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Abstract

A partial differential equation motivated by electromagnetic field equations
in ferromagnetic media is considered with a relaxed rate dependent constitutive
relation. It is shown that the solutions converge to the unique solution of the
limit parabolic problem with a rate independent Preisach hysteresis constitutive
operator as the relaxation parameter tends to zero.

Classification: 35K55, 47J40, 35B40.
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1 Introduction

The aim of this paper is to study the following system of partial differential equations

%(au—l—ﬁw)—&u:f

w:?(u—yaa—l:>

where € is an open bounded set of RY, N > 1, F is a continuous rate independent
invertible hysteresis operator, f is a given function, v, o« and ( are given positive
constants.

in Qx (0,T), (1.1)

This system can be obtained by coupling the Maxwell equations, the Ohm law and a
constitutive relation between the magnetic field and the magnetic induction, provided
we neglect the displacement current. A detailed derivation will be given in Section 3
below. The meaning of the parameter ~ is to take into account in the constitutive
relation also a rate dependent component of the memory. A similar system has been
considered recently in [1] in the context of soil hydrology, with ~ fixed and with a more
general form of the elliptic part. The main goal of this paper, instead, is to investigate
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the behaviour of the solution as 7 — 0. Our main result consists in proving that the
solutions to (1.1) converge as v — 0 to the (unique) solution (see [5]) of the system

%(au%—ﬁw)—&u:f

w = F(u)

(1.2)

as an extension of the results contained in Chapter 4 of [4]. For ~ positive, the second
equation in (1.1) defines a constitutive operator S : R x C°([0,7]) — C*([0,T]) which
with each u € C°([0,T]) and each initial condition w® € R associates w = S(w°, u).
Then (1.1) has the form

0 0 _
oy(aut B8 u) — Au=f. (1.3)

The regularizing properties of S enable us to solve the problem by means of a simple
application of the Banach contraction mapping principle. The passage to the limit as
v — 0 is achieved in several steps, using in particular a lemma constructed ad hoc
which allows us to pass to the limit in the nonlinear hysteresis term.

The outline of the paper is the following: after some remarks concerning Preisach
operators (Section 2), we explain the physical interpretation of our model system in
Section 3. Then we present in Section 4 the existence and uniqueness result while
Section 5 is devoted to the asymptotic convergence of the solution as v — 0.

2 The Preisach operator

We describe the ferromagnetic behaviour using the Preisach model proposed in 1935
(see [16]). Mathematical aspects of this model were investigated by Krasnosel’skii and
Pokrovskii (see [7], [8], and [9]). The model has been also studied in connection with
partial differential equations by Visintin (see for example [17], [18]). The monograph
of Mayergoyz ([15]) is mainly devoted to its modeling aspects.

Here we use the one-parametric representation of the Preisach operator which goes
back to [10]. The starting point of our theory is the so called play operator. This
operator constitutes the simplest example of continuous hysteresis operator in the space
of continuous functions; it has been introduced in [9] but we can also find equivalent
definitions in [2] and [18]; for its extension to less regular inputs, see also [12] and [13].

Let 7 > 0 be a given parameter. For a given input function u € C°([0,7]) and initial
condition z° € [—r, 7], we define the output & = P,(2°,u) € C°([0,T]) N BV(0,T) of
the play operator

P, : [-r,r] x C°([0,T]) — €°([0,T]) N BV(0,T)
as the solution of the variational inequality in Stieltjes integral form

/0 (u(t) —&(t) —y(t)) dg(t) = 0 Yy € C([0,T])), max [y(t)] < r,

0<t<T

u(t) —€@)| < r Vi e[0T, (2.1)

£(0) = u(0) — 2°.



