Asymptotic convergence results for a system of partial differential equations with hysteresis

Michela Eleuteri ${ }^{1}$ and Pavel Krejčí ${ }^{2} 3$

Abstract

A partial differential equation motivated by electromagnetic field equations in ferromagnetic media is considered with a relaxed rate dependent constitutive relation. It is shown that the solutions converge to the unique solution of the limit parabolic problem with a rate independent Preisach hysteresis constitutive operator as the relaxation parameter tends to zero.

Classification: 35K55, 47J40, 35B40.
Key words: partial differential equations, hysteresis, asymptotic convergence, Preisach operator.

1 Introduction

The aim of this paper is to study the following system of partial differential equations

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t}(\alpha u+\beta w)-\Delta u=f \tag{1.1}\\
w=\overline{\mathcal{F}}\left(u-\gamma \frac{\partial w}{\partial t}\right)
\end{array} \quad \text { in } \Omega \times(0, T)\right.
$$

where Ω is an open bounded set of $\mathbb{R}^{N}, N \geq 1, \overline{\mathcal{F}}$ is a continuous rate independent invertible hysteresis operator, f is a given function, γ, α and β are given positive constants.
This system can be obtained by coupling the Maxwell equations, the Ohm law and a constitutive relation between the magnetic field and the magnetic induction, provided we neglect the displacement current. A detailed derivation will be given in Section 3 below. The meaning of the parameter γ is to take into account in the constitutive relation also a rate dependent component of the memory. A similar system has been considered recently in [1] in the context of soil hydrology, with γ fixed and with a more general form of the elliptic part. The main goal of this paper, instead, is to investigate

[^0]the behaviour of the solution as $\gamma \rightarrow 0$. Our main result consists in proving that the solutions to (1.1) converge as $\gamma \rightarrow 0$ to the (unique) solution (see [5]) of the system
\[

\left\{$$
\begin{array}{l}
\frac{\partial}{\partial t}(\alpha u+\beta w)-\triangle u=f \tag{1.2}\\
w=\overline{\mathcal{F}}(u)
\end{array}
$$\right.
\]

as an extension of the results contained in Chapter 4 of [4]. For γ positive, the second equation in (1.1) defines a constitutive operator $S: \mathbb{R} \times \mathcal{C}^{0}([0, T]) \rightarrow \mathcal{C}^{1}([0, T])$ which with each $u \in \mathcal{C}^{0}([0, T])$ and each initial condition $w^{0} \in \mathbb{R}$ associates $w=S\left(w^{0}, u\right)$. Then (1.1) has the form

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\alpha u+\beta S\left(w^{0}, u\right)\right)-\triangle u=f \tag{1.3}
\end{equation*}
$$

The regularizing properties of S enable us to solve the problem by means of a simple application of the Banach contraction mapping principle. The passage to the limit as $\gamma \rightarrow 0$ is achieved in several steps, using in particular a lemma constructed ad hoc which allows us to pass to the limit in the nonlinear hysteresis term.
The outline of the paper is the following: after some remarks concerning Preisach operators (Section 2), we explain the physical interpretation of our model system in Section 3. Then we present in Section 4 the existence and uniqueness result while Section 5 is devoted to the asymptotic convergence of the solution as $\gamma \rightarrow 0$.

2 The Preisach operator

We describe the ferromagnetic behaviour using the Preisach model proposed in 1935 (see [16]). Mathematical aspects of this model were investigated by Krasnosel'skiĭ and Pokrovskiĭ (see [7], [8], and [9]). The model has been also studied in connection with partial differential equations by Visintin (see for example [17], [18]). The monograph of Mayergoyz ([15]) is mainly devoted to its modeling aspects.
Here we use the one-parametric representation of the Preisach operator which goes back to [10]. The starting point of our theory is the so called play operator. This operator constitutes the simplest example of continuous hysteresis operator in the space of continuous functions; it has been introduced in [9] but we can also find equivalent definitions in [2] and [18]; for its extension to less regular inputs, see also [12] and [13]. Let $r>0$ be a given parameter. For a given input function $u \in \mathcal{C}^{0}([0, T])$ and initial condition $x^{0} \in[-r, r]$, we define the output $\xi=\mathcal{P}_{r}\left(x^{0}, u\right) \in \mathcal{C}^{0}([0, T]) \cap B V(0, T)$ of the play operator

$$
\mathcal{P}_{r}:[-r, r] \times \mathcal{C}^{0}([0, T]) \rightarrow \mathcal{C}^{0}([0, T]) \cap B V(0, T)
$$

as the solution of the variational inequality in Stieltjes integral form

$$
\begin{cases}\int_{0}^{T}(u(t)-\xi(t)-y(t)) d \xi(t) \geq 0 & \forall y \in \mathcal{C}^{0}([0, T]), \quad \max _{0 \leq t \leq T}|y(t)| \leq r \tag{2.1}\\ |u(t)-\xi(t)| \leq r & \forall t \in[0, T],\end{cases}
$$

Let us consider now the whole family of play operators \mathcal{P}_{r} parameterized by $r>$ 0 , which can be interpreted as a memory variable. Accordingly, we introduce the hysteresis memory state space

$$
\Lambda:=\left\{\lambda: \mathbb{R}_{+} \rightarrow \mathbb{R}:|\lambda(r)-\lambda(s)| \leq|r-s| \forall r, s \in \mathbb{R}_{+}: \lim _{r \rightarrow+\infty} \lambda(r)=0\right\}
$$

together with its subspaces

$$
\begin{equation*}
\Lambda_{K}=\{\lambda \in \Lambda: \lambda(r)=0 \text { for } r \geq K\}, \quad \Lambda_{\infty}=\bigcup_{K>0} \Lambda_{K} \tag{2.2}
\end{equation*}
$$

For $\lambda \in \Lambda, u \in \mathcal{C}^{0}([0, T])$ and $r>0$ we set

$$
\wp_{r}[\lambda, u]:=\mathcal{P}_{r}\left(x_{r}^{0}, u\right) \quad \wp_{0}[\lambda, u]:=u
$$

where x_{r}^{0} is given by the formula

$$
x_{r}^{0}:=\min \{r, \max \{-r, u(0)-\lambda(r)\}\} .
$$

It turns out that

$$
\wp_{r}: \Lambda \times \mathcal{C}^{0}([0, T]) \rightarrow \mathcal{C}^{0}([0, T])
$$

is Lipschitz continuous in the sense that, for every $u, v \in \mathcal{C}^{0}([0, T]), \lambda, \mu \in \Lambda$ and $r>0$ we have

$$
\begin{equation*}
\left\|\wp_{r}[\lambda, u]-\wp_{r}[\mu, v]\right\|_{\mathcal{C}^{0}([0, T])} \leq \max \left\{|\lambda(r)-\mu(r)|,\|u-v\|_{\mathcal{C}^{0}([0, T])}\right\} . \tag{2.3}
\end{equation*}
$$

