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Abstract

A partial differential equation motivated by electromagnetic field equations
in ferromagnetic media is considered with a relaxed rate dependent constitutive
relation. It is shown that the solutions converge to the unique solution of the
limit parabolic problem with a rate independent Preisach hysteresis constitutive
operator as the relaxation parameter tends to zero.
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1 Introduction

The aim of this paper is to study the following system of partial differential equations





∂

∂t
(α u + β w)−4u = f

w = F
(

u− γ
∂w

∂t

) in Ω× (0, T ), (1.1)

where Ω is an open bounded set of RN , N ≥ 1, F is a continuous rate independent
invertible hysteresis operator, f is a given function, γ , α and β are given positive
constants.

This system can be obtained by coupling the Maxwell equations, the Ohm law and a
constitutive relation between the magnetic field and the magnetic induction, provided
we neglect the displacement current. A detailed derivation will be given in Section 3
below. The meaning of the parameter γ is to take into account in the constitutive
relation also a rate dependent component of the memory. A similar system has been
considered recently in [1] in the context of soil hydrology, with γ fixed and with a more
general form of the elliptic part. The main goal of this paper, instead, is to investigate
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the behaviour of the solution as γ → 0 . Our main result consists in proving that the
solutions to (1.1) converge as γ → 0 to the (unique) solution (see [5]) of the system





∂

∂t
(α u + β w)−4u = f

w = F(u)
(1.2)

as an extension of the results contained in Chapter 4 of [4]. For γ positive, the second
equation in (1.1) defines a constitutive operator S : R× C0([0, T ]) → C1([0, T ]) which
with each u ∈ C0([0, T ]) and each initial condition w0 ∈ R associates w = S(w0, u) .
Then (1.1) has the form

∂

∂t
(α u + β S(w0, u))−4u = f. (1.3)

The regularizing properties of S enable us to solve the problem by means of a simple
application of the Banach contraction mapping principle. The passage to the limit as
γ → 0 is achieved in several steps, using in particular a lemma constructed ad hoc
which allows us to pass to the limit in the nonlinear hysteresis term.

The outline of the paper is the following: after some remarks concerning Preisach
operators (Section 2), we explain the physical interpretation of our model system in
Section 3. Then we present in Section 4 the existence and uniqueness result while
Section 5 is devoted to the asymptotic convergence of the solution as γ → 0 .

2 The Preisach operator

We describe the ferromagnetic behaviour using the Preisach model proposed in 1935
(see [16]). Mathematical aspects of this model were investigated by Krasnosel’skĭı and
Pokrovskĭı (see [7], [8], and [9]). The model has been also studied in connection with
partial differential equations by Visintin (see for example [17], [18]). The monograph
of Mayergoyz ([15]) is mainly devoted to its modeling aspects.

Here we use the one-parametric representation of the Preisach operator which goes
back to [10]. The starting point of our theory is the so called play operator. This
operator constitutes the simplest example of continuous hysteresis operator in the space
of continuous functions; it has been introduced in [9] but we can also find equivalent
definitions in [2] and [18]; for its extension to less regular inputs, see also [12] and [13].

Let r > 0 be a given parameter. For a given input function u ∈ C0([0, T ]) and initial
condition x0 ∈ [−r, r] , we define the output ξ = Pr(x

0, u) ∈ C0([0, T ]) ∩ BV (0, T ) of
the play operator

Pr : [−r, r]× C0([0, T ]) → C0([0, T ]) ∩BV (0, T )

as the solution of the variational inequality in Stieltjes integral form



∫ T

0

(u(t)− ξ(t)− y(t)) dξ(t) ≥ 0 ∀ y ∈ C0([0, T ]), max
0≤t≤T

|y(t)| ≤ r,

|u(t)− ξ(t)| ≤ r ∀ t ∈ [0, T ],

ξ(0) = u(0)− x0.

(2.1)
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Let us consider now the whole family of play operators Pr parameterized by r >
0 , which can be interpreted as a memory variable. Accordingly, we introduce the
hysteresis memory state space

Λ := {λ : R+ → R : |λ(r)− λ(s)| ≤ |r − s| ∀ r, s ∈ R+ : lim
r→+∞

λ(r) = 0},

together with its subspaces

ΛK = {λ ∈ Λ : λ(r) = 0 for r ≥ K}, Λ∞ =
⋃
K>0

ΛK . (2.2)

For λ ∈ Λ, u ∈ C0([0, T ]) and r > 0 we set

℘r[λ, u] := Pr(x
0
r, u) ℘0[λ, u] := u,

where x0
r is given by the formula

x0
r := min{r, max{−r, u(0)− λ(r)}}.

