
UNIVERSITY
OF TRENTO
DEPARTMENTOF INFORMATIONANDCOMMUNICATIONTECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

THE SCIENCE OF FREE/OPEN SERVICES

Vincenzo D’Andrea, G.R.Gangadharan

August 2006

Technical Report # DIT-06-052



.



The Science of Free/Open Services

Vincenzo D’Andrea & G.R.Gangadharan

Department of Information and Communication Technology,
University of Trento,

Via Sommarive, 14, Trento, 38050 Italy

Abstract. With their inherent potentiality, services proliferate in myriad domains,
though service oriented computing is in incipient nature. Free/Open Source Soft-
ware is an established approach serving society through technology in an in-
terdisciplinary way. Inspired by Free/Open Source methodology, in this paper,
we describe the concept of Free/Open service and analyze the implications of
Free/Open source approach on the different aspects of service oriented comput-
ing.

Of every tree of the garden thou mayest freely eat; but of the tree of the knowledge of
good and evil, thou shalt not eat of it. - Genesis: Holy Bible

1 Introduction

Even an apple is available freely on your way, you have to consider the issues of
property rights before the consumption of it. If, for an apple, considering the rights
of consumption is significant, then for software which is freely available, it becomes in-
evitable to consider the rights of consumption. The Free/Open Source Software (FOSS)
approach protects the unconditional rights of modification and redistribution by the
collaborating developers, making the source code freely available [1]. The freedom in
software is reflected by the software license describing terms and conditions for use and
distribution.

Service oriented computing (SOC) is an emerging distributed systems paradigm,
addressing the aspects of real world applications, crossing organizational and technical
boundaries. With a vision of dynamically composing service oriented and non-service
oriented applications, SOC continues to penetrate as a technology for connecting appli-
cations in a loosely coupled manner. Though web services proliferate seamlessly, many
available web services are not even considered as providing relevant business value.

Adopting and adapting the principles of FOSS approach to SOC could enhance the
widespread use of services. We introduce a novel concept of Free/Open services (F/O-
Services), inspired by FOSS movement over SOC.

The rest of the paper is organized as follows. Section 2 presents free / open source
software concepts. Section 3 introduces the concept of service oriented computing. A
comprehensive description of what we mean by F/O-Services is elucidated in Section
4. Section 5 elaborates F/O-Services, exemplifying the freedom and openness given by
a license. The business models for F/O-Services are depicted in Section 6. Section 7



2

presents FOSS development patterns for service implementation. Section 8 describes
the consequences of adoption of FOSS principles in services paradigm. Section 9 dis-
cusses related work, and Section 10 draws some conclusions and future directions of
research.

2 Free / Open Source Software

Free / Open Source Software (FOSS) is a family of software allowing the users to ex-
plore, modify, and improve the software through the availability of source code. FOSS
is an encompassing term for the development models, the legal terms, and the sociolog-
ical issues associated to the novel software paradigm.

Free software is a matter of the users’ freedom to run, copy, distribute, study, change
and improve the software. According to [2], it refers to four kinds of freedom, for the
users of the software:

1. The freedom to run the program, for any purpose (freedom 0).
2. The freedom to study how the program works, and adapting to the needs (freedom

1).
3. The freedom to redistribute copies (freedom 2).
4. The freedom to improve the program, and release improvements to the public, so

that the whole community benefits (freedom 3).

Open source software, as a superset of free software, exists in a plethora of initia-
tives today, representing a variety of technology innovations and approaches [3]. Some
of the key conditions of Open Source Definition (for authoritative definition, see [4])
are as follows:

– The software should be freely redistributable.
– The software must include source code, and must allow distribution in source code

as well as compiled form.
– The software must permit modifications and derived works, and must allow them

to be distributed under the same terms as the license of the original software.
– The rights attached to the software must apply to all to whom the software is redis-

tributed without the need for execution of an additional license.
– The license must not discriminate against any person or group of persons or any

field of endeavor.

Even though there are fundamental differences between Free Software and Open Source
Software, we refer them together by a single term ‘FOSS’.

