
 

 

 
 
 

 
 

UNIVERSITY 
OF TRENTO 

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY 
  

38050 Povo – Trento (Italy), Via Sommarive 14 
http://www.dit.unitn.it 
 
 
 
 
 
 
 
 
 
 
 
LICENSING SERVICES: FORMAL ANALYSIS AND 
IMPLEMENTATION 
  
G.R.Gangadharan, Vincenzo D’Andrea 
 
August 2006 
 
Technical Report # DIT-06-053 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 



Licensing Services: Formal Analysis and
Implementation

G.R.Gangadharan and Vincenzo D’Andrea

Department of Information and Communication Technology,
University of Trento,

Via Sommarive, 14, Trento, 38050 Italy
gr@dit.unitn.it and dandrea@dit.unitn.it

Abstract. The distribution of services spanning across organizational
boundaries raises problems related to intellectual value that are less ex-
plored in service oriented research. Being a way to manage the rights
between service consumers and service providers, licenses are critical to
be considered in services. As the nature of services differs significantly
from traditional software and components, services prevent the direct
adoption of software and component licenses. For drafting a family of
machine readable licenses, the clauses of a service license should be un-
ambiguous. We propose a formalisation of licensing clauses specific to
services for unambiguous definition of a license. We extend Open Digital
Rights Language to implement the clauses of service licensing, making a
service license compatible with all the existing service standards.

1 Introduction

Service oriented computing (SOC) is an emerging distributed systems paradigm
referring to systems structured as networks of loosely coupled, communicating
services [1]. While software behaves as a stand-alone application, services in-
tend making network-accessible operations available anywhere and anytime. In
contrast to traditional software components [2], the functionality of a service re-
sides and runs at the provider’s host in a distributed way beyond organizational
boundaries, and consumers are not required to download the service executable
for consuming the service. While components encapsulate coarse grained func-
tionalities, the granularity of services could range from finer to coarse. Further,
services allow the applications to be constructed on-the-fly and to be reused
everywhere. As service oriented applications are rapidly penetrating the society,
there arises a need for governing their access and distribution. Although services
are software fragments, the distinguishing characteristics of services preclude
them to be licensed under traditional software / component licenses. We have
explored in [3] the dimensions of services inducing a new paradigm of licensing.
Nevertheless, being services accessed and consumed in a number of ways, there
is the need to carefully define a set of licenses suitable for services.

Researches focus mainly on the expression of functional as well as non-
functional properties of services. There exists an obvious paucity of licensing



clauses for a service and embedding a license within a service. In order to fulfill
this gap, we study the strategy of implementing licenses within a service. The
salient features of our approach are:

– Formal representation of licensing clauses to unambiguously describe a ser-
vice license.

– Extension of Open Digital Rights Language (ODRL) to encompass the ser-
vice licensing clauses.

As licenses form the basis for distribution of services, in this paper, we elu-
cidate a formal analysis of service licenses together with an implementation
scenario of expressing the licensing terms in services. We describe by presenting
various examples how a service interface and realization could be exploited by
other services in Section 2. Section 3 compares various languages illustrating
functional and non-functional properties of services as complementary to WSDL
and elucidates their lack of expressiveness in describing the clauses of licensing.
The formal description of licenses are presented in Section 4. We implement
some of the service licensing clauses by extending ODRL in Section 5. Finally,
we illustrate licensing of a service by extended ODRL in Section 6.

2 Exploring Service Licensing Clauses

A service is represented by an interface part defining the functionality visible to
the external world and an implementation part realizing the interface [4]. In this
section, we will analyze some of the prominent combinations of reproduction
(or not) of the service interface, relationship between services (compositional
properties), and derivation (or not) from the source code.

As service interfaces (WSDL) together with bindings are publicly available,
several services could be created with the same interface. These services can vary
in their performance and Quality of Service (QoS) issues. However, copying and
using the interface with or without modifications are twined with intellectual
values.