Let us consider now the whole family of play operators P, parameterized by r >
0, which can be interpreted as a memory variable. Accordingly, we introduce the
hysteresis memory state space

A={A R, >R |Ar)=A)| < |r—s| Vr,seR,: lim A(r) =0},

r—-+00
together with its subspaces
Ag={ eA: A(r)=0for r > K}, A= ] Ax. (2.2)
K>0

For A€ A, u € C°[0,7]) and r > 0 we set

pr[\ul = Pr(a u)  polA v =,
where 29 is given by the formula

2% := min{r, max{—r, u(0) — \(r)}}.

It turns out that
or 2 A x C([0,T]) — C°([0,T7)

is Lipschitz continuous in the sense that, for every u,v € C°([0,7]), A\,u € A and
r > (0 we have

e [X ul = orlp, Ollleoqo.ay) < max{[A(r) — u(r)]; llu = vlleoqory}. (23)

Moreover, if A € Ag and ||ullcoqo,r)) < R, then o[\ u|(t) = 0 for all » > R and
t € [0, 7). For more details, see Sections 11.3, I1.4 of [11].

Now we introduce the Preisach plane as follows
P = {(r,v) eR*: r >0}
and consider a function ¢ € Li. () such that there exists 3; € L{.(0,00) with
0 < p(r,v) < Bi(r) for a.e. (r,v) € Z.
We set
g(r,v) == /U o(r,z)dz for (r,v) € &
’ R
and for R > 0, we put b (R) := Ba(r) dr.
Then the Preisach operator ’

W Ay x C°([0,T]) — C°([0,T))

generated by the function ¢ is defined by the formula

WA, u () = /0 ol on [\ ul(1)) dr, (2.4)
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for any given A\ € A, u € C°([0,T]) and ¢ € [0,7]. The equivalence of this definition
and the classical one in [15], [18], e.g., is proved in [10].

Using the Lipschitz continuity (2.3) of the operator g, , it is easy to prove that also
W is locally Lipschitz continuous, in the sense that, for any given R > 0, for every
)\,M S AR and u,v € CO([O,T]) with ||u||50([0,TD, ||U||CO([0’T]) < R, we have

R
WA u] = Wi, ollleoqory < /0 [A(r) = u(r)] Br(r) dr + bi(R) [|u = v leogpory)-

The first result on the inverse Preisach operator was proved in [3]. We make use of the
following formulation proved in [11], Section II.3.

Theorem 2.1. Let A € A and b > 0 be given. Then the operator bl + WA, :
C°([0,T]) — C°([0,T]) is invertible and its inverse is Lipschitz continuous.

Finally we have the following local monotonicity result for the Preisach operator W.

Theorem 2.2. Consider b >0, R >0, A\ € Ag and u € WH(0,T) be given such
that ||ullcoqoryy < R. Put w:=0bu+ W[\ u|. Then

b (%u)f < 20 %) < 0+ (m) (%mf.

As we are dealing with partial differential equations, we should consider both the input
and the initial memory configuration A\ that additionally depend on x. If for instance
A(z,-) belongs to Ay, and u(x,-) belongs to C°([0,T]) for (almost) every x, then we
define

WA, ul(z, 1) := WAz, ), u(z, ))(t) = /OOO g(r; or[ A, ), ulz, ))(8)) dr. (2.5)

3 Physical interpretation of the model system (1.1)

Let a ferromagnetic material occupy a bounded region 2 C R3; we set 27 := 2 x(0,T)
for a fixed T > 0, and we assume that the body is surrounded by vacuum. We denote
by g a prescribed electromotive force; then Ohm’s law reads

J=0(E+j in2,

where o is the electric conductivity, J is the electric current density and E is the
electric field; we also prescribe J = 0 outside Z.

In 2, we consider the Ampere and the Faraday laws in the form

. - 0D
CVXH:47TJ+86—t in 9r,
- 0B ,
CVXE:_E in Yr,
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where ¢ is the speed of light in vacuum, H is the magnetic field, D is the electric
displacement and B is the magnetic induction.