Moreover, if $\lambda \in \Lambda_{R}$ and $\|u\|_{\mathcal{C}^{0}([0, T])} \leq R$, then $\wp_{r}[\lambda, u](t)=0$ for all $r \geq R$ and $t \in[0, T]$. For more details, see Sections II.3, II. 4 of [11].
Now we introduce the Preisach plane as follows

$$
\mathscr{P}:=\left\{(r, v) \in \mathbb{R}^{2}: r>0\right\}
$$

and consider a function $\varphi \in L_{\mathrm{loc}}^{1}(\mathscr{P})$ such that there exists $\beta_{1} \in L_{\mathrm{loc}}^{1}(0, \infty)$ with

$$
0 \leq \varphi(r, v) \leq \beta_{1}(r) \quad \text { for a.e. }(r, v) \in \mathscr{P} .
$$

We set

$$
g(r, v):=\int_{0}^{v} \varphi(r, z) d z \quad \text { for }(r, v) \in \mathscr{P}
$$

and for $R>0$, we put $b_{1}(R):=\int_{0}^{R} \beta_{1}(r) d r$.
Then the Preisach operator

$$
\mathcal{W}: \Lambda_{\infty} \times \mathcal{C}^{0}([0, T]) \rightarrow \mathcal{C}^{0}([0, T])
$$

generated by the function g is defined by the formula

$$
\begin{equation*}
\mathcal{W}[\lambda, u](t):=\int_{0}^{\infty} g\left(r, \wp_{r}[\lambda, u](t)\right) d r \tag{2.4}
\end{equation*}
$$

for any given $\lambda \in \Lambda_{\infty}, u \in \mathcal{C}^{0}([0, T])$ and $t \in[0, T]$. The equivalence of this definition and the classical one in [15], [18], e.g., is proved in [10].
Using the Lipschitz continuity (2.3) of the operator \wp_{r}, it is easy to prove that also \mathcal{W} is locally Lipschitz continuous, in the sense that, for any given $R>0$, for every $\lambda, \mu \in \Lambda_{R}$ and $u, v \in \mathcal{C}^{0}([0, T])$ with $\|u\|_{\mathcal{C}^{0}([0, T])},\|v\|_{\mathcal{C}^{0}([0, T])} \leq R$, we have

$$
\|\mathcal{W}[\lambda, u]-\mathcal{W}[\mu, v]\|_{\mathcal{C}^{0}([0, T])} \leq \int_{0}^{R}|\lambda(r)-\mu(r)| \beta_{1}(r) d r+b_{1}(R)\|u-v\|_{\mathcal{C}^{0}([0, T])}
$$

The first result on the inverse Preisach operator was proved in [3]. We make use of the following formulation proved in [11], Section II.3.

Theorem 2.1. Let $\lambda \in \Lambda_{\infty}$ and $b>0$ be given. Then the operator $b I+\mathcal{W}[\lambda, \cdot]$: $\mathcal{C}^{0}([0, T]) \rightarrow \mathcal{C}^{0}([0, T])$ is invertible and its inverse is Lipschitz continuous.

Finally we have the following local monotonicity result for the Preisach operator \mathcal{W}.
Theorem 2.2. Consider $b \geq 0, R>0, \lambda \in \Lambda_{R}$ and $u \in W^{1,1}(0, T)$ be given such that $\|u\|_{\mathcal{C}^{0}([0, T])} \leq R$. Put $w:=b u+\mathcal{W}[\lambda, u]$. Then

$$
b\left(\frac{\partial u}{\partial t}(t)\right)^{2} \leq \frac{\partial w}{\partial t}(t) \frac{\partial u}{\partial t}(t) \leq\left(b+b_{1}(R)\right)\left(\frac{\partial u}{\partial t}(t)\right)^{2}
$$

As we are dealing with partial differential equations, we should consider both the input and the initial memory configuration λ that additionally depend on x. If for instance $\lambda(x, \cdot)$ belongs to Λ_{∞} and $u(x, \cdot)$ belongs to $\mathcal{C}^{0}([0, T])$ for (almost) every x, then we define

$$
\begin{equation*}
\overline{\mathcal{W}}[\lambda, u](x, t):=\mathcal{W}[\lambda(x, \cdot), u(x, \cdot)](t):=\int_{0}^{\infty} g\left(r, \wp_{r}[\lambda(x, \cdot), u(x, \cdot)](t)\right) d r \tag{2.5}
\end{equation*}
$$

3 Physical interpretation of the model system (1.1)

Let a ferromagnetic material occupy a bounded region $\mathscr{D} \subset \mathbb{R}^{3}$; we set $\mathscr{D}_{T}:=\mathscr{D} \times(0, T)$ for a fixed $T>0$, and we assume that the body is surrounded by vacuum. We denote by \vec{g} a prescribed electromotive force; then Ohm's law reads

$$
\vec{J}=\sigma(\vec{E}+\vec{g}) \quad \text { in } \mathscr{D}
$$

where σ is the electric conductivity, \vec{J} is the electric current density and \vec{E} is the electric field; we also prescribe $\vec{J}=0$ outside \mathscr{D}.
In \mathscr{D}, we consider the Ampère and the Faraday laws in the form

$$
\begin{array}{ll}
c \nabla \times \vec{H}=4 \pi \vec{J}+\frac{\partial \vec{D}}{\partial t} & \text { in } \mathscr{D}_{T}, \\
c \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} & \text { in } \mathscr{D}_{T}
\end{array}
$$

where c is the speed of light in vacuum, \vec{H} is the magnetic field, \vec{D} is the electric displacement and \vec{B} is the magnetic induction.
In case of a ferromagnetic metal, σ is very large, hence we can assume

$$
4 \pi|\vec{J}| \gg\left|\frac{\partial \vec{D}}{\partial t}\right| \quad \text { in } \mathscr{D}
$$

provided that the field \vec{g} does not vary too rapidly.
Then we neglect the displacement current $\frac{\partial \vec{D}}{\partial t}$ in Ampère's law; this is the so-called eddy current approximation. By coupling this reduced law with Faraday's and Ohm's laws, in Gauss units we get

$$
\begin{equation*}
4 \pi \sigma \frac{\partial \vec{B}}{\partial t}+c^{2} \nabla \times \nabla \times \vec{H}=4 \pi c \sigma \nabla \times \vec{g} \quad \text { in } \mathscr{D}_{T} \tag{3.1}
\end{equation*}
$$