It turns out that
℘r : Λ× C0([0, T ]) → C0([0, T ])

is Lipschitz continuous in the sense that, for every u, v ∈ C0([0, T ]), λ, µ ∈ Λ and
r > 0 we have

||℘r[λ, u]− ℘r[µ, v]||C0([0,T ]) ≤ max{|λ(r)− µ(r)|, ||u− v||C0([0,T ])}. (2.3)

Moreover, if λ ∈ ΛR and ||u||C0([0,T ]) ≤ R , then ℘r[λ, u](t) = 0 for all r ≥ R and
t ∈ [0, T ] . For more details, see Sections II.3, II.4 of [11].

Now we introduce the Preisach plane as follows

P := {(r, v) ∈ R2 : r > 0}

and consider a function ϕ ∈ L1
loc(P) such that there exists β1 ∈ L1

loc(0,∞) with

0 ≤ ϕ(r, v) ≤ β1(r) for a.e. (r, v) ∈ P .

We set

g(r, v) :=

∫ v

0

ϕ(r, z) dz for (r, v) ∈ P

and for R > 0 , we put b1(R) :=

∫ R

0

β1(r) dr.

Then the Preisach operator

W : Λ∞ × C0([0, T ]) → C0([0, T ])

generated by the function g is defined by the formula

W [λ, u](t) :=

∫ ∞

0

g(r, ℘r[λ, u](t)) dr, (2.4)
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for any given λ ∈ Λ∞ , u ∈ C0([0, T ]) and t ∈ [0, T ] . The equivalence of this definition
and the classical one in [15], [18], e.g., is proved in [10].

Using the Lipschitz continuity (2.3) of the operator ℘r , it is easy to prove that also
W is locally Lipschitz continuous, in the sense that, for any given R > 0 , for every
λ, µ ∈ ΛR and u, v ∈ C0([0, T ]) with ||u||C0([0,T ]), ||v||C0([0,T ]) ≤ R , we have

||W [λ, u]−W [µ, v]||C0([0,T ]) ≤
∫ R

0

|λ(r)− µ(r)| β1(r) dr + b1(R) ||u− v||C0([0,T ]).

The first result on the inverse Preisach operator was proved in [3]. We make use of the
following formulation proved in [11], Section II.3.

Theorem 2.1. Let λ ∈ Λ∞ and b > 0 be given. Then the operator b I + W [λ, ·] :
C0([0, T ]) → C0([0, T ]) is invertible and its inverse is Lipschitz continuous.

Finally we have the following local monotonicity result for the Preisach operator W .

Theorem 2.2. Consider b ≥ 0 , R > 0 , λ ∈ ΛR and u ∈ W 1,1(0, T ) be given such
that ||u||C0([0,T ]) ≤ R . Put w := b u +W [λ, u] . Then

b

(
∂u

∂t
(t)

)2

≤ ∂w

∂t
(t)

∂u

∂t
(t) ≤ (b + b1(R))

(
∂u

∂t
(t)

)2

.

As we are dealing with partial differential equations, we should consider both the input
and the initial memory configuration λ that additionally depend on x . If for instance
λ(x, ·) belongs to Λ∞ and u(x, ·) belongs to C0([0, T ]) for (almost) every x , then we
define

W [λ, u](x, t) := W [λ(x, ·), u(x, ·)](t) :=

∫ ∞

0

g(r, ℘r[λ(x, ·), u(x, ·)](t)) dr. (2.5)

3 Physical interpretation of the model system (1.1)

Let a ferromagnetic material occupy a bounded region D ⊂ R3; we set DT := D×(0, T )
for a fixed T > 0 , and we assume that the body is surrounded by vacuum. We denote
by ~g a prescribed electromotive force; then Ohm’s law reads

~J = σ ( ~E + ~g) in D ,

where σ is the electric conductivity, ~J is the electric current density and ~E is the
electric field; we also prescribe ~J = 0 outside D .