In case of a ferromagnetic metal, o is very large, hence we can assume

Am|J] > in 7,

ot

provided that the field ¢ does not vary too rapidly.

Then we neglect the displacement current — in Ampere’s law; this is the so-called

eddy current approrimation. By coupling this reduced law with Faraday’s and Ohm’s
laws, in Gauss units we get

0B ,
47TO'E+02VXVXH:47TCO'VX§ in Zr. (3.1)

We consider the constitutive equation between H and B intheform B=H + 47 M ,
where M is the magnetization, so we can rewrite (3.1) as

0 - - .
a(H+ 47 M) + AV XV xH=4rcoV x§ in Pp.

4o

For more details on this topics, we refer to a classical text of electromagnetism, for
example [6].

We now reduce this system to a scalar one describing planar waves. More precisely, let
Q be a domain of R?. We assume (using the orthogonal Cartesian coordinates x,, 2)
that H is parallel to the z— axis and only depends on the coordinates x,y, i.e.

—

H = (0,0, H(z,y)).

Then

=~ 02 0?
VxVxH= (0,0, —A%yH) (A$7y = @ + 0_y2) . (32)

We also assume that

— ~

M = (0,0, M(z,y)), Vxg=(0,0,f);

then equation (3.1) is reduced to a scalar equation

ot

dro | O dro -
2

The purely rate independent hysteretic constitutive relation between H and M is
considered in the form

M =W(H), (3.4)



where W is a Preisach operator. Since W itself is in typical cases not invertible, we
introduce a new variable V.= M + ¢ H with some ¢ € (0,1/47) to be specified below,
and rewrite (3.3), (3.4) as

4o O
—[(1—47d)H +4 — N H =
2 Ot ( mO) H +4mV] Y d (3.5)
V= (61+W)(H),
4 16 72
which is precisely (1.2) with a = 720 (1—476), B = %, u=H, w=V and
c c

F =01+ W. The rate dependent relaxed constitutive law leading to (1.1) reads

V=(51+W) (H—V%—‘t/). (3.6)

4 Existence and uniqueness

In the setting (1.1) or (1.2), the space dimension is not relevant. We therefore consider
an open bounded set of Lipschitz class Q C RY, N > 1, set Q :=Q x (0,T), and fix
an initial memory configuration

A€ L*( Ak) for some K >0, (4.1)

where Ag is introduced in (2.2).

Let M(Q;C%([0,7])) be the Fréchet space of strongly measurable functions Q —
C°([0,T]), i.e. the space of functions v : Q — C°([0,7]) such that there exists a
sequence v, of simple functions with v, — v in C°([0,T]) a.e. in Q.

We fix a constant by > 0 and introduce the operator F : M(Q;C°([0,T])) —
M(Q;C°([0,T])) in the following way

F(u)(x,t) := Flu(z,))(t) := brulx,t) + WAz, ), u(z,)](t); (4.2)

here W is the scalar Preisach operator defined in (2.4).

Now Theorem 2.1 yields that F is invertible and its inverse is a Lipschitz continuous
operator in C°([0,7]). Let us set G = F~! and let Lg be the Lipschitz constant of
the operator G.

At this point we introduce the operator

-1

G: M(Q;C°([0,T))) — M(:C°([0,T])) G:=F (4.3)
It turns out that
G(w)(z,t) == G(w(z,))(t)  Ywe M(Q;C(0,71)); (4.4)

it follows from Theorem 2.1 that G is Lipschitz continuous in the following sense

1G (wr) (2, -) — G (ug)(x, MNeoqory < Lg |[ua(x, -) — ua(z,-)l|eogo,r)
for any uy, us € M(;C°([0,77)), a.e. in Q.
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Moreover Theorem 2.2 entails that there exist two constants ¢ and Cz such that

ou\> _ OF(u) du ou\? ,
Cr <E) < ot E < C]: (E) a.ec. 11 Q (45)

On the other hand, (4.5) entails

ow\’ _ 9G(w) dw ow\ > . _ 1 1
) < 7 < - e = —, cg=—. (4
cg <6t> < o o S Cg (8t> a.e. in @, with Cg e cg s (4.6)

Consider now system (1.1) with homogeneous Dirichlet boundary conditions and set
V = H}(Q). We first state the existence and uniqueness result.

