du du′ dω ρ(u− u′)
E(u′, ω, x′) − E(u, ω, x′)

u− u′
∂uE(f)(u, ω)

−
∫

R×R×S2

du du′ dω ρ′(u− u′)
E(u′, ω, x′)

u− u′
∂uE(f)(u, ω) .

As before, the function ρ ∈ C∞
0 (R) is any function with ρ = 1 in a neighborhood of 0. Each of the three

integrals in the expression of H have form, with a suitable S ∈ C∞(=+ ×N),

F (f)(x′) :=

∫

R×S2×N

du dω S(u, ω, x′)∂uE(f)(u, ω) .

At least formally, one may think of F : C∞
0 (N) → D′(N) as individuated by the Schwartz kernel F (x, x′)

composition of Schwartz kernels:

F (x, x′) =

∫

R×S2

du dω S(u, ω, x′)∂uE(u, ω, x) (72)

This interpretation makes rigorous sense in view of Theorem 8.2.14 of [Hö89] provided (a) the projection
supp(E) 3 (u, ω, x) 7→ x ∈ N is proper – and this can be straightforwardly verified true by the properties of
the support of E – and (b) WF ′(S)=+

(u′ ,ω′)

∩WF (∂uE)=+

(u′ ,ω′)

– and this is also true because WF ′(S)=+

(u′ ,ω′)

is empty since S is smooth whereas WF (∂uE)=+

(u′ ,ω′)

⊂WF (E)=+

(u′ ,ω′)

which is empty as can be found by

direct inspection using (64) (there are no null geodesics from N to =+ with zero tangent vector). The
inclusion given in Theorem 8.2.14 in [Hö89] states that WF (F ) is a subset of the union of the following
sets: (1) WF ′(S) ◦WF ′(∂uE), which is empty because WF ′(S) is empty, (2) WF (S)N ×N ×{0}, which
is empty due to the same reason, and (3) N ×{0}×WF ′(∂uE)N , which is empty because WF ′(∂uE)N ⊂
WF ′(E)N , and referring to (64), there are no null geodesics from N to =+ with zero tangent vector.
We conclude that the second and the third term in right-hand side of (65) give no contribution to the

wavefront set of the two-point function of λ
(N)
M . The only contribution comes from the first term and

thus (49) follows from (70) 2
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