3 Service Orientation of Software

Most of the products fall in a continuum having pure service on a terminal point and
pure commodity good on the other one [5]. Software, traditionally, has been perceived
as a product, requiring possession and ownership, in order to receive the desired per-
formance. Software-as-a-service [6] is a mechanism of renting software where users



3

are subscribed to the software they use. SOC allows the software-as-a-service concept
to expand to include the delivery of complex business process and transactions as a
service, allowing applications to be constructed on the fly and services to be reused
everywhere and by anybody [7].

The idea of software composition and refinement instead of software development
from scratch nowadays is elaborated to the platform-independent, distributed and stan-
dardized services paradigm [8]. In such paradigm, services reflect self-contained pro-
cesses that can be described, published, discovered and invoked in a distributed environ-
ment, connecting people, processes, and applications. Services are intended to represent
meaningful business functionality that can be federated with other services, to enhance
more value to the business functionality.

Service provider exposes the business functionality in the form of service. Service
provider, in other words, the owner of web services, decides the functions to be ex-
posed, negotiation, and pricing strategies. A service is advertised in a public registry
through Publish operation. Service requester can be either a consumer consuming ser-
vices directly or a provider acting as an aggregator of services. Ultimately, service re-
quester is the user for the published services. A service requester communicates with
service broker through Find operation to select the most appropriate service to satisfy
specific requirements. Further, the Service requester interacts with the concerned ser-
vice provider through Bind operation and uses the service. Service broker is a registry
where the descriptions of the services are stored. Based on the information in the reg-
istry about a service, service requester contacts the corresponding service provider and
thus consumes the service.

Fig. 1. Service Oriented Computing (Instances with Web Service)



4

A service is represented by an interface part defining the functionality visible to
the external world as a means to access the functionality and an implementation part
realizing the interface. The interface part is the description of the service having all the
specifications for invoking the service. The service description contains the operations
(like a method signature in a programming language), protocol, data formats, specify-
ing how a service interface is implemented by the service provider. The implementation
part is the realization of the interface. A service implementation could provide the func-
tionality directly or could combine other services to provide the same functionality. A
service can be implemented in any language.

The application of SOC model (see Figure 1) to web resources is manifested by web
services to provide a loosely coupled model for distributed processing. Web services are
the enabling technology, standardized to construct and integrate applications and orga-
nizational interfaces as services, using the Internet as the communication medium and
open Internet-based standards [9]. The Web Services Definition Language (WSDL) is
an XML based interface definition language, describing services as a collection of mes-
sages (abstract descriptions of the data being exchanged) and port types (abstract collec-
tions of operations), separated from their concrete network deployment or data format
bindings. Universal Description, Discovery, and Integration (UDDI) enables publish-
ing and accessing WSDL specifications in directories. Simple Object Access Protocol
(SOAP) is a platform and language independent protocol, providing a way of commu-
nication between applications.

Service composition [10] is related to the implementation of a web service whose
internal logic involves the invocation of operations offered by other web services. Ser-
vices can be composed as a part of composite service, encapsulating (see Figure 2a)
individual services and exposing a different set of operations. Another perspective on
composition is by defining the invocation order (see Figure 2b) of individual services
[11]. Service composition allows a recursive process of composition of services i.e. a
composed service can be composed with an other elementary and/or composite service.
Thus, individual services can be composed up to any levels of hierarchies.

Fig. 2. Service Composition



5

Though the concept of arbitrarily mixing and matching the services from different
providers seems interesting, the basic clauses of service licenses would enforce certain
terms and conditions on composition. Questions of ownership and distribution could
impede composition, thereby impacting the reuse of services. To illustrate the issues
that could arise in the context of licensing web services, we consider a simple scenario
(see Figure 3) where R is a restaurant service providing the following operations: R0,
information on location and opening hours; R1, the facility for reserving table; R2, a
catalogue of specialty cuisines; R3, a daily recipe for one of the specialty cuisine. An-
other service, F , a restaurant finder service uses R, for the following operations: F1, a
restaurant locator giving a list of restaurants close to a given location and using R0 (as
well as similar operations for other restaurants); F2, for intermediating table reserva-
tion, using R1; F3, a daily recipe randomly selected among the recipes provided by the
restaurants listed using F (in the case of R, it will use operation R3). The license terms
of R may deny the provision of R3 to other services intended for providing recipe in-
formation exclusively or may require attribution for the use of R3. The license terms of
R can even require the same set of terms and conditions for any hierarchy of composed
services, even the successive compositions use F . In this case, the license terms of F
will have to comply with R, for the request and deny provision of F3 to other services
intended to provide the recipe information exclusively. Another restaurant service, S,
has a similar set of operations S0, S1, S2, S3 as R, but having a different license that
freely allows the use of operations anywhere. If F uses also S, then it could be possi-
ble to have a different license when F3 presents a recipe chosen from S. Even in this
simple scenario, it is apparent that the composition of licenses could easily bring to
incompatibility between the composed services.