Theorem 4.1. (Ezistence and uniqueness)
Let o, B, be given positive constants. Suppose that the following assumptions on the
data

fel*Q), v eV, v’ e L*Q)

hold. Then (1.1) with homogeneous Dirichlet boundary conditions and initial conditions
u(z,0) = u’(z), w(x,0) = w’ (), (4.7)
admits a unique solution

w€ HY0,T; L*(Q) N L>(0,T; V)N L*0,T; W**(Q)), w € L*(Q;C*([0,T7)).

Proof. The proof is divided into two steps.

e STEP 1: THE SOLUTION OPERATOR S. We neglect for the moment the dependence
on the space parameter x within the constitutive relation

Y %—l; + E(w) = Uu. (4'8)

This means that we deal here with the following problem: for a given u € C°([0,77),
find w € C*([0,T]) such that

dw
at
w(0) = w®

oW =u o, (4.9)

Clearly problem (4.9) admits a unique solution w € C*([0,T7), for every u € C°([0,T7),
due to the Lipschitz continuity of G. In this manner we can define the solution operator

S:C[0,T)) — CH([0,T]) : uwrs w.

Let us show now that S is Lipschitz continuous in the sense that we prove that there
exists a constant Lg such that

HS(Ul)—S(Ug)Hcl([O’t]) S LS Hul—UQHco([QtD, Vul,u2 € CO([O,t]), Vte [O,T] (410)
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Let us consider uy,uy € C°([0,T]) and let wy,wy € C1([0,T]) be such that w; = S(u;),
i =1,2. The initial data are fixed, that is, w;(0) = wy(0) = w’. For any t € [0,7T] we
have

d’LUl d’LUQ 1 Lg
DLy 22 <= _ =g _
7 (t) 7 (t)’ =7 ur (t) — ua(t)] + S grglg%ct|w1(7) wy(7)]
1 Lg ¢ dw1 dUJQ
< - S I et .
=3 luq (t) — ua(t)| + S /0 7 pn (1)dr

Hence, by Gronwall’s argument,

/

dw1 dUJQ

1 (" g, .
o o (r)dr < —/ evg(t )|u1(7')—u2(7')|d7',

7 Jo

which yields

dw dw 1 Zg
: 1 1 Lg p
for every t € [0,7]. Hence (4.10) holds with Lg = | — + -)e
Y g
We easily extend this estimate to the space dependent problem
ow =
VEJFQ(“)) - a.e. in @, (4.11)
w(-,0) = w’(")

with given functions u € L*(Q;C°([0,7])), w® € L*(R). Tt immediately follows from
(4.10) that the solution mapping

S L*(Q;C%([0,T))) — L*(Q;CH([0,T7)) : U= w (4.12)

associated with (4.11) is well defined and Lipschitz continuous, with Lipschitz constant
Lg.
STEP 2: FIXED POINT. Our model problem can be rewritten now as

0 _

a(au—FﬁS(u))—Au:f (4.13)
with w(-,0) = u°(-) and homogeneous Dirichlet boundary conditions. The unique
solution will be found by the Banach contraction mapping principle.

Let us fix 2 € HY(0,T; L?(2)); then z € L2(€2;C°([0,T])) and therefore S(z) is well-
defined and belongs to L?(Q2;C*([0,T7])). Instead of (4.13), we consider the equation

P _
E(au%—ﬁS(Z))—Au:f (4.14)

which is nothing but the linear heat equation. As f € L*(Q), this means that (4.14)
admits a unique solution w € H'(0,T; L*(Q)) N L*(0, T; W*2(Q)) N L>(0,T; V).