By the following example, we show how a service could simply be repro-
duced by copying an interface directly: Let SA be a service providing a spell
checking operation for words, say, Spell(word). Consider SA provides this ser-
vice by wrapping a proprietary word processor (PWP) spell checker API. As the
WSDL interface of this service is publicly available, any service, say SB could
copy this interface and the interface of SA could be used by SB with or without
modifications. Thus, SB is an another independent service, wrapping an other
proprietary word processor (QWP) spell checker API, created by replicating the
WSDL of the SA. Albeit SA and SB are performing the same operations, SA

and SB are two different services, executed separately.
The prominent scenarios on reproduction of interface with modifications

are as follows:

1. The interface of a service could be modified by changing the name of some
operations such as for translation i.e. the expression of a service in a language
other than that of the original version.



2. The interface of a service could be modified by some changes in the service
parameters such as for data translation or by some pre-processing and/or
post-processing of the service.

The reproduction by interface translation is illustrated in Figure 1. The in-
terface of SA is translated by SB to provide a spell checking operation in Italian
language, say Ortografia(parole). In this case, SB translates the interface of
SA and results in the Italian version of SA as an independent service. Following
the styles of [5], in Figure 1, services are represented by the shadowed rectangu-
lar boxes. An operation of a service interface is represented as a UML package
marked by a stereotype << desc >>. The wrapped application for the service
is shown on the left side of the service.

We refer to composition as the federation of a service with other remote
services. In other words, the operations of a composite service relies on the
availability of services being composed. Let SB be a service providing a spell
checking operation Spell(sentence) for sentences, that could compose internally
operations for spelling of words with a parser. SB could be designed in such a
way (See Figure 2) that Spell(word) of SB directly invokes the operation of SA,
executing on the host of SA. In the absence of SA, SB fails to perform.

Fig. 1. Reproduction with Modified Interfaces Fig. 2. Composition of Services

Though the underlying assumption of SOC is composition, a service can deny
or limit other services to use itself in a composition.

A service could deny or allow to use or modify the service realization. A
service could allow to use its realization as an executable in an other service.
Consider SA allows SB to use it as an executable. However, SA could restrict
SB not to modify the operations of SA.

A service could allow to modify its realization by other service. The modifica-
tion of a service realization, termed as derivation of a service, is an inspiration
by Free 1 and Open Source 2 Software (FOSS) movement. Consider a service
SA providing Spell(word) operation for spell checking of a word. A new service
SB , performing spell checking for a sentence, could be derived from SA. The

1http://www.fsf.org/
2http://www.opensource.org/



derived service SB contains an operation for parsing Parser() in addition to
the operation of SA. In this case (See Figure 3), SB significantly modifies the
operation of SA and thus SB is a derivative service of SA.

Fig. 3. Normal Derivation Fig. 4. Replica Derivation

Making a replica of a service uses the service realization and service interface.
If the WSDL interface as well as realization of a service allows for copying,
replica services (See Figure 4) are created. Consider SB as an independent service
created by replicating/mirroring the source code of realization and WSDL of
SA. Though SA and SB are performing the same operations, SA and SB are two
different services, executed separately. Theoretically, there will be no differences
(may include network delays!) in performances of both the services. Thus, derived
service is a manifestation of ‘Free Culture’.

Beyond these aspects, a service may expect certain moral rights [6] to be
satisfied. A service, SA, could expect the service, say SB , being composed /
derived / reproducing the interface to reflect the same terms and conditions
of the SA (Similar to ‘Sharealike’ of CreativeCommons [7] or Copyleft [8]).

A service may expect the attribution for its use by the other service in
any of the forms. As attribution is considered a basic requirement, a service
should give the proper credit for the service that it uses. In case of composition,
the composite service could be required to give attribution for every level of
composition as in a BSD license [9].

Further, a service could allow/deny the other service depending on the usage
either for non-commercial purposes or for commercial purposes.

3 Licensing Clauses in Service Descriptions Languages

WSDL is the standard way to describe what a service does. Researches focusing
on languages to enhance and to complete the description provided by WSDL are
continually in progress. These languages being complementary to WSDL address
functional/non-functional properties and business/management information of
services with varying levels of details.