Fig. 3. Service Composition Illustration



6

Besides the functional operations, from the point of view of a service consumer,
it is important to consider also other, non-functional, aspects of service provisioning,
such as the cost or the reliability of a service. These aspects are collectively referred
to as Quality of Service (QoS) or non-functional properties of a service. The QoS of a
composite service is derived from the aggregation of QoS of each individual services,
where the aggregation could be a simple combination such as adding the cost of individ-
ual services, or taking the maximum among the performances of the individual services
to estimate the response time of a composite service. For other aspects, the combina-
tion requires the definition of a specific model, such as combining security aspects or
reliability, availability, scalability and so on.

4 Free/Open Services (F/O-Services)

Following FOSS definitions [2, 4], we define a F/O-Services as follows:

1. A F/O-Service should be free for use.
2. The source code of the interface (WSDL descriptions) as well as the im-

plementation of a F/O-Service should be available.
3. The service implemented by creating a new service using the source code

and interface of a F/O-Service should be freely distributable as an inde-
pendent service. The modification of interface and implementation should
be permitted.

4. The service using a F/O-Service as part of a composite service should be
freely distributable as an independent service, even when using a separate
interface. The modification of interface and implementation should be per-
mitted.

5. Derived services and modified services must be allowed and be capable of
distribution.

6. The license must not discriminate against any person or group of persons
or any field of endeavor.

7. The license agreement must provide a F/O-Service “as is” with no war-
ranties either to functional and/or non-functional properties or non-infringement
of third party rights.

8. The license must not place restrictions on composition with other services
and on distribution of composed services.

Thus, a F/O-Service enhances the way of usage, adaptation, distribution, and redis-
tribution of a service as follows:

1. Service Usage
Service usage describes the freedom to execute a service by other applications, for
any purpose. The basics of F/O-Service allows the use (execution) of service by any
other service oriented and/or non-service oriented applications, adhering the given
F/O-Service license.

2. Service Implementation
With the creation of F/O-service, we are provided with the freedom to know how
the service works and could be adapted to our needs, making the source code of
service interface as well as service implementation freely available.



7

(a) A service is described by WSDL. Service orientation obligates WSDL code to
be available publicly for service discovery, and composition.

(b) In addition, a F/O-Service allows the availability of the source code of imple-
mentation (the real functionality of a service).

(c) The source code of a service wrapping the functionality of another proprietary
software partially or fully, can be available publicly with service interface and
implementation, except the source code of proprietary software being wrapped
in the given service.

3. Service Distribution
Service redistribution describes the freedom to distribute a service as a separate
service. Further, any entity can create a new service which would use the interface
of a F/O-Service, without the need to implementing the service realization.

4. Service Derivation & Redistribution
Service derivation and distribution offer the freedom to improve the service, and
release improvements to the public, so that the whole community benefits. F/O-
Services allow to perform modifications on the WSDL interface and implementa-
tion of the service and thus, derived services are created. Derived services could be
executed independently (together with separate interface and implementation) or
could use the implementation of the parent service.

5 Exploring the Freedom and Openness in F/O-Services

A F/O-Service allows free execution of the service with other applications, making the
source code for implementation and interface of the service available for everything.
Further, the freedom and openness determine the flexibility of F/O-Services. We ex-
emplify the freedom and openness exclusively associated with F/O-Services based on
possible combinations of derivation (or not) from the source code, modification (or not)
of the service interface, and relationship between services (compositional properties) as
follows1:

1. Execution Independent Service by Replica of a F/O-Service: Opening of service
allows to create independent services, attributing to the F/O-Service. This is the
simplest method enabling the free usage and distribution of a service. Let SA be
a F/O-Service providing a spell checking operation for words, say, Spell(word).
Consider SA provides this service by wrapping PWP spell checker API. Let SB

be an another independent service, providing the same Spell(word), created by
replicating the source code of implementation and WSDL of the SA. Albeit SA

and SB are performing the same operations, SA and SB are two different services,
executed separately as in Figure 4.