We consider the constitutive equation between \vec{H} and \vec{B} in the form $\vec{B}=\vec{H}+4 \pi \vec{M}$, where \vec{M} is the magnetization, so we can rewrite (3.1) as

$$
4 \pi \sigma \frac{\partial}{\partial t}(\vec{H}+4 \pi \vec{M})+c^{2} \nabla \times \nabla \times \vec{H}=4 \pi c \sigma \nabla \times \vec{g} \quad \text { in } \mathscr{D}_{T}
$$

For more details on this topics, we refer to a classical text of electromagnetism, for example [6].
We now reduce this system to a scalar one describing planar waves. More precisely, let Ω be a domain of \mathbb{R}^{2}. We assume (using the orthogonal Cartesian coordinates x, y, z) that \vec{H} is parallel to the z-axis and only depends on the coordinates x, y, i.e.

$$
\vec{H}=(0,0, H(x, y))
$$

Then

$$
\begin{equation*}
\nabla \times \nabla \times \vec{H}=\left(0,0,-\triangle_{x, y} H\right) \quad\left(\triangle_{x, y}:=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \tag{3.2}
\end{equation*}
$$

We also assume that

$$
\vec{M}=(0,0, M(x, y)), \quad \nabla \times \vec{g}=(0,0, \tilde{f}) ;
$$

then equation (3.1) is reduced to a scalar equation

$$
\begin{equation*}
\frac{4 \pi \sigma}{c^{2}}\left[\frac{\partial}{\partial t}(H+4 \pi M)\right]-\triangle_{x, y} H=f:=\frac{4 \pi \sigma}{c} \tilde{f} \tag{3.3}
\end{equation*}
$$

The purely rate independent hysteretic constitutive relation between H and M is considered in the form

$$
\begin{equation*}
M=\overline{\mathcal{W}}(H) \tag{3.4}
\end{equation*}
$$

where $\overline{\mathcal{W}}$ is a Preisach operator. Since $\overline{\mathcal{W}}$ itself is in typical cases not invertible, we introduce a new variable $V=M+\delta H$ with some $\delta \in(0,1 / 4 \pi)$ to be specified below, and rewrite (3.3), (3.4) as

$$
\left\{\begin{array}{l}
\frac{4 \pi \sigma}{c^{2}} \frac{\partial}{\partial t}[(1-4 \pi \delta) H+4 \pi V]-\triangle_{x, y} H=f \tag{3.5}\\
V=(\delta I+\overline{\mathcal{W}})(H)
\end{array}\right.
$$

which is precisely (1.2) with $\alpha=\frac{4 \pi \sigma}{c^{2}}(1-4 \pi \delta), \beta=\frac{16 \pi^{2} \sigma}{c^{2}}, u=H, w=V$ and $\overline{\mathcal{F}}=\delta I+\overline{\mathcal{W}}$. The rate dependent relaxed constitutive law leading to (1.1) reads

$$
\begin{equation*}
V=(\delta I+\overline{\mathcal{W}})\left(H-\gamma \frac{\partial V}{\partial t}\right) \tag{3.6}
\end{equation*}
$$

4 Existence and uniqueness

In the setting (1.1) or (1.2), the space dimension is not relevant. We therefore consider an open bounded set of Lipschitz class $\Omega \subset \mathbb{R}^{N}, N \geq 1$, set $Q:=\Omega \times(0, T)$, and fix an initial memory configuration

$$
\begin{equation*}
\lambda \in L^{2}\left(\Omega ; \Lambda_{K}\right) \quad \text { for some } K>0 \tag{4.1}
\end{equation*}
$$

where Λ_{K} is introduced in (2.2).
Let $\mathcal{M}\left(\Omega ; \mathcal{C}^{0}([0, T])\right)$ be the Fréchet space of strongly measurable functions $\Omega \rightarrow$ $\mathcal{C}^{0}([0, T])$, i.e. the space of functions $v: \Omega \rightarrow \mathcal{C}^{0}([0, T])$ such that there exists a sequence v_{n} of simple functions with $v_{n} \rightarrow v$ in $\mathcal{C}^{0}([0, T])$ a.e. in Ω.
We fix a constant $b_{\mathcal{F}}>0$ and introduce the operator $\overline{\mathcal{F}}: \mathcal{M}\left(\Omega ; \mathcal{C}^{0}([0, T])\right) \rightarrow$ $\mathcal{M}\left(\Omega ; \mathcal{C}^{0}([0, T])\right)$ in the following way

$$
\begin{equation*}
\overline{\mathcal{F}}(u)(x, t):=\mathcal{F}(u(x, \cdot))(t):=b_{\mathcal{F}} u(x, t)+\mathcal{W}[\lambda(x, \cdot), u(x, \cdot)](t) ; \tag{4.2}
\end{equation*}
$$

here \mathcal{W} is the scalar Preisach operator defined in (2.4).
Now Theorem 2.1 yields that \mathcal{F} is invertible and its inverse is a Lipschitz continuous operator in $\mathcal{C}^{0}([0, T])$. Let us set $\mathcal{G}=\mathcal{F}^{-1}$ and let $L_{\mathcal{G}}$ be the Lipschitz constant of the operator \mathcal{G}.
At this point we introduce the operator

$$
\begin{equation*}
\overline{\mathcal{G}}: \mathcal{M}\left(\Omega ; \mathcal{C}^{0}([0, T])\right) \rightarrow \mathcal{M}\left(\Omega ; \mathcal{C}^{0}([0, T])\right) \quad \overline{\mathcal{G}}:=\overline{\mathcal{F}}^{-1} \tag{4.3}
\end{equation*}
$$

It turns out that

$$
\begin{equation*}
\overline{\mathcal{G}}(w)(x, t):=\mathcal{G}(w(x, \cdot))(t) \quad \forall w \in \mathcal{M}\left(\Omega ; \mathcal{C}^{0}([0, T])\right) ; \tag{4.4}
\end{equation*}
$$

it follows from Theorem 2.1 that $\overline{\mathcal{G}}$ is Lipschitz continuous in the following sense

$$
\left\|\overline{\mathcal{G}}\left(u_{1}\right)(x, \cdot)-\overline{\mathcal{G}}\left(u_{2}\right)(x, \cdot)\right\|_{\mathcal{C}^{0}([0, T])} \leq L_{\mathcal{G}}\left\|u_{1}(x, \cdot)-u_{2}(x, \cdot)\right\|_{\mathcal{C}^{0}([0, T])}
$$

for any $u_{1}, u_{2} \in \mathcal{M}\left(\Omega ; \mathcal{C}^{0}([0, T])\right)$, a.e. in Ω.