Web Service Level Agreement (WSLA): The WSLA framework [10] de-
scribes the complete life cycle of a Service Level Agreement (SLA) including SLA



establishment by negotiation (signing of a SLA by signatory parties for a given
service offering), SLA deployment (checking the validity of the SLA and dis-
tributing it), Service level measurement and reporting (configuring the run-time
system to meet a set of SLAs and comparing measured SLA parameters against
the thresholds defined in the SLA), Management actions (determining SLA vi-
olations and corrective management actions to be taken), and SLA termination
(specifying the conditions for termination). The WSLA framework enables to
specify and monitor a wide variety of SLAs for web services. Based on XML, the
WSLA language defines a type system for the various SLA artifacts. A SLA in
WSLA is comprised of parties (identifying all the contractual parties), service de-
scription (specifying the characteristics of service and the observable parameters
like service availability, throughput, or response time), and obligations (defining
various guarantees and constraints to be imposed on SLA parameters).

The WSLA language is a general purpose way to express performance char-
acteristics of web services.WSLA encompasses the agreed performance charac-
teristics and the way to evaluate and measure them. However, WSLA does not
focus on the rights to be associated with service provider and service consumer.

SLA notation generator (SLAng): SLAng [11] is a XML based language,
for describing Service Level Specifications in the domain of distributed systems
and e-business. This language has been modeled by Object Constraints Lan-
guage (OCL) and Unified Modeling Language (UML) in order to define SLA
precisely. SLAng formally defines SLA vocabulary in terms of the behaviour of
the services and clients involved in service usage, with reference to a model of
service usage. A SLA described in SLAng comprises information on parties in-
volved (end point description of contractors), contractual statements (defining
the agreement), and QoS description with the associated metrics (service level
specifications). Further, SLAng supports the inter-service composition of SLAs
as a description of relationship between possible service behaviors.

Although SLAng has a broader scope beyond web services enabling different
types of SLAs, SLAng is silent about the intellectual rights associated with
services.

Web Service Offering Language (WSOL): WSOL [12], a language for
specifying constraints, management information, and service offering, provides
different service levels defined by several classes of services. The same WSDL de-
scription with differing constraints (functional, non-functional, and access right)
and managerial statements (price, penalty, and responsibility) is referred as
‘classes of service’ of a web service in WSOL. Consequently, different classes
of services could vary in prices and payment models in business aspect. WSOL
offers several reusability elements to enable easier derivation of a new service
offering from the existing offerings.

The value of WSOL lies in the simplicity of the negotiation process and the
simplified management infrastructure of WSOL. While the technical contracts
of web services are described in [13], the syntax of business and legal contents
of contracts are not considered in WSOL.



WS-Policy: WS-Policy [14] provides a general framework to specify and
communicate (publish) policies for web services. It is a model for expressing
the capabilities, requirements, and general characteristics of a web service as
policies. WS-Policy provides a base set of constructs that can be used and ex-
tended by other web services specifications to describe a broad range of service
requirements, preferences, and capabilities.

WS-Policy defines a policy as a collection of policy alternatives. In turn,
each policy alternative comprises a collection of policy assertions. Each policy
assertion indicates an individual requirement, capability or other property of a
behaviour. WS-policy is one of the fundamental works for specifying policies for
web services. However, WS-Policy does not detail the specification of functional
constraints, QoS policies, and other related management information.

We have analysed the current attempts by some of the web service languages
to describe functional and/or non-functional properties and managerial informa-
tion of services. Every language describes certain properties of services entirely.
Generally, all the standards focus on the QoS and the terms and conditions
agreed by the provider and consumer.

However, in our view, none of them intensively describe the distribution
aspects and the ownership clauses of licensing. The business and legal contractual
information are not focused in detailed level by the services research community.
The issues of copyrights and moral rights [15] are unexplored by the currently
available service description standards. We think, there is a need to be considered
to enable a broad usage of service that preserves certain rights of the owner and
presents certain rights to the consumer.

4 Formalising the Service Licenses

A service could allow/deny itself to be used by other services. Further, a service
could allow/deny to reuse its interface with or without modification. Allowing or
denying composition and derivation influences reuse of services significantly. As
every license is described by the clauses described in Section 2, we will formalise
these clauses to avoid ambiguity in describing service licenses.