In D , we consider the Ampère and the Faraday laws in the form

c∇× ~H = 4π ~J +
∂ ~D

∂t
in DT ,

c∇× ~E = −∂ ~B

∂t
in DT ,
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where c is the speed of light in vacuum, ~H is the magnetic field, ~D is the electric
displacement and ~B is the magnetic induction.

In case of a ferromagnetic metal, σ is very large, hence we can assume

4 π | ~J | À
∣∣∣∣∣
∂ ~D

∂t

∣∣∣∣∣ in D ,

provided that the field ~g does not vary too rapidly.

Then we neglect the displacement current
∂ ~D

∂t
in Ampère’s law; this is the so-called

eddy current approximation. By coupling this reduced law with Faraday’s and Ohm’s
laws, in Gauss units we get

4 π σ
∂ ~B

∂t
+ c2∇×∇× ~H = 4 π c σ∇× ~g in DT . (3.1)

We consider the constitutive equation between ~H and ~B in the form ~B = ~H + 4 π ~M,
where ~M is the magnetization, so we can rewrite (3.1) as

4 π σ
∂

∂t
( ~H + 4 π ~M) + c2∇×∇× ~H = 4 π c σ∇× ~g in DT .

For more details on this topics, we refer to a classical text of electromagnetism, for
example [6].

We now reduce this system to a scalar one describing planar waves. More precisely, let
Ω be a domain of R2 . We assume (using the orthogonal Cartesian coordinates x, y, z )

that ~H is parallel to the z−axis and only depends on the coordinates x, y, i.e.

~H = (0, 0, H(x, y)).

Then

∇×∇× ~H = (0, 0,−4x,yH)

(
4x,y :=

∂2

∂x2
+

∂2

∂y2

)
. (3.2)

We also assume that

~M = (0, 0,M(x, y)), ∇× ~g = (0, 0, f̃);

then equation (3.1) is reduced to a scalar equation

4 π σ

c2

[
∂

∂t
(H + 4 π M)

]
−4x,yH = f :=

4 π σ

c
f̃ . (3.3)

The purely rate independent hysteretic constitutive relation between H and M is
considered in the form

M = W(H), (3.4)
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where W is a Preisach operator. Since W itself is in typical cases not invertible, we
introduce a new variable V = M + δ H with some δ ∈ (0, 1/4π) to be specified below,
and rewrite (3.3), (3.4) as





4 π σ

c2

∂

∂t
[(1− 4 π δ) H + 4 π V ]−4x,yH = f

V = (δ I +W)(H),

(3.5)

which is precisely (1.2) with α =
4 π σ

c2
(1− 4 π δ) , β =

16 π2 σ

c2
, u = H , w = V and

F = δ I +W . The rate dependent relaxed constitutive law leading to (1.1) reads

V = (δ I +W)

(
H − γ

∂V

∂t

)
. (3.6)

4 Existence and uniqueness

In the setting (1.1) or (1.2), the space dimension is not relevant. We therefore consider
an open bounded set of Lipschitz class Ω ⊂ RN , N ≥ 1 , set Q := Ω× (0, T ) , and fix
an initial memory configuration

λ ∈ L2(Ω; ΛK) for some K > 0 , (4.1)

where ΛK is introduced in (2.2).

Let M(Ω; C0([0, T ])) be the Fréchet space of strongly measurable functions Ω →
C0([0, T ]) , i.e. the space of functions v : Ω → C0([0, T ]) such that there exists a
sequence vn of simple functions with vn → v in C0([0, T ]) a.e. in Ω.

We fix a constant bF > 0 and introduce the operator F : M(Ω; C0([0, T ])) →
M(Ω; C0([0, T ])) in the following way

F(u)(x, t) := F(u(x, ·))(t) := bF u(x, t) +W [λ(x, ·), u(x, ·)](t); (4.2)

here W is the scalar Preisach operator defined in (2.4).

Now Theorem 2.1 yields that F is invertible and its inverse is a Lipschitz continuous
operator in C0([0, T ]) . Let us set G = F−1 and let LG be the Lipschitz constant of
the operator G .