2. Execution Dependent Service with Unmodified Interface (irrespective of im-
plementation): This is a common scenario in SOC as the service’s WSDL would

1 Adapting the styles of [12], we represent the services by the shadowed rectangular boxes.
An operation of a service interface is represented as a UML package marked by a stereotype
<< desc >>. The wrapped application for the service is shown on the left side of the service.



8

Fig. 4. Replica of a F/O-Service

be obviously available and composition is an indivisible aspect of services. Creat-
ing a F/O-Service adds value to a service by distributing the service, not requiring
to implement the service again as shown in Figure 5. Let SB be a service providing
a spell checking operation Spell(word) for words, using (copying) the WSDL in-
terface Spell(word) of SA. SB is designed in such a way that Spell(word) of SB

directly invokes the operation of SA, executing on the host of SA.

Fig. 5. Service with same interface with composition (implementation not considered)



9

From a service consumer perspective, in both cases, SA and SB are providing ex-
actly the same Spell(word) interface, thus they are interchangeable in an applica-
tion on the consumer side. The two implementations of SB are not distinguishable.
Theoretically, there will not be any differences in performances of both the services,
apart from possible network latency between SA and SB .

3. Execution Independent Service with Unmodified Interface/ Modified Imple-
mentation: An entirely new service could be created from a F/O-Service keep-
ing its interface unchanged and modifying the implementation. Let SA be a F/O-
Service providing Spell(word) by wrapping PWP spell checker API. Let SB be
an another independent service, providing the same Spell(word), created by repli-
cating the WSDL of the SA. However, SB provides the operation Spell(word) by
wrapping QWP2 spell check API. Albeit SA and SB are performing the same op-
erations, SA and SB are two different services, executed separately as in Figure 6.
From a service consumer perspective, there could be difference in the performance
of SA and SB .

Fig. 6. Independent service with same interface and derived implementation

4. Execution Independent Service with Modified Interface and Implementation:
Now, consider the case (see Figure 7) similar to 3(a) with interface of the F/O-
Service SA be modified in SB . The interface of SB provides Spell(sentence)
which composes a parser() and repeated invocation of the code derived from SA,
to access PWP API. Now, SA and SB are the different services, executing indepen-
dently. Spell(sentence) of SB is derived and improved version (having an own
additional functionality parser()) of Spell(word) of SA.

5. Execution Dependent Service with Modified Interface (irrespective of imple-
mentation): Consider a service SB similar to the case of 3(b), but with modified
WSDL interface as well as implementation of the open service SA. Spell(sentence)
of SB comprises a parser() and repeated invocation of the spell checking opera-

2 QWP is a fictitious name for a proprietary word processor.



10

Fig. 7. Replica of a F/O-Service with modified interface and implementation

tion provided by SA via the interface Spell(word). Thus, the word spell checking
operation of SB is executed in the host of SA (invoking repetitively the service
of Spell(word) of SA) for spell checking of a given prose Spell(sentence) as in
Figure 8.

Fig. 8. Service with modified interface, implementation with composition



11

6. Execution Independent Service with Modified Interface and Unmodified Im-
plementation: Let SA be a F/O-Service providing a spell checking operation for
a single word Spell(word), by wrapping PWP spell checker API. Let SB be an
another independent service (see Figure 9), created by replicating the source code
of service implementation but modifying the WSDL of SA, for providing spell
checking of multiple words, say, Spellwords(w1, w2, w3).