Let {op(SA)} be the set of operations offered by a service SA. We refer to
each clause (C) of the license for service SA as CSA

.
We define Interface Expressive Power (E) as the degree to which a service

interface is explainable, described by the number of operations involved and the
number and type of parameters of operation. We define E as,

E = n +
∑n

i=1

(Pm
j=1 δj

m

)
Where n is the number of operations of an interface and for each operation, m
is the number of parameters. δj is the measure of the complexity of the data
type. Following WSDL definitions, we consider simple, derived, and complex
data types, assuming as 1, 2, and 3 respectively.

Derivation (D): Derivation of a service, inspired by FOSS, is a new aspect
of creating a new service from existing service, modifying the WSDL interface



and implementation. We define a service as an ‘Open Service’ [16] if the service
provides its WSDL interface as well as source code freely available for creating
a new and independent service. The open service allows the new service to use
a modified version of the original source code. A service SB is said to be derived
from SA if {op(SB)} ⊇ {op(SA)} on satisfying the following two conditions: (i) To
exist SB , SA should be an ‘Open Service’ and (ii) SA and SB are independent in
execution. Normal Derivation (see Figure 3) is represented formally as {op(SB)}
⊃ {op(SA)}. Replica Derivation (see Figure 4) is represented by {op(SB)} ≡
{op(SA)}. In any case of derivation, the E of the derived service is always higher
than or equal to the E of the service used for derivation. Thus, E(SB) ≥ E(SA).
However, network latency issues in delivery of SA and SB could exist.

Reproduction (R): Reproduction signifies making a new independent ser-
vice, modifying an existing service interface. In our definition, reproduction dif-
fers from derivation because it affects only the interface. However, service re-
alization could be slightly changed. {op(SB)} 6= {op(SA)} if a service SA is
reproduced as an other independent service SB .

Weyuker’s property number 8 of software complexity [17] explicitly states
that if a program is a straight renaming of another program, its complexity
would be same as the original program [17]. Observing this property for service
interfaces, reproduction could be seen as renaming in the interface level. Thus,
the E of the reproduced service remains unchanged: E(SB) = E(SA).

Composition (C): Composition is a form of integration of services with
value addition provided a composite service could be further composable [18].
Composition of services specifies the participating services, the invocation se-
quence of services and the methods for handling exceptions [19]. A service S is
said to be composite if {op(S)} ⊃ {Of : Of ε {op(Si)}} and S exists only if Si

exists where i = 1, 2, ..., n. Of could be a single operation or a set of operations
adding value addition by combining all or some of the operations of Si. Several
types of composition could exist [20].

Based on Weyuker’s properties (property numbers 5 and 9) of software com-
plexity, we propose the E of a composite service differing from the E of the
composing service obviously. Thus, E(S) 6= E(Si, Sj).

Attribution (A): Attribution means to ascribe a service to the entity re-
sponsible for its creator. If a service SB uses a service SA, then the attribution
to SA could be formally represented as ASB

⊃ ASA
. The levelled attribution as

in BSD styled service licensing is represented by ASC
⊃ ASB

⊃ ASA
.

Similar Terms (T): A service SA may expect another service SB (which
uses SA) to have the same terms as of SA. In other words, L(SB) = L(SA) where
SA uses SB and L(S) is the service license defined as below.

Non-Commercial Use (N): A service SB could deny its use for commer-
cial purposes. NSB

= 1 implies that an other service SA could use SB if SA is
not commercial.

Now, we define the license L of a service S as 3

L(S) = (D,R,C, A, T,N).



The combinations of these licensing clauses define a family of licenses for
services ranging from the most restrictive to the most unrestrictive.

5 Implementing Licenses in Services

In the domain of Digital Rights Management (DRM) [21] for digital contents and
multimedia, few languages and models capable of expressing a range of licenses
are existing. In the pioneering work of [22], a mathematical model for describing
payment and rendering events is described. In [23], the properties of licenses
are stated and proved by using deontic logic. LicenseScript [24] based on multi-
set rewriting, expresses dynamic conditions of audio/video contents. Copyrights
and other related rights are also not formalised in all these models. As these
models and languages restrict themselves within the domain of digital contents
and multimedia, they could not be adaptable for describing services.