At this point we introduce the operator

G : M(Ω; C0([0, T ])) →M(Ω; C0([0, T ])) G := F −1
. (4.3)

It turns out that

G(w)(x, t) := G(w(x, ·))(t) ∀w ∈M(Ω; C0([0, T ])); (4.4)

it follows from Theorem 2.1 that G is Lipschitz continuous in the following sense

||G(u1)(x, ·)− G(u2)(x, ·)||C0([0,T ]) ≤ LG ||u1(x, ·)− u2(x, ·)||C0([0,T ])

for any u1, u2 ∈M(Ω; C0([0, T ])), a.e. in Ω.

6



Moreover Theorem 2.2 entails that there exist two constants cF and CF such that

cF

(
∂u

∂t

)2

≤ ∂F(u)

∂t

∂u

∂t
≤ CF

(
∂u

∂t

)2

a.e. in Q. (4.5)

On the other hand, (4.5) entails

cG

(
∂w

∂t

)2

≤ ∂G(w)

∂t

∂w

∂t
≤ CG

(
∂w

∂t

)2

a.e. in Q , with CG =
1

cF
, cG =

1

CF
. (4.6)

Consider now system (1.1) with homogeneous Dirichlet boundary conditions and set
V := H1

0 (Ω) . We first state the existence and uniqueness result.

Theorem 4.1. (Existence and uniqueness)
Let α, β, γ be given positive constants. Suppose that the following assumptions on the
data

f ∈ L2(Q), u0 ∈ V, w0 ∈ L2(Ω)

hold. Then (1.1) with homogeneous Dirichlet boundary conditions and initial conditions

u(x, 0) = u0(x), w(x, 0) = w0(x), (4.7)

admits a unique solution

u ∈ H1(0, T ; L2(Ω)) ∩ L∞(0, T ; V ) ∩ L2(0, T ; W 2,2(Ω)), w ∈ L2(Ω; C1([0, T ])).

Proof. The proof is divided into two steps.

• step 1: the solution operator S . We neglect for the moment the dependence
on the space parameter x within the constitutive relation

γ
∂w

∂t
+ G(w) = u. (4.8)

This means that we deal here with the following problem: for a given u ∈ C0([0, T ]) ,
find w ∈ C1([0, T ]) such that





γ
dw

dt
+ G(w) = u

w(0) = w0

in [0, T ] . (4.9)

Clearly problem (4.9) admits a unique solution w ∈ C1([0, T ]) , for every u ∈ C0([0, T ]) ,
due to the Lipschitz continuity of G . In this manner we can define the solution operator

S : C0([0, T ]) → C1([0, T ]) : u 7→ w.

Let us show now that S is Lipschitz continuous in the sense that we prove that there
exists a constant LS such that

||S(u1)−S(u2)||C1([0,t]) ≤ LS ||u1−u2||C0([0,t]), ∀u1, u2 ∈ C0([0, t]), ∀ t ∈ [0, T ]. (4.10)
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Let us consider u1, u2 ∈ C0([0, T ]) and let w1, w2 ∈ C1([0, T ]) be such that wi = S(ui) ,
i = 1, 2 . The initial data are fixed, that is, w1(0) = w2(0) = w0 . For any t ∈ [0, T ] we
have

∣∣∣∣
dw1

dt
(t)− dw2

dt
(t)

∣∣∣∣ ≤
1

γ
|u1(t)− u2(t)|+ LG

γ
max
0≤τ≤t

|w1(τ)− w2(τ)|

≤ 1

γ
|u1(t)− u2(t)|+ LG

γ

∫ t

0

∣∣∣∣
dw1

dt
− dw2

dt

∣∣∣∣ (τ) dτ.

Hence, by Gronwall’s argument,

∫ t

0

∣∣∣∣
dw1

dt
− dw2

dt

∣∣∣∣ (τ) dτ ≤ 1

γ

∫ t

0

e
LG
γ

(t−τ) |u1(τ)− u2(τ)| dτ,

which yields ∣∣∣∣
dw1

dt
(t)− dw2

dt
(t)

∣∣∣∣ ≤
1

γ
e

LG
γ

T ||u1 − u2||C0([0,t])

for every t ∈ [0, T ] . Hence (4.10) holds with LS =

(
1

γ
+

1

LG

)
e

LG
γ

T .