Moreover Theorem 2.2 entails that there exist two constants $c_{\mathcal{F}}$ and $C_{\mathcal{F}}$ such that

$$
\begin{equation*}
c_{\mathcal{F}}\left(\frac{\partial u}{\partial t}\right)^{2} \leq \frac{\partial \overline{\mathcal{F}}(u)}{\partial t} \frac{\partial u}{\partial t} \leq C_{\mathcal{F}}\left(\frac{\partial u}{\partial t}\right)^{2} \quad \text { a.e. in } Q \tag{4.5}
\end{equation*}
$$

On the other hand, (4.5) entails

$$
\begin{equation*}
c_{\mathcal{G}}\left(\frac{\partial w}{\partial t}\right)^{2} \leq \frac{\partial \overline{\mathcal{G}}(w)}{\partial t} \frac{\partial w}{\partial t} \leq C_{\mathcal{G}}\left(\frac{\partial w}{\partial t}\right)^{2} \text { a.e. in } Q \text {, with } C_{\mathcal{G}}=\frac{1}{c_{\mathcal{F}}}, c_{\mathcal{G}}=\frac{1}{C_{\mathcal{F}}} \tag{4.6}
\end{equation*}
$$

Consider now system (1.1) with homogeneous Dirichlet boundary conditions and set $V:=H_{0}^{1}(\Omega)$. We first state the existence and uniqueness result.

Theorem 4.1. (Existence and uniqueness)
Let α, β, γ be given positive constants. Suppose that the following assumptions on the data

$$
f \in L^{2}(Q), u^{0} \in V, w^{0} \in L^{2}(\Omega)
$$

hold. Then (1.1) with homogeneous Dirichlet boundary conditions and initial conditions

$$
\begin{equation*}
u(x, 0)=u^{0}(x), \quad w(x, 0)=w^{0}(x) \tag{4.7}
\end{equation*}
$$

admits a unique solution

$$
u \in H^{1}\left(0, T ; L^{2}(\Omega)\right) \cap L^{\infty}(0, T ; V) \cap L^{2}\left(0, T ; W^{2,2}(\Omega)\right), w \in L^{2}\left(\Omega ; \mathcal{C}^{1}([0, T])\right)
$$

Proof. The proof is divided into two steps.

- step 1: the solution operator S. We neglect for the moment the dependence on the space parameter x within the constitutive relation

$$
\begin{equation*}
\gamma \frac{\partial w}{\partial t}+\overline{\mathcal{G}}(w)=u . \tag{4.8}
\end{equation*}
$$

This means that we deal here with the following problem: for a given $u \in \mathcal{C}^{0}([0, T])$, find $w \in \mathcal{C}^{1}([0, T])$ such that

$$
\left\{\begin{array}{l}
\gamma \frac{d w}{d t}+\mathcal{G}(w)=u \quad \text { in }[0, T] \tag{4.9}\\
w(0)=w^{0}
\end{array}\right.
$$

Clearly problem (4.9) admits a unique solution $w \in \mathcal{C}^{1}([0, T])$, for every $u \in \mathcal{C}^{0}([0, T])$, due to the Lipschitz continuity of \mathcal{G}. In this manner we can define the solution operator

$$
S: \mathcal{C}^{0}([0, T]) \rightarrow \mathcal{C}^{1}([0, T]): u \mapsto w
$$

Let us show now that S is Lipschitz continuous in the sense that we prove that there exists a constant L_{S} such that

$$
\begin{equation*}
\left\|S\left(u_{1}\right)-S\left(u_{2}\right)\right\|_{\mathcal{C}^{1}([0, t])} \leq L_{S}\left\|u_{1}-u_{2}\right\|_{\mathcal{C}^{0}([0, t])}, \quad \forall u_{1}, u_{2} \in \mathcal{C}^{0}([0, t]), \quad \forall t \in[0, T] \tag{4.10}
\end{equation*}
$$

Let us consider $u_{1}, u_{2} \in \mathcal{C}^{0}([0, T])$ and let $w_{1}, w_{2} \in \mathcal{C}^{1}([0, T])$ be such that $w_{i}=S\left(u_{i}\right)$, $i=1,2$. The initial data are fixed, that is, $w_{1}(0)=w_{2}(0)=w^{0}$. For any $t \in[0, T]$ we have

$$
\begin{aligned}
\left|\frac{d w_{1}}{d t}(t)-\frac{d w_{2}}{d t}(t)\right| & \leq \frac{1}{\gamma}\left|u_{1}(t)-u_{2}(t)\right|+\frac{L_{\mathcal{G}}}{\gamma} \max _{0 \leq \tau \leq t}\left|w_{1}(\tau)-w_{2}(\tau)\right| \\
& \leq \frac{1}{\gamma}\left|u_{1}(t)-u_{2}(t)\right|+\frac{L_{\mathcal{G}}}{\gamma} \int_{0}^{t}\left|\frac{d w_{1}}{d t}-\frac{d w_{2}}{d t}\right|(\tau) d \tau
\end{aligned}
$$