Fig. 9. Replica of a F/O-Service with modified interface and same implementation

Keeping a service interface as not modified (as permitted by a service license) in a
dimension, the scenarios illustrated above for service redistribution and service deriva-
tion and distribution can be classified as follows:

Unchanged Implementation Derived Implementation
No Composition 1 3

Composition 2
Table 1. Scenarios with unmodified service interfaces

In contrast, if a license allows the modification of a service interface, the scenarios
illustrated above for service redistribution and service derivation and distribution can
be classified as follows:

Unchanged Implementation Derived Implementation
No Composition 6 4

Composition 5
Table 2. Scenarios with modified service interfaces



12

6 F/O-Service Business Models

Making F/O-Services may raise an emergent question of how a service provider could
profit by providing services. Many FOSS business models are in practice of the com-
munity [13]. Some of these business models could be adaptable to the F/O-Service
context.

1. Support Seller: F/O-Services could adopt this scheme where revenue comes from
media distribution, branding, training, consulting, and custom development.

2. Service Enabler: F/O-Services could be created and distributed primarily to sup-
port access to revenue-generating on-line services.

3. Sell It, Free It: Like traditional commercial software, services would begin their
product life cycle as closed and then are converted as F/O-Services when appropri-
ate.

4. Brand Licensing: A F/O-Service provider can charge other service providers/ ag-
gregators/ consumers for the right to use its brand names and trademarks in creating
derivative services.

Further, a copyright holder can release his/her works under any license, including
multiple licenses and users of that work are allowed use under one of the licenses they
choose [14]. Dual licensing is a business model for FOSS exploitation based on the
idea of simultaneous use of both FOSS and proprietary licenses [15]. Many well known
FOSS projects, including MySQL, Perl, and Qt use dual licensing for their business
model. Following the dual licensing strategy, a service can be licensed under FOSS
inspired license as well as a proprietary license. In addition to delivering complementary
revenue streams, the dual licensing strategy captures a large user base.

7 F/O-Services Development Patterns

FOSS can be viewed as a way of developing software [16] that promotes opening the
development process as much as possible, thus offering the possibility to participate in
development and distribution to anyone who desires to. The common patterns [16] of
FOSS development are:

1. Early and Often Releases: With a limited set of functionality, the first version of
the software is usually released, foreseeing the participation of more co-developers.
Further, often releases of the software enables the development of the project in an
incremental way.

2. Community and Communication: A wide community of developers and users geo-
graphically dispersed, yet co-ordinated through the Internet, having common goals
and interests, make the software to evolve more quickly with high quality reining
in errors, by pragmatic code reviews and testing.

3. Modularization and Distributed Management: Parallel development and code reuse
is facilitated by high modularization. The new contributions are added on a source
tree (central code repository) of the project. The developers together with the repos-
itory manager chose to incorporate strategic decisions.



13

These basic patterns describe primarily on managing FOSS development, but do not
explain analysis, design, and implementation of software engineering methods.

Services are represented as a logical groupings of operations (transactions) having
specific business goals [17]. Service as analogous to components, are independent, ex-
ecutable, self-describing and self-contained unit of functionality. However, services are
more coarse grained than components. From the view of distributed software develop-
ment methodologies, the architecture of a system is usually abstracted to a class-level of
granularity, which is too low for services modeling. Even in some cases, fine graining of
services might be required. As service oriented architecture (SOA) encapsulates state-
less, loosely coupled business processes interacting by messages, applying traditional
distributed development methodologies to services development would be insufficient.
Services are reused in a context not known at design time, envisioning dynamic com-
position.

As FOSS is developed and maintained by a community of volunteers, anyone can
use, modify, redistribute, extend or incorporate it into their own projects adhering the
terms of the licenses. Thus, FOSS expands the development of new applications from
existing applications. Nowadays, services are being developed by wrapping the existing
applications with a thin layer or value added services are created by composition of
services. As analogous to FOSS, a new service could be developed by using, modifying
or composing with other services. The F/O-Services significantly contributes to the
development of new services from existing services by adding new operations. Consider
SX be a F/O-Service. SY could be developed by extending SX in any of the ways
discussed in section 5, keeping SY as a F/O-Service. SX could be converted as a new
service, SZ , by incorporating SY into SX , with additional operations.

The early and often releases of services would help in providing functionality rich
services. Having more eye balls glancing service interface and implementation, a high
level of non-functional properties of services could be attainable.

8 Consequences of Freeing and Open Sourcing of Services

Free services inspired by FOSS licenses could make value addition by composition,
resulting composed services as ‘free’. Thus, free services (with free licenses) could
create a chain effect on composition of services to be free, even if one of the composing
service may be not ‘free’.