Instead of proposing a new language for describing the licensing aspects of
services, we could draft the terms and agreements of license using existing rights
expression languages. XrML [25] is a proprietary language, currently the basis
of MPEG-21. As some of the claims in the patents of systems using XrML cover
the distribution and use of digital works and the use of a grammar in connection
with the distribution of digital works [26], we avoid XrML for implementing the
terms of licenses in services.

Another option for describing licensing aspects of services could be in Open
Digital Rights Language (ODRL) [27], an open standard language for the ex-
pressions of terms and conditions over assets. The core entities of ODRL are as
follows:

– Assets: a resource being licensed, for instance, a web service.
– Rights: rules concerning permissions (the actual usages or activities allowed

over the assets), constraints (limits to these permissions), requirements (the
obligations needed to exercise the permission), and conditions (the specifi-
cations of exceptions that, if become true, expire the permissions and re-
negotiation may be required).

– Parties: information regarding the service provider, consumer, broker etc.,

With these three entities, ODRL expresses offers (proposals from rights holders
for specific rights over their assets) and agreements (contracts or deals between
the parties, with specific offers). The representation of offers and agreements is
the core aspect of ODRL.

Beyond being an open standard, we intend to select ODRL for our work as
ODRL has wide acceptance and is defined in XML. Since ODRL proved itself as
an appropriate right expression language and is extensible by defining additional

3Further, a service license could comprise the terms of consideration and royalties,
indemnification and limitation of liability, warranties and representations, and other
clauses. These terms are integral for a legally enforceable license. In this paper, we are
primarily concerned with the clauses directly associating copyrights and moral rights
of a service license.



data dictionaries, it seems to be reasonable to select ODRL for description of
machine readable licensing agreements for services. The proposed licenses would
sit alongside with WSDL. As we define the licenses for services in ODRL, the
licenses could be used with any existing frameworks or tools used for service
composition and could be used with any languages describing services.

ODRL/L(S) Data Dictionary Semantics expresses the core L(S) semantics
in the ODRL4. With this proposal, we extend ODRL to define the clauses of a
service license L(S), by creating a new data dictionary that imports the ODRL
expression language schema.

ODRL Element Identifier Description

Permission Derivation (D) The service may be derived.

<xsd:element name="Derivation" type="o-ex:permissionType"

substitutionGroup="o-ex:permissionElement"/>

Permission Reproduction (R) The service may be reproduced.

<xsd:element name="Reproduction" type="o-ex:permissionType"

substitutionGroup="o-ex:permissionElement"/>

Permission Composition (C) The service may be composed.

<xsd:element name="Composition" type="o-ex:permissionType"

substitutionGroup="o-ex:permissionElement"/>

Requirement Attribution (A) The use of service must always include
attribution of the service.

<xsd:element name="Attribution" type="o-ex:requirementType"

substitutionGroup="o-ex:requirementElement"/>

Constraints SimilarTerms (T ) The license terms should be same with
out changed when used/reused.

<xsd:element name="SimilarTerms" type="o-ex:constraintType"

substitutionGroup="o-ex:constraintElement"/>

Constraints NonCommercialUse
(N)

The service is for non-commercial pur-
poses.

<xsd:element name="NonCommercialUse" type="o-ex:constraintType"

substitutionGroup="o-ex:constraintElement"/>

Table 1. ODRL/L(S) Data Dictionary Semantics and Schema

6 A Scenario of Service Licensing

In order to illustrate our approach, we consider a simple scenario where R
is a restaurant service providing the following operations (and parameters):

4Though few semantics of ODRL/L(S) resembles to the ODRL Creative Commons
Profile [28], the underlying clauses of a service license and the method of implemen-
tation within the WSDL of a service differ entirely. The meanings and motivations of
ODRL/L(S) data dictionary are related to the field of SOC. To the best of our knowl-
edge, there exists no previous works on the aspects of service licenses using ODRL.