Hence, by Gronwall's argument,

$$
\int_{0}^{t}\left|\frac{d w_{1}}{d t}-\frac{d w_{2}}{d t}\right|(\tau) d \tau \leq \frac{1}{\gamma} \int_{0}^{t} e^{\frac{L_{\mathcal{G}}}{\gamma}(t-\tau)}\left|u_{1}(\tau)-u_{2}(\tau)\right| d \tau
$$

which yields

$$
\left|\frac{d w_{1}}{d t}(t)-\frac{d w_{2}}{d t}(t)\right| \leq \frac{1}{\gamma} e^{\frac{L_{\mathcal{G}}}{\gamma} T}\left\|u_{1}-u_{2}\right\|_{\mathcal{C}^{0}([0, t])}
$$

for every $t \in[0, T]$. Hence (4.10) holds with $L_{S}=\left(\frac{1}{\gamma}+\frac{1}{L_{\mathcal{G}}}\right) e^{\frac{L_{\mathcal{G}}}{\gamma} T}$.
We easily extend this estimate to the space dependent problem

$$
\left\{\begin{array}{l}
\gamma \frac{\partial w}{\partial t}+\overline{\mathcal{G}}(w)=u \tag{4.11}\\
w(\cdot, 0)=w^{0}(\cdot)
\end{array} \quad \text { a.e. in } Q\right.
$$

with given functions $u \in L^{2}\left(\Omega ; \mathcal{C}^{0}([0, T])\right), w^{0} \in L^{2}(\Omega)$. It immediately follows from (4.10) that the solution mapping

$$
\begin{equation*}
\bar{S}: L^{2}\left(\Omega ; \mathcal{C}^{0}([0, T])\right) \rightarrow L^{2}\left(\Omega ; \mathcal{C}^{1}([0, T])\right): \quad u \mapsto w \tag{4.12}
\end{equation*}
$$

associated with (4.11) is well defined and Lipschitz continuous, with Lipschitz constant L_{S}.
STEP 2: FIXED POINT. Our model problem can be rewritten now as

$$
\begin{equation*}
\frac{\partial}{\partial t}(\alpha u+\beta \bar{S}(u))-\triangle u=f \tag{4.13}
\end{equation*}
$$

with $u(\cdot, 0)=u^{0}(\cdot)$ and homogeneous Dirichlet boundary conditions. The unique solution will be found by the Banach contraction mapping principle.
Let us fix $z \in H^{1}\left(0, T ; L^{2}(\Omega)\right)$; then $z \in L^{2}\left(\Omega ; \mathcal{C}^{0}([0, T])\right)$ and therefore $\bar{S}(z)$ is welldefined and belongs to $L^{2}\left(\Omega ; \mathcal{C}^{1}([0, T])\right)$. Instead of (4.13), we consider the equation

$$
\begin{equation*}
\frac{\partial}{\partial t}(\alpha u+\beta \bar{S}(z))-\triangle u=f \tag{4.14}
\end{equation*}
$$

which is nothing but the linear heat equation. As $f \in L^{2}(Q)$, this means that (4.14) admits a unique solution $u \in H^{1}\left(0, T ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; W^{2,2}(\Omega)\right) \cap L^{\infty}(0, T ; V)$.

We now introduce the set

$$
\tilde{B}=\left\{z \in H^{1}\left(0, T ; L^{2}(\Omega)\right): z(\cdot, 0)=u^{0}(\cdot)\right\}
$$

and the operator

$$
\tilde{J}: \tilde{B} \rightarrow \tilde{B}: \quad z \mapsto u
$$

which with every $z \in \tilde{B}$ associates the solution $u \in \tilde{B}$ of (4.14). In order to prove that \tilde{J} is a contraction, consider now two elements $z_{1}, z_{2} \in \tilde{B}$, and set $u_{1}:=\tilde{J}\left(z_{1}\right)$, $u_{2}:=\tilde{J}\left(z_{2}\right)$. Then we have

$$
\frac{\partial}{\partial t}\left(\alpha\left(u_{1}-u_{2}\right)+\beta\left(\bar{S}\left(z_{1}\right)-\bar{S}\left(z_{2}\right)\right)\right)-\triangle\left(u_{1}-u_{2}\right)=0
$$

We test this equation by $\frac{\partial}{\partial t}\left(u_{1}-u_{2}\right)$ and obtain

$$
\begin{aligned}
& \alpha \int_{\Omega}\left|\frac{\partial}{\partial t}\left(u_{1}-u_{2}\right)\right|^{2}(x, t) d x+\frac{1}{2} \frac{d}{d t} \int_{\Omega}\left|\nabla\left(u_{1}-u_{2}\right)\right|^{2}(x, t) d x \\
\leq & \frac{\alpha}{2} \int_{\Omega}\left|\frac{\partial}{\partial t}\left(u_{1}-u_{2}\right)\right|^{2}(x, t) d x+\frac{L_{S}^{2} \beta^{2}}{2 \alpha} \int_{\Omega} \max _{0 \leq \tau \leq t}\left|z_{1}-z_{2}\right|^{2}(x, \tau) d x
\end{aligned}
$$

where L_{S} is the Lispchitz constant of the operator \bar{S}. This implies that

$$
\begin{align*}
& \int_{\Omega}\left|\frac{\partial}{\partial t}\left(u_{1}-u_{2}\right)\right|^{2}(x, t) d x+\frac{1}{\alpha} \frac{d}{d t} \int_{\Omega}\left|\nabla\left(u_{1}-u_{2}\right)\right|^{2}(x, t) d x \\
\leq & \frac{L_{S}^{2} \beta^{2} t}{\alpha^{2}} \int_{0}^{t} \int_{\Omega}\left|\frac{\partial}{\partial t}\left(z_{1}-z_{2}\right)\right|^{2}(x, \tau) d x d t \tag{4.15}
\end{align*}
$$

We set $\theta:=\frac{L_{S}^{2} \beta^{2}}{\alpha^{2}}$ and we introduce the following equivalent norm on $H^{1}\left(0, T ; L^{2}(\Omega)\right)$

$$
\|\mid \eta\| \|=\left(\|\eta(0)\|_{L^{2}(\Omega)}^{2}+\int_{0}^{T} e^{-\theta t^{2}}\left\|\frac{\partial \eta}{\partial t}\right\|_{L^{2}(\Omega)}^{2}(t) d t\right)^{1 / 2} \quad \forall \eta \in H^{1}\left(0, T ; L^{2}(\Omega)\right)
$$

If now we multiply (4.15) by $e^{-\theta t^{2}}$ and integrate over $t \in(0, T)$, we obtain that

$$
\left|\left\|u_{1}-u_{2}\left|\left\|\leq \frac{1}{2}\left|\left\|z_{1}-z_{2} \mid\right\|\right.\right.\right.\right.\right.
$$

and thus \tilde{J} is a contraction on the closed subset \tilde{B} of $H^{1}\left(0, T ; L^{2}(\Omega)\right)$, which yields the existence and uniqueness of the solution $u \in H^{1}\left(0, T ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; W^{2,2}(\Omega)\right) \cap$ $L^{\infty}(0, T ; V)$.