Let SP and SQ be the two individual services of a composite service S. SP and
SQ may be licensed by free or proprietary licenses not imposing restrictions on the
use in a composition. The composition of SP and SQ inspired by FOSS scheme, is
illustrated in Table 3. Making services free will be highly beneficial for government
sectors, education, and non-profitable organizations to explore and enjoy the benefits of
services.

According to GPL [18], the distribution of GPL’d software must include source
code. A GPL’d application delivered as a web service is not actually distributed to the
end user. Hence, in this case, the application license does not require to disclose the
source code. The nature of web services allows users to interact with the application
via an interface, without downloading the software. This can result against the ‘free-



14

SP SQ S = {SP , SQ}
Free Free Free
Free Proprietary Free
Proprietary Proprietary Free

Table 3. Service composition enriching ‘Free Culture’

dom’ of GPL, i.e. users consuming services without having access to the source code
as delivered by the providers, retaining the rights to modify and distribute.

More precisely, GPL acts on the source code, but not on the use of source code by a
service. Consider a service wrapping FWP3 instead of a proprietary word processor. As
FWP is a GPL’d software, a wrapper for FWP is also GPL’d code. However, GPL does
not restrict the use of this FWP wrapper provided by a web service. Since, the service
is using only the execution of FWP (not the source code of FWP), GPL does not effect
the licensing of composite services based on ‘FWP wrapper’ service. Even the draft
version of GPL3 [19] is silent about this issue.

9 Related Work

Today, web services are being used as a component or utility expanding their scope
of applications and offer programmatic interfaces to applications [20]. However, many
available web services are not even considered as providing relevant business value.
Standing on the shoulders of giant industries, the future of web services from the per-
spective of business is still unclear. Beyond the requirement for standardizing infras-
tructure and industry standard interfaces of SOA, one of the significant reasons for un-
fulfilling [21] the promise of web services is the lack of agreement binding service and
business. Licensing enables widespread use of services, designing business strategies
and relationships. In [22], the author describes a distributed software licensing frame-
work using web services and SOAP. However, [22] addresses a framework using web
services but does not address licensing of web services itself. The technical contracts of
web services are described in [23], but business and legal contents of contracts are not
considered. In [24], we had elaborated the dimensions of web services differing from
software and proposed an anatomy of a service license with a set of key negotiation
issues.

Leveraging a service oriented paradigm would significantly affect the way people
build software systems. However, to achieve this ambitious vision, a substantial devel-
opment methodology should be in place, comprising specific service-context patterns.
Some foundational concepts of service oriented design have already been addressed by
[17, 25, 8].

With the growing influence of FOSS initiatives today, it becomes a significant topic
to analyze F/O-Services. To the best of our knowledge, the idea of making F/O-Services
is completely novel and no previous work exists in this field. Very recently, some infor-
mal and unstructured discussions about the concepts of open Services are continuing in

3 FWP is a fictitious name for a free word processor.



15

Slashdot [26] and other sites [27]. Much prior to these discussions, we have illustrated
the open source based licensing perspectives for the domain of services in [28]. This
paper illuminates the concepts of SOC by :

– defining a F/O-Service inspired by FOSS concepts, analyzing the levels of freedom
and openness associated with services

– illustrating business models for F/O-Services
– analyzing the development patterns for F/O-Services based on FOSS approach

10 Concluding Remarks

Nowadays, standards are ‘open’ in SOC. But, the services developed using these stan-
dards are unfortunately ‘closed’. Hence, we introduced the concept of open services in
this paper and analyzed the impacts of freeing and open sourcing services. F/O-Services
grant service consumers to add value beyond the concept of composition. The wedding
of services with FOSS would be beneficial for both communities, spreading services
‘free’ly.