R0, information on location and opening hours (address : complex; hours :
complex); R1, the facility for reserving table (seats : simple; name : simple;
reservedTable : simple); R2, a catalogue of specialty cuisines (menuType :
simple; listing : complex); R3, a daily recipe for one of the specialty cuisine
(ingredients : complex; difficulty : simple; timeforPreparation : simple;
preparation : complex). In this scenario, the interface expressive power (E) of
R is given by,

E = n+
∑n

i=1

(Pm
j=1 δj

m

)
= 4+((3+3)+(1+1+1)+(1+3)+(3+1+1+3)) = 25

Consider R having the following clauses of licensing:
1. The license clauses of R may deny the provision of R3 to other services

intended for providing recipe information exclusively that means the service
R denies reproduction.

2. R requires a service to be licensed same as R.
3. R allows composite works for noncommercial purposes.

The above clauses could be represented in extended ODRL as follows:

<!-- Namespace Declarations -->

1 <o-ex:offer>

2 <o-ex:asset>

3 <o-ex:context>

4 <o-dd:uid>............</o-dd:uid>

5 </o-ex:context>

6 </o-ex:asset>

7 <o-ex:permission>

8 <ls:Composition/>

9 </o-ex:permission>

10 <o-ex:constraint>

11 <ls:NonCommercialUse/>

12 <ls:SimilarTerms/>

13 </o-ex:constraint>

14 <o-ex:requirement>

15 <o-dd:attribution/>

16 </o-ex:requirement>

17 </o-ex:offer>

From the given licensing clauses of R, it is perceptible that R denies reproduction.
A new service could not be created by directly using R. However R allows composition.
Assuming R as a non-open service, R forbids derivation.

Another service, F , a restaurant finder service uses R, for the following operations:
F1, a restaurant locator giving a list of restaurants close to a given location and using
R0 (as well as similar operations for other restaurants); F2, for intermediating table
reservation, using R1; F3, a daily recipe randomly selected among the recipes provided
by the restaurants listed using F (in the case of R, it will use operation R3). F can
use R in a composition even the reproduction is prohibited. R expects SimilarTerms
license for F that is using R. In this case, the license terms of F will have to comply
with R, for the request and deny provision of F3 to other services intended to provide
the recipe information exclusively.



Identifier Value Lines of code

Derivation (D) No (Denied)

Composition (C) Yes 7 - 9

Reproduction (R) No (Denied)

Attribution (A) Yes 14 - 16

SimilarTerms (T ) Yes 10 - 13

NonCommercialUse (N) Yes 10 - 13
Table 2. Extended ODRL Clauses and Values for Service R

7 Concluding Remarks

Being a way to enable widespread use of services and to manage the rights between
service consumers and service providers, licenses are critical to be considered in services.
We have proposed a formal representation of licensing clauses to describe the licenses in
machine understandable form that would be recognizable by services. We have extended
ODRL to define the licensing clauses of services, as ODRL licenses are compatible with
all service standards. We have focused on the aspects of copyrights and moral rights
in this paper, introducing a free culture of services.

As composition federates independently developed services into a more complex
service, the license proposed for the composed service should be consonant with the
implemented licenses of individual services. In our future work, we intend to propose a
framework for match making to compare the service licenses, iterating over the licensing
clauses of services to be composed. Based on the comparison of the rights expressed
on services to be composed, the framework would also be able to suggest dynamically
a license(s) for the composed service, yet legally enforceable.

References

1. Foster, I.: Service Oriented Science. Science 308 (2005) 814–817
2. Szyperski, C.: Component Software: Beyond Object Oriented Programming. ACM

Press, New York (1998)
3. D’Andrea, V., Gangadharan, G.R.: Licensing Services: The Rising. In: Proceedings

of the IEEE Web Services Based Systems and Applications (ICIW’06), Guade-
loupe, French Caribbean. (2006) 142–147

4. Papazoglou, M., Georgakopoulos, D.: Service Oriented Computing. Communica-
tions of the ACM 46(10) (2003) 25–28

5. Heckel, R., Lohmann, M., Thone, S.: Towards a UML Profile for Service Ori-
ented Architectures. In: Workshop on Model Driven Architecture: Foundations
and Applications (MDAFA) . (2003)