We easily extend this estimate to the space dependent problem





γ
∂w

∂t
+ G(w) = u

w(·, 0) = w0(·)
a.e. in Q, (4.11)

with given functions u ∈ L2(Ω; C0([0, T ])) , w0 ∈ L2(Ω) . It immediately follows from
(4.10) that the solution mapping

S̄ : L2(Ω; C0([0, T ])) → L2(Ω; C1([0, T ])) : u 7→ w (4.12)

associated with (4.11) is well defined and Lipschitz continuous, with Lipschitz constant
LS .

step 2: fixed point. Our model problem can be rewritten now as

∂

∂t
(α u + β S̄(u))−4u = f (4.13)

with u(·, 0) = u0(·) and homogeneous Dirichlet boundary conditions. The unique
solution will be found by the Banach contraction mapping principle.

Let us fix z ∈ H1(0, T ; L2(Ω)) ; then z ∈ L2(Ω; C0([0, T ])) and therefore S̄(z) is well-
defined and belongs to L2(Ω; C1([0, T ])) . Instead of (4.13), we consider the equation

∂

∂t
(α u + β S̄(z))−4u = f (4.14)

which is nothing but the linear heat equation. As f ∈ L2(Q) , this means that (4.14)
admits a unique solution u ∈ H1(0, T ; L2(Ω)) ∩ L2(0, T ; W 2,2(Ω)) ∩ L∞(0, T ; V ) .
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We now introduce the set

B̃ = {z ∈ H1(0, T ; L2(Ω)) : z(·, 0) = u0(·)}

and the operator
J̃ : B̃ → B̃ : z 7→ u,

which with every z ∈ B̃ associates the solution u ∈ B̃ of (4.14). In order to prove
that J̃ is a contraction, consider now two elements z1, z2 ∈ B̃ , and set u1 := J̃(z1),
u2 := J̃(z2). Then we have

∂

∂t
(α (u1 − u2) + β (S̄(z1)− S̄(z2)))−4(u1 − u2) = 0.

We test this equation by
∂

∂t
(u1 − u2) and obtain

α

∫

Ω

∣∣∣∣
∂

∂t
(u1 − u2)

∣∣∣∣
2

(x, t) dx +
1

2

d

dt

∫

Ω

|∇(u1 − u2)|2(x, t) dx

≤ α

2

∫

Ω

∣∣∣∣
∂

∂t
(u1 − u2)

∣∣∣∣
2

(x, t) dx +
L2

S β2

2 α

∫

Ω

max
0≤τ≤t

|z1 − z2|2(x, τ) dx,

where LS is the Lispchitz constant of the operator S̄. This implies that

∫

Ω

∣∣∣∣
∂

∂t
(u1 − u2)

∣∣∣∣
2

(x, t) dx +
1

α

d

dt

∫

Ω

|∇(u1 − u2)|2(x, t) dx

≤ L2
S β2 t

α2

∫ t

0

∫

Ω

∣∣∣∣
∂

∂t
(z1 − z2)

∣∣∣∣
2

(x, τ) dx dt.

(4.15)

We set θ :=
L2

S β2

α2
and we introduce the following equivalent norm on H1(0, T ; L2(Ω))

|||η||| =
(
||η(0)||2L2(Ω) +

∫ T

0

e−θ t2
∣∣∣∣
∣∣∣∣
∂η

∂t

∣∣∣∣
∣∣∣∣
2

L2(Ω)

(t) dt

)1/2

∀ η ∈ H1(0, T ; L2(Ω)).

If now we multiply (4.15) by e−θ t2 and integrate over t ∈ (0, T ) , we obtain that

|||u1 − u2||| ≤ 1

2
|||z1 − z2|||

and thus J̃ is a contraction on the closed subset B̃ of H1(0, T ; L2(Ω)) , which yields
the existence and uniqueness of the solution u ∈ H1(0, T ; L2(Ω))∩L2(0, T ; W 2,2(Ω))∩
L∞(0, T ; V ) . ¤
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5 Asymptotic convergence

In this section we investigate the behaviour of the solution of our model problem if the
parameter γ goes to zero. We prove the following theorem.