5 Asymptotic convergence

In this section we investigate the behaviour of the solution of our model problem if the parameter γ goes to zero. We prove the following theorem.

Theorem 5.1. Under the assumptions of Theorem 4.1, let $\left(u_{\gamma}, w_{\gamma}\right)$ be the unique solution of (1.1) corresponding to $\gamma>0$ with initial conditions (4.7) and homogeneous Dirichlet boundary conditions. Then there exists

$$
u \in H^{1}\left(0, T ; L^{2}(\Omega)\right) \cap L^{\infty}(0, T ; V) \cap L^{2}\left(0, T ; W^{2,2}(\Omega)\right)
$$

such that

$$
\begin{array}{ll}
u_{\gamma} \rightarrow u & \text { strongly in } L^{2}\left(\Omega ; \mathcal{C}^{0}([0, T])\right) \\
w_{\gamma} \rightarrow \overline{\mathcal{F}}(u) & \text { strongly in } L^{2}\left(\Omega ; \mathcal{C}^{0}([0, T])\right)
\end{array}
$$

as $\gamma \rightarrow 0$, and u is the unique solution of the equation

$$
\begin{equation*}
\frac{\partial}{\partial t}(\alpha u+\beta \overline{\mathcal{F}}(u))-\triangle u=f \tag{5.1}
\end{equation*}
$$

with initial condition $u(x, 0)=u^{0}(x)$ and homogeneous Dirichlet boundary condition.
Proof. The regularity of u_{γ} and w_{γ} allows us to differentiate (4.11) in time and obtain

$$
\begin{equation*}
\gamma \frac{\partial^{2} w_{\gamma}}{\partial t^{2}}+\frac{\partial \overline{\mathcal{G}}\left(w_{\gamma}\right)}{\partial t}=\frac{\partial u_{\gamma}}{\partial t} \quad \text { a.e. } \tag{5.2}
\end{equation*}
$$

In the series of estimates below, we denote by C_{1}, C_{2}, \ldots any positive constant depending only on the data of the problem, but independent of γ.
We now test the first equation of (1.1) by $\frac{\partial u_{\gamma}}{\partial t}$ and (5.2) by $\beta \frac{\partial w_{\gamma}}{\partial t}$. This yields

$$
\begin{equation*}
\int_{\Omega}\left(\alpha\left(\frac{\partial u_{\gamma}}{\partial t}\right)^{2}+\beta \frac{\partial u_{\gamma}}{\partial t} \frac{\partial w_{\gamma}}{\partial t}\right) d x+\frac{1}{2} \frac{d}{d t} \int_{\Omega}\left|\nabla u_{\gamma}\right|^{2} d x=\int_{\Omega}\left(f \frac{\partial u_{\gamma}}{\partial t}\right) d x \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta \frac{\gamma}{2} \frac{d}{d t} \int_{\Omega}\left(\frac{\partial w_{\gamma}}{\partial t}\right)^{2} d x+\beta \int_{\Omega} \frac{\partial \overline{\mathcal{G}}\left(w_{\gamma}\right)}{\partial t} \frac{\partial w_{\gamma}}{\partial t} d x=\beta \int_{\Omega} \frac{\partial u_{\gamma}}{\partial t} \frac{\partial w_{\gamma}}{\partial t} d x \tag{5.4}
\end{equation*}
$$

Summing up (5.3), (5.4) and using (4.6), we obtain

$$
\frac{\alpha}{2} \int_{\Omega}\left|\frac{\partial u_{\gamma}}{\partial t}\right|^{2} d x+\frac{1}{2} \frac{d}{d t} \int_{\Omega}\left|\nabla u_{\gamma}\right|^{2} d x+c_{\mathcal{G}} \beta \int_{\Omega}\left|\frac{\partial w_{\gamma}}{\partial t}\right|^{2} d x+\beta \frac{\gamma}{2} \frac{d}{d t} \int_{\Omega}\left|\frac{\partial w_{\gamma}}{\partial t}\right|^{2} d x \leq C_{1}
$$

This allows us to obtain the following estimates

$$
\begin{cases}\left\|u_{\gamma}\right\|_{H^{1}\left(0, T ; L^{2}(\Omega)\right) \cap L^{\infty}(0, T ; V)} & \leq C_{2}, \tag{5.5a}\\ \left\|w_{\gamma}\right\|_{H^{1}\left(0, T ; L^{2}(\Omega)\right)} & \leq C_{3}, \\ \sqrt{\gamma}\left\|\frac{\partial w_{\gamma}}{\partial t}\right\|_{L^{\infty}\left(0, T ; L^{2}(\Omega)\right)} & \leq C_{4},\end{cases}
$$

and, by comparison, $\left\|\Delta u_{\gamma}\right\|_{L^{2}(Q)} \leq C_{5}$. This entails that there exists a function u and a sequence $\gamma_{n} \rightarrow 0$ such that

$$
u_{\gamma_{n}} \rightarrow u \text { weakly star in } H^{1}\left(0, T ; L^{2}(\Omega)\right) \cap L^{\infty}(0, T ; V) \cap L^{2}\left(0, T ; W^{2,2}(\Omega)\right) .
$$

On the other hand, by interpolation and after a suitable choice of representatives, we deduce that (see [14], Chapter 4)

$$
H^{1}\left(0, T ; L^{2}(\Omega)\right) \cap L^{\infty}(0, T ; V) \subset L^{2}\left(\Omega ; \mathcal{C}^{0}([0, T])\right)
$$

with continuous and compact injection; this ensures that

$$
u_{\gamma_{n}} \rightarrow u \text { strongly in } L^{2}\left(\Omega ; \mathcal{C}^{0}([0, T])\right),
$$

in particular (passing to subsequences if necessary),

$$
\begin{equation*}
u_{\gamma_{n}} \rightarrow u \text { uniformly in }[0, T], \text { a.e. in } \Omega . \tag{5.6}
\end{equation*}
$$