6. Goldstein, P.: International Copyright Principles, Law, and Practice. Oxford
University Press (2001)

7. Fitzgerald, B., Oi, I.: Free Culture: Cultivating the Creative Commons. Media
and Arts Law Review (2004)

8. GNU Project: What is Copyleft? http://www.gnu.org/copyleft/ (Accessed on
June 2006)

9. OpenBSD: OpenBSD Copyright Policy. http://www.openbsd.org/policy.html (Ac-
cessed on May 2006)



10. Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service
Level Agreements for Web Services. Journal of Network and Systems Management
11(1) (2003)

11. Skene, J., Lamanna, D., Emmerich, W.: Precise Service Level Agreements. In:
Proc. of 26th Intl. Conference on Software Engineering (ICSE). (2004)

12. Tosic, V., Pagurek, B., Patel, K., Esfandiari, B., Ma, W.: Management Applications
of the Web Service Offerings Language (WSOL). In: Proc. of the 15th CAiSE.
(2003) 468–484

13. Tosic, V., Pagurek, B.: On Comprehensive Contractual Descriptions of Web Ser-
vices. In: Proceedings of the IEEE e-Technology, e-Commerce, and e-Service
(EEE). (2005) 444–449

14. Jeffrey Schlimmer (Ed.): Web Services Policy Framework (WS-Policy).
http://www-128.ibm.com/developerworks/webservices/library/ specification/ws-
polfram/ (2004)

15. World Intellectual Property Organization: WIPO Copyright Treaty (WCT).
http://www.wipo.int/treaties/en/ip/wct/trtdocs wo033.html (1996)

16. D’Andrea, V., Gangadharan, G.R.: Licensing Services: An “Open” Perspective.
In: Open Source Systems (IFIP Working Group 2.13 Foundation Conference on
Open Source Software), Vol. 203, Springer Verlag. (2006) 143–154

17. Weyuker, E.: Evaluating Software Complexity Measures. IEEE Transactions on
Software Engineering 14(9) (1988) 1357–1365

18. D’Andrea, V., Fikouras, I., Aiello, M.: Interface Inheritance for Object Oriented
Service Composition Based on Model Driven Configuration. In: Proceedings of
ICSOC (Short Papers). (2004) 66–74

19. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services Concepts, Archi-
tectures, and Applications. Springer Verlag (2004)

20. Hamadi, R., Benatallah, B.: A Petri Net-based Model for Web Services Compo-
sition. In: Proceedings of the Fourteenth Australasian Database Conference on
Database Technologies. (2003) 191–200

21. Rosenblatt, B., Trippe, B., Mooney, S.: Digital Rights Management: Business and
Technology. M & T Publishers, New York (2002)

22. Gunter, C., Weeks, S., Wright, A.: Models and Languages for Digital Rights.
In: Proceedings of the 34th Annual Hawaii International Conference on System
Sciences (HICSS-34). (2001)

23. Pucella, R., Weissman, V.: A Logic for Reasoning about Digital Rights. In: IEEE
Proceedings of the Computer Security Foundations Workshop. (2002)

24. Chong, C., Corin, R., Etalle, S., Hartel, P., Law, Y.: LicenseScript: A Novel Digital
Rights Language. In: Proceedings of the International Workshop for Technology,
Economy, Social and Legal Aspects of Virtual Goods. (2003)

25. ContentGuard Inc.: XrML: The Digital Rights Language for Trusted Contents and
Services. http://www.xrml.org/ (Accessed on May 2006)

26. Lao, G., Ham, M., Chen, E., DeMartini, T., Gilliam, C., Raley, M., Tadayon, B.,
Wang, X.: Networked Services Licensing System and Method. United States Patent
Application 20040220878 (Nov. 2004)

27. Renato Iannella (Ed.): Open Digital Rights Language (ODRL) Version 1.1.
http://odrl.net/1.1/ODRL-11.pdf (2002)

28. Renato Ianella (Ed.): ODRL Creative Commons Profile.
http://odrl.net/Profiles/CC/SPEC.html (2005)