Theorem 5.1. Under the assumptions of Theorem 4.1, let (uγ, wγ) be the unique
solution of (1.1) corresponding to γ > 0 with initial conditions (4.7) and homogeneous
Dirichlet boundary conditions. Then there exists

u ∈ H1(0, T ; L2(Ω)) ∩ L∞(0, T ; V ) ∩ L2(0, T ; W 2,2(Ω))

such that
uγ → u strongly in L2(Ω; C0([0, T ]))

wγ → F(u) strongly in L2(Ω; C0([0, T ]))

as γ → 0 , and u is the unique solution of the equation

∂

∂t
(α u + β F(u))−4u = f (5.1)

with initial condition u(x, 0) = u0(x) and homogeneous Dirichlet boundary condition.

Proof. The regularity of uγ and wγ allows us to differentiate (4.11) in time and obtain

γ
∂2wγ

∂t2
+

∂G(wγ)

∂t
=

∂uγ

∂t
a.e. (5.2)

In the series of estimates below, we denote by C1, C2, . . . any positive constant de-
pending only on the data of the problem, but independent of γ .

We now test the first equation of (1.1) by
∂uγ

∂t
and (5.2) by β

∂wγ

∂t
. This yields

∫

Ω

(
α

(
∂uγ

∂t

)2

+ β
∂uγ

∂t

∂wγ

∂t

)
dx +

1

2

d

dt

∫

Ω

|∇uγ|2 dx =

∫

Ω

(
f

∂uγ

∂t

)
dx (5.3)

and

β
γ

2

d

dt

∫

Ω

(
∂wγ

∂t

)2

dx + β

∫

Ω

∂G(wγ)

∂t

∂wγ

∂t
dx = β

∫

Ω

∂uγ

∂t

∂wγ

∂t
dx. (5.4)

Summing up (5.3), (5.4) and using (4.6), we obtain

α

2

∫

Ω

∣∣∣∣
∂uγ

∂t

∣∣∣∣
2

dx +
1

2

d

dt

∫

Ω

|∇uγ|2 dx + cG β

∫

Ω

∣∣∣∣
∂wγ

∂t

∣∣∣∣
2

dx + β
γ

2

d

dt

∫

Ω

∣∣∣∣
∂wγ

∂t

∣∣∣∣
2

dx ≤ C1.

This allows us to obtain the following estimates




||uγ||H1(0,T ;L2(Ω))∩L∞(0,T ;V ) ≤ C2, (5.5a)

||wγ||H1(0,T ;L2(Ω)) ≤ C3, (5.5b)

√
γ

∣∣∣∣
∣∣∣∣
∂wγ

∂t

∣∣∣∣
∣∣∣∣
L∞(0,T ;L2(Ω))

≤ C4, (5.5c)
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and, by comparison, ||4uγ||L2(Q) ≤ C5 . This entails that there exists a function u
and a sequence γn → 0 such that

uγn → u weakly star in H1(0, T ; L2(Ω)) ∩ L∞(0, T ; V ) ∩ L2(0, T ; W 2,2(Ω)) .

On the other hand, by interpolation and after a suitable choice of representatives, we
deduce that (see [14], Chapter 4)

H1(0, T ; L2(Ω)) ∩ L∞(0, T ; V ) ⊂ L2(Ω; C0([0, T ]))

with continuous and compact injection; this ensures that

uγn → u strongly in L2(Ω; C0([0, T ])) ,

in particular (passing to subsequences if necessary),

uγn → u uniformly in [0, T ] , a.e. in Ω . (5.6)

On the other hand, the constitutive relation (4.8) yields

||uγ − G(wγ)||L∞(0,T ;L2(Ω)) ≤ γ

∣∣∣∣
∣∣∣∣
∂wγ

∂t

∣∣∣∣
∣∣∣∣
L∞(0,T ;L2(Ω))

and this, together with (5.5c), entails that

uγ − G(wγ) → 0 strongly in L∞(0, T ; L2(Ω)) as γ → 0 .

From now on, we keep the sequence γn → 0 fixed as in (5.6). Our aim is now to show
that there exists a function w such that

wγn → w uniformly in [0, T ] , a.e. in Ω . (5.7)

In fact, this will allow us to pass to the limit in the nonlinear hysteresis term. We show
that (5.7) is obtained from (5.6) by using the following lemma:

Lemma 5.2. Consider a sequence of functions {un}n∈N ∈ C0([0, T ]) such that

||un − u||C0([0,T ]) → 0 as n →∞ .