We now introduce the set
B={ze H'(0,T;L*(Q)): 2(-,0) = u’()}
and the operator o 3
J:B—B: 2 u,
which with every z € B associates the solution u € B of (4.14). In order to prove

that J is a contraction, consider now two elements z;, 2, € B, and set up := J (z1),
Uy = J(2). Then we have

0 _
i (w —uz) +5(5 S(21) = S(22))) = D(ur — ug) = 0.
We test this equation by a(ul — ug) and obtain
2
oz/ﬂg(ul—m) (mtdx+§%/|Vu1—u2 2(x,t) dx
a 0 ? L% 3?
§2 5 —(up —ug)| (z,t)dx + 5o Qorggictkl—zﬂ (x,7)dx,

where Lg is the Lispchitz constant of the operator S. This implies that

2

0
8t(

B

Uy — U2)

(x,1) dx—i—a%/lv uy — ug)|*(z,t) dw

(4.15)

(x 7) dz dt.

21—22

We set 6 :=

= and we introduce the following equivalent norm on H'(0,T; L*(2))
a

T
_ 042
[nlll = (I!n(0)11%2(9)+/0 et

If now we multiply (4.15) by e " and integrate over t € (0,7, we obtain that

@ 2

1/2
5 (t) dt) Vne HY0,T; L*(Q)).

1
[l = walll < 5 [ller = 2]

and thus J is a contraction on the closed subset B of H'(0,T;L*(Q)), which yields
the existence and uniqueness of the solution u € H(0,T; L*(Q)) N L2(0,T; W22(Q)) N
L0, T;V). O



5 Asymptotic convergence
In this section we investigate the behaviour of the solution of our model problem if the
parameter v goes to zero. We prove the following theorem.

Theorem 5.1. Under the assumptions of Theorem 4.1, let (u,,w,) be the unique
solution of (1.1) corresponding to v > 0 with initial conditions (4.7) and homogeneous
Dirichlet boundary conditions. Then there exists

w € H0,T; L*()) N L>(0,T; V) N L*(0, T; W*2(Q))

such that
Uy — U strongly in L?(Q;C°([0,T7))

wy — Flu)  strongly in L*(Q:C°([0,77))

as v — 0, and u is the unique solution of the equation

0 —
Sp(aut BFw) —Lu=f (5.1)

with initial condition u(x,0) = u°(z) and homogeneous Dirichlet boundary condition.

Proof. The regularity of u, and w,, allows us to differentiate (4.11) in time and obtain

O*w,  IG(w,)  Ou,

= €. 2
7o ot o (5:2)
In the series of estimates below, we denote by C7,C5,... any positive constant de-
pending only on the data of the problem, but independent of 7
ou.
We now test the first equation of (1.1) by 8—7 and (5.2) by 6 —— . This yields

Ou 2 ou, Ow, 0, (9u7

and
v d ow, / G( w7 8w7 / 8u7 ow,
th/(at) 4z +p de =0 ot atd (5.4)

Summing up (5.3), (5.4) and using (4.6), we obtain

2
%/Q % Zdt at gjt aa? i@ < O
This allows us to obtain the following estimates
(N uqy |1 0,7:22(0))nL% (0,11 < Oy, (5.5a)
1wy ||z 0,722 () < (s, (5.5b)
\/_ H&U” < Cy, (5.5¢)
Lo°(0,T;L2(Q))
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and, by comparison, |[Au,||r2g) < Cs. This entails that there exists a function u
and a sequence 7y, — 0 such that

., — u weakly star in H'(0,7; L*(Q)) N L>(0,T; V) N L*(0,T; W**(Q)).