On the other hand, the constitutive relation (4.8) yields

$$
\left\|u_{\gamma}-\overline{\mathcal{G}}\left(w_{\gamma}\right)\right\|_{L^{\infty}\left(0, T ; L^{2}(\Omega)\right)} \leq \gamma\left\|\frac{\partial w_{\gamma}}{\partial t}\right\|_{L^{\infty}\left(0, T ; L^{2}(\Omega)\right)}
$$

and this, together with (5.5c), entails that

$$
u_{\gamma}-\overline{\mathcal{G}}\left(w_{\gamma}\right) \rightarrow 0 \quad \text { strongly in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \text { as } \gamma \rightarrow 0
$$

From now on, we keep the sequence $\gamma_{n} \rightarrow 0$ fixed as in (5.6). Our aim is now to show that there exists a function w such that

$$
\begin{equation*}
w_{\gamma_{n}} \rightarrow w \text { uniformly in }[0, T] \text {, a.e. in } \Omega . \tag{5.7}
\end{equation*}
$$

In fact, this will allow us to pass to the limit in the nonlinear hysteresis term. We show that (5.7) is obtained from (5.6) by using the following lemma:

Lemma 5.2. Consider a sequence of functions $\left\{u_{n}\right\}_{n \in \mathbb{N}} \in \mathcal{C}^{0}([0, T])$ such that

$$
\left\|u_{n}-u\right\|_{\mathcal{C}^{0}([0, T])} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Let $0<a_{n} \leq \alpha_{n}(t) \leq b_{n}$ be measurable functions, with $\lim _{n \rightarrow \infty} b_{n}=0$. Finally let $\left\{v_{n}\right\}_{n \in \mathbb{N}}$ be solutions of the following Cauchy problem

$$
\left\{\begin{array}{l}
\alpha_{n}(t) \frac{d v_{n}}{d t}(t)+v_{n}(t)=u_{n}(t) \\
v_{n}(0)=u_{n}(0)
\end{array}\right.
$$

Then

$$
\left\|v_{n}-u\right\|_{\mathcal{C}^{0}([0, T])} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Proof. Put $\beta_{n}(t)=\frac{1}{\alpha_{n}(t)}$. Then

$$
v_{n}(t)=e^{-\int_{0}^{t} \beta_{n}(\tau) d \tau} u_{n}(0)+\int_{0}^{t} \beta_{n}(s) e^{-\int_{s}^{t} \beta_{n}(\tau) d \tau} u_{n}(s) d s
$$

hence, for all $t \in[0, T]$, we get

$$
v_{n}(t)-u_{n}(t)=e^{-\int_{0}^{t} \beta_{n}(\tau) d \tau}\left(u_{n}(0)-u_{n}(t)\right)+\int_{0}^{t} \beta_{n}(s) e^{-\int_{s}^{t} \beta_{n}(\tau) d \tau}\left(u_{n}(s)-u_{n}(t)\right) d s
$$

Let now $\varepsilon>0$ be given. Using the Ascoli-Arzelà theorem, we find $\delta>0$ independent of n such that

$$
\left|t_{1}-t_{2}\right|<\delta \Rightarrow\left|u_{n}\left(t_{1}\right)-u_{n}\left(t_{2}\right)\right|<\varepsilon
$$

For $t \in[0, \delta]$ we have

$$
\left|v_{n}(t)-u_{n}(t)\right| \leq \varepsilon\left(e^{-\int_{0}^{s} \beta_{n}(\tau) d \tau}+\int_{0}^{t} \beta_{n}(s) e^{-\int_{s}^{t} \beta_{n}(\tau) d \tau} d s\right)=\varepsilon
$$

Let now $t>\delta$, and let

$$
C=\sup \left\{\left|u_{n}\left(t_{1}\right)-u_{n}\left(t_{2}\right)\right|, t_{1}, t_{2} \in[0, T], n \in \mathbb{N}\right\}
$$

Then

$$
\begin{aligned}
\left|v_{n}(t)-u_{n}(t)\right| & \leq C e^{-\int_{0}^{t} \beta_{n}(\tau) d \tau}+\varepsilon \int_{t-\delta}^{t} \beta_{n}(s) e^{-\int_{s}^{t} \beta_{n}(\tau) d \tau} d s+C \int_{0}^{t-\delta} \beta_{n}(s) e^{-\int_{s}^{t} \beta_{n}(\tau) d \tau} d s \\
& =\varepsilon\left(1-e^{-\int_{t-\delta}^{t} \beta_{n}(\tau) d \tau}\right)+C e^{-\int_{t-\delta}^{t} \beta_{n}(\tau) d \tau} \leq \varepsilon+C e^{-\frac{\delta}{b_{n}}}
\end{aligned}
$$

and thus Lemma 5.2 follows.
Let $\Omega^{\prime} \subset \Omega$ be a set of full measure ($\operatorname{meas}\left(\Omega \backslash \Omega^{\prime}\right)=0$) such that, by virtue of (5.6), $u_{\gamma_{n}}(x, \cdot) \rightarrow u(x, \cdot)$ converges uniformly for all $x \in \Omega^{\prime}$. Keeping now $x \in \Omega^{\prime}$ fixed, set

$$
u_{\gamma}(x, \cdot):=\tilde{u}_{\gamma}(\cdot), \quad w_{\gamma}(x, \cdot):=\tilde{w}_{\gamma}(\cdot)
$$

We recall from (4.2) that

$$
\mathcal{F}(v(x, \cdot))(t)=\overline{\mathcal{F}}(v)(x, t) \quad \forall v \in \mathcal{M}\left(\Omega ; \mathcal{C}^{0}([0, T])\right)
$$

Our idea is to apply Lemma 5.2 to the Cauchy problem

$$
\left\{\begin{array}{l}
\tilde{w}_{\gamma}=\mathcal{F}\left(\tilde{u}_{\gamma}-\gamma \frac{d \tilde{w}_{\gamma}}{d t}\right), \tag{5.8}\\
\tilde{w}_{\gamma}(0)=\mathcal{F}\left(\tilde{u}_{\gamma}\right)(0)
\end{array}\right.
$$

which we rewrite as

$$
\left\{\begin{array}{l}
\gamma \frac{d \tilde{w}_{\gamma}}{d t}+\tilde{v}_{\gamma}=\tilde{u}_{\gamma} \tag{5.9}\\
\tilde{w}_{\gamma}=\mathcal{F}\left(\tilde{v}_{\gamma}\right) \\
\tilde{w}_{\gamma}(0)=\mathcal{F}\left(\tilde{u}_{\gamma}\right)(0)
\end{array}\right.
$$