Let 0 < an ≤ αn(t) ≤ bn be measurable functions, with lim
n→∞

bn = 0 . Finally let

{vn}n∈N be solutions of the following Cauchy problem





αn(t)
dvn

dt
(t) + vn(t) = un(t),

vn(0) = un(0).

Then
||vn − u||C0([0,T ]) → 0 as n →∞ .

11



Proof. Put βn(t) =
1

αn(t)
. Then

vn(t) = e−
R t
0 βn(τ) dτ un(0) +

∫ t

0

βn(s) e−
R t

s βn(τ) dτ un(s) ds

hence, for all t ∈ [0, T ] , we get

vn(t)− un(t) = e−
R t
0 βn(τ) dτ (un(0)− un(t)) +

∫ t

0

βn(s) e−
R t

s βn(τ) dτ (un(s)− un(t)) ds.

Let now ε > 0 be given. Using the Ascoli-Arzelà theorem, we find δ > 0 independent
of n such that

|t1 − t2| < δ ⇒ |un(t1)− un(t2)| < ε.

For t ∈ [0, δ] we have

|vn(t)− un(t)| ≤ ε

(
e−

R s
0 βn(τ) dτ +

∫ t

0

βn(s) e−
R t

s βn(τ) dτds

)
= ε.

Let now t > δ, and let

C = sup{|un(t1)− un(t2)|, t1, t2 ∈ [0, T ], n ∈ N}.
Then

|vn(t)− un(t)| ≤Ce−
R t
0 βn(τ) dτ + ε

∫ t

t−δ

βn(s)e−
R t

s βn(τ) dτ ds + C

∫ t−δ

0

βn(s)e−
R t

s βn(τ) dτ ds

= ε
(
1− e−

R t
t−δ βn(τ) dτ

)
+ C e−

R t
t−δ βn(τ) dτ ≤ ε + C e−

δ
bn ,

and thus Lemma 5.2 follows. ¤
Let Ω′ ⊂ Ω be a set of full measure (meas(Ω \ Ω′) = 0) such that, by virtue of (5.6),
uγn(x, ·) → u(x, ·) converges uniformly for all x ∈ Ω′ . Keeping now x ∈ Ω′ fixed, set

uγ(x, ·) := ũγ(·), wγ(x, ·) := w̃γ(·).
We recall from (4.2) that

F(v(x, ·))(t) = F(v)(x, t) ∀ v ∈M(Ω; C0([0, T ])).

Our idea is to apply Lemma 5.2 to the Cauchy problem




w̃γ = F
(

ũγ − γ
dw̃γ

dt

)
,

w̃γ(0) = F(ũγ)(0),

(5.8)

which we rewrite as 



γ
dw̃γ

dt
+ ṽγ = ũγ,

w̃γ = F(ṽγ),

w̃γ(0) = F(ũγ)(0).

(5.9)
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We now set

αγ(t) =





γ
dF(ṽγ)

dt
(t)

/
dṽγ

dt
(t) if

dṽγ

dt
6= 0

γ cF if
dṽγ

dt
= 0.

From (4.5) we obtain that

0 < γ cF ≤ αγ(t) ≤ γ CF .

Hence, system (5.9) can be rewritten in the form





αγ(t)
dṽγ

dt
(t) + ṽγ(t) = ũγ(t),

ṽγ(0) = ũγ(0).

We have that
ũγn → ũ uniformly in C0([0, T ]) as γn → 0 ,

hence by Lemma 5.2,

ṽγn → ũ uniformly in C0([0, T ]) as γn → 0 .

This in turn entails that

w̃γn → F(ũ) uniformly in C0([0, T ]) as γn → 0 .

Since x ∈ Ω′ has been chosen arbitrarily, we obtain

wγn → F(u) uniformly in C0([0, T ]) , a.e. in Ω as γn → 0 .

We thus checked that u is a solution of (5.1) with the required boundary and initial
condition. Since this solution is unique by the argument of [5], we conclude that
uγ converges to u independently of how γ tends to 0. This completes the proof of
Theorem 5.1. ¤
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[16] F. Preisach: Über die magnetische Nachwirkung, Z. Physik 94 (1935) 277-302.

[17] A. Visintin: On the Preisach model for hysteresis, Nonlinear Analysis, T.M.A.
9 (1984) 977-996.

[18] A. Visintin: Differential Models of Hysteresis, Springer, (1994).

14