On the other hand, by interpolation and after a suitable choice of representatives, we
deduce that (see [14], Chapter 4)

HY0,T; L*(Q)) N L>=(0,T; V) c L*(Q;C°([0,1)))
with continuous and compact injection; this ensures that
u,, — u strongly in L*(€2;C°([0,T])),
in particular (passing to subsequences if necessary),
U, — u uniformly in [0,77], a.e. in Q. (5.6)
On the other hand, the constitutive relation (4.8) yields

ow
[ty = G(wo)| Lo 0,7502(0) < ¥ H_V

ot

L>0(0,T5L2(2))

and this, together with (5.5¢), entails that

w, —G(w,) — 0  strongly in L>(0,T; L*(2)) as v — 0.

From now on, we keep the sequence v, — 0 fixed as in (5.6). Our aim is now to show
that there exists a function w such that

w.,, — w uniformly in [0,7], a.e. in §. (5.7)

In fact, this will allow us to pass to the limit in the nonlinear hysteresis term. We show
that (5.7) is obtained from (5.6) by using the following lemma:

Lemma 5.2. Consider a sequence of functions {un}nen € C°([0,T]) such that
|[tn, — ul|cogo,r) — 0 as n — 0.

Let 0 < a, < au(t) < b, be measurable functions, with lim b, = 0. Finally let

n—oo

{Vn}nen be solutions of the following Cauchy problem

an(6) 2 (1) + (1) = 1),

v, (0) = u,(0).

Then
|[vn = wl|cogo,27) — 0 as n — 00.
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Proof. Put §,(t) = . Then

an(t)

v (t) = e~ " outr / Ba(s 74, (s) ds

hence, for all t € [0,T], we get

Un(t) — up (t) = e BT (14, (0) — un(t / Bn(s T (un(s) — un(t)) ds.

Let now € > 0 be given. Using the Ascoli-Arzela theorem, we find § > 0 independent
of n such that
|t1 — t2| <= |Un(t1) — un(t2)| < €.

For t € [0, 4] we have

R, t R
[0a(t) — un(t)] < € ( Py ar / Buls) e -stﬂ"(T)des) .
0

Let now ¢ > ¢, and let
C = sup{|u,(t1) — un(ta)], t1,t2 € [0,T],n € N}.
Then

R R t—9 R
[0 (t) — un ()] < Ce™ 0Prdr 4 ¢ Buls)e” S On(DAT g 4 C/ B, (s)e +Hmar g
0

= (1—6 téﬁn( )+C’e téﬁ"(T)dTgé—i-C'e_%,

and thus Lemma 5.2 follows. [

Let ' C Q be a set of full measure (meas(2\ ') = 0) such that, by virtue of (5.6),
Uy, (,+) — u(z,-) converges uniformly for all z € Q'. Keeping now x € ' fixed, set

W)= (), w(we) = (),
We recall from (4.2) that
Fu(z,))(t) = F(v)(z,t) Vo e M(Q;C°([0,T])).
Our idea is to apply Lemma 5.2 to the Cauchy problem
Wy =F ( — dg) (5.8)
w,(0) = F(u,)(0),

which we rewrite as

Wy = (ﬁ’Y)? (5'9)



We now set

From (4.5) we obtain that
0<vyer < ay(t) < vCp.
Hence, system (5.9) can be rewritten in the form

0 (1) S22 (1) 4 2,(1) = 1, (1),

8,(0) = @, (0),

We have that
@i, — @ uniformly in C°([0,7]) as v, — 0,

hence by Lemma 5.2,
., — @ uniformly in C°([0,T)) as v, — 0.
This in turn entails that
W, — F (@) uniformly in C°([0,7]) as v, — 0.
Since x € Q' has been chosen arbitrarily, we obtain
w., — F(u) uniformly in C°([0,7]), a.e. in Q as v, — 0.

We thus checked that u is a solution of (5.1) with the required boundary and initial
condition. Since this solution is unique by the argument of [5], we conclude that
u, converges to u independently of how 7 tends to 0. This completes the proof of
Theorem 5.1. [
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