We now set

$$
\alpha_{\gamma}(t)= \begin{cases}\gamma \frac{d \mathcal{F}\left(\tilde{v}_{\gamma}\right)}{d t}(t) / \frac{d \tilde{v}_{\gamma}}{d t}(t) & \text { if } \frac{d \tilde{v}_{\gamma}}{d t} \neq 0 \\ \gamma c_{\mathcal{F}} & \text { if } \frac{d \tilde{v}_{\gamma}}{d t}=0\end{cases}
$$

From (4.5) we obtain that

$$
0<\gamma c_{\mathcal{F}} \leq \alpha_{\gamma}(t) \leq \gamma C_{\mathcal{F}}
$$

Hence, system (5.9) can be rewritten in the form

$$
\left\{\begin{array}{l}
\alpha_{\gamma}(t) \frac{d \tilde{v}_{\gamma}}{d t}(t)+\tilde{v}_{\gamma}(t)=\tilde{u}_{\gamma}(t) \\
\tilde{v}_{\gamma}(0)=\tilde{u}_{\gamma}(0)
\end{array}\right.
$$

We have that

$$
\tilde{u}_{\gamma_{n}} \rightarrow \tilde{u} \text { uniformly in } \mathcal{C}^{0}([0, T]) \text { as } \gamma_{n} \rightarrow 0
$$

hence by Lemma 5.2,

$$
\tilde{v}_{\gamma_{n}} \rightarrow \tilde{u} \text { uniformly in } \mathcal{C}^{0}([0, T]) \text { as } \gamma_{n} \rightarrow 0
$$

This in turn entails that

$$
\tilde{w}_{\gamma_{n}} \rightarrow \mathcal{F}(\tilde{u}) \text { uniformly in } \mathcal{C}^{0}([0, T]) \text { as } \gamma_{n} \rightarrow 0
$$

Since $x \in \Omega^{\prime}$ has been chosen arbitrarily, we obtain

$$
w_{\gamma_{n}} \rightarrow \overline{\mathcal{F}}(u) \text { uniformly in } \mathcal{C}^{0}([0, T]), \text { a.e. in } \Omega \text { as } \gamma_{n} \rightarrow 0 .
$$

We thus checked that u is a solution of (5.1) with the required boundary and initial condition. Since this solution is unique by the argument of [5], we conclude that u_{γ} converges to u independently of how γ tends to 0 . This completes the proof of Theorem 5.1.

Acknowledgement. The first author wishes to acknowledge the kind and generous hospitality of WIAS - Weierstrass-Institute for Applied Analysis and Stochastics, as well as the friendly and creative atmosphere there.

References

[1] F. Bagagiolo, A. Visintin: Hysteresis in filtration through porous media, Z. Anal. Anwendungen 19 (4) (2000) 977-998.
[2] M. Brokate, J. Sprekels: Hysteresis and phase transitions, Applied Mathematical Sciences, 121, Springer-Verlag, New York (1996).
[3] M. Brokate, A. Visintin: Properties of the Preisach model for hysteresis, J. Reine Angew. Math. 402 (1989) 1-40.
[4] M. Eleuteri: "On some P.D.E. with hysteresis", Ph.D. Thesis, University of Trento, 2006.
[5] M. Hilpert: On uniqueness for evolution problems with hysteresis. In: Mathematical Models for Phase Change Problems (J.F. Rodrigues, ed.). Birkhäuser, Basel (1989), pp. 377-388.
[6] J.D. Jackson: Classical electrodynamics, New York, Wiley, 1975.
[7] M.A. Krasnosel'skĭ̌, A.V. PokrovskiĬ: Periodic oscillations in systems with relay nonlinearities, Soviet Math. Dokl. 15 (1974) 873-877.
[8] M.A. Krasnosel'skiĬ, A.V. Pokrovskĭ̆: Modelling transducers with hysteresis by means of continuous systems of relays, Soviet Math. Dokl. 17 (1976) 447-451.
[9] M.A. Krasnosel'skĭ̆, A.V. PokrovskiĬ: Systems with hysteresis, Springer, Berlin (1989), Russian edition: Nauka, Moscow (1983).
[10] P. Krejc̆í: On Maxwell equations with the Preisach hysteresis operator: the one-dimensional time-periodic case, Apl. Mat. 34 (1989) 364-374.
[11] P. Krejčí: Hysteresis, convexity and dissipation in hyperbolic equations, Tokyo: Gakkotosho, (1996).
[12] P. Krejčí, Ph. Laurençot: Generalized variational inequalities, J. Convex Anal. 9 (2002), 159-183.
[13] P. Krejčí, Ph. Laurençot: Hysteresis filtering in the space of bounded measurable functions, Boll. Unione Mat. Ital. 5-B (2002), 755-772.
[14] J.L. Lions, E. Magenes: Problèmes aux limites non homogènes, (vol. I), Dunod (1968).
[15] I.D. Mayergoyz: Mathematical models of hysteresis, Springer, New York (1991).
[16] F. Preisach: Über die magnetische Nachwirkung, Z. Physik 94 (1935) 277-302.
[17] A. Visintin: On the Preisach model for hysteresis, Nonlinear Analysis, T.M.A. 9 (1984) 977-996.
[18] A. Visintin: Differential Models of Hysteresis, Springer, (1994).

[^0]: ${ }^{1}$ Università degli Studi di Trento, Dipartimento di Matematica, Via Sommarive 14, I-38050 Povo (Trento), Italy, E-mail: eleuteri@science.unitn.it. Guest of WIAS - Weierstrass-Institute for Applied Analysis and Stochastics, Mohrenstr. 39, D-10117 Berlin, Germany. Partially supported by INdAM and by MIUR - COFIN project "Mathematical modelling and analysis of free boundary problems".
 ${ }^{2}$ Weierstrass-Institute for Applied Analysis and Stochastics, Mohrenstr. 39, D-10117 Berlin, Germany, E-mail: krejci@wias-berlin.de.
 ${ }^{3}$ On leave from the Mathematical Institute, Academy of Sciences of the Czech Republic, Žitná 25, CZ-11567 Praha 1.