References

1. Feller, J., Fitzgerald, B.: A Framework Analysis of the Open Source Software Development
Paradigm. In: Proc. of the 21st Annual International Conference on Information Systems.
(2000) 58–69

2. Free Software Foundation: The Free Software Definition.
http://www.fsf.org/licensing/essays/free-sw.html (Accessed on Jan. 2006)

3. Brown, A., Booch, G.: Reusing Open Source Software and Practices: The Impact of Open
Source on Commercial Vendors. In: Proc. of 7th International Conference on Software
Reuse. (2002) 123–136

4. Open Source Initiative: The Open Source Definition.
http://opensource.org/docs/definition.php (Accessed on Jan. 2006)

5. Wikipedia: Service. http://en.wikipedia.org/wiki/Services (Accessed on 27.12.2005)
6. Bennett, K., Layzel, P., Budgen, D., Brereton, P., Macaulay, L., Munro, M.: Service-Based

Software: The Future for Flexible Software. In: Proceedings of the Asia-Pacific Software
Engineering Conference (APSEC). (2000) 214–221

7. Papazoglou, M., Georgakopoulos, D.: Service Oriented Computing. Communications of the
ACM 46(10) (2003) 25–28

8. Ivanyukovich, A., Gangadharan, G.R., D’Andrea, V., Marchese, M.: Towards a Service
Oriented Development Methodology. Journal of Integrated Design and Process Science 9(3)
(2005) 53–62

9. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.: Web Services Plat-
form Architecture : SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable
Messaging, and More. Prentice Hall PTR (2005)

10. Alvarez, P.A., Baares, J.A., Ezpeleta, M.J.: Approaching Web Service Coordination and
Composition by means of Petri Nets. In: Proceedings of the 3rd International Conference on
Service Oriented Computing. (2005) 185–197

11. Dustdar, S., Schreiner, W.: A Survey on Web Services Composition. International Journal
of Web and Grid Services 1(1) (2005) 1–30



16

12. Heckel, R., Lohmann, M., Thone, S.: Towards a UML Profile for Service Oriented Archi-
tectures. In: Proceedings of the Workshop on Model Driven Architecture: Foundations and
Applications (MDAFA) . (2003)

13. Raymond, E.: The Magic Cauldron. http://www.catb.org/ esr/writings/magic-
cauldron/magic-cauldron.html (1999)

14. Wikipedia: Dual license. http://en.wikipedia.org/wiki/Dual license (Accessed on
29.12.2005)

15. Valimaki, M.: Dual Licensing in Open Source Software Industry. Systemes d’ Information
et Management (2003)

16. Robles, G.: A Software Engineering Approach to Libre Software.
http://www.opensourcejahrbuch.de/2004/pdfs/III-3-Robles.pdf (2004)

17. Zimmermann, O., Krogdahl, P., Gee, C.: Elements of Service Oriented Analysis and Design.
http://www-128.ibm.com/developerworks/webservices/library/ws-soad1/ (2004)

18. Free Software Foundation: GNU General Public License.
http://www.gnu.org/copyleft/gpl.html (Accessed on Jan. 2006)

19. Free Software Foundation: GNU General Public License Version 3. http://gplv3.fsf.org
(Accessed on Jan. 2006)

20. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services Concepts, Architectures, and
Applications. Springer Verlag (2004)

21. Kreger, H.: Fulfilling the Web Service Promise. Communications of the ACM (2003) 29–34
22. Clarke, N.: Distributed Software Licensing Framework based on Web Services and SOAP.

http://www.dsg.cs.tcd.ie/∼dowlingj/students/clarken/clarken 02.pdf (May 2002)
23. Tosic, V., Pagurek, B.: On Comprehensive Contractual Descriptions of Web Services. In:

Proceedings of the IEEE e-Technology, e-Commerce, and e-Service (EEE). (2005) 444–449
24. D’Andrea, V., Gangadharan, G.R.: Licensing Services: The Rising. In: Proceedings of

the IEEE Web Services Based Systems and Applications (ICIW’06), Guadeloupe, French
Caribbean. (2006) 142–147

25. Lee, E.: Web Service Implementation Methodology. http://www.oasis-
open.org/committees/download.php/13420/fwsi-im-1.0-guidlines-doc-wd-
publicReviewDraft.htm (2005)

26. Slashdot: Web Services and Open Source at OSCON.
http://developers.slashdot.org/article.pl?sid=06/07/26/1537213 (Posted on July 26, 2006)

27. log.ometer.com: Log for July, 2006. http://log.ometer.com/2006-07.html (Posted on July 29,
2006)

28. D’Andrea, V., Gangadharan, G.R.: Licensing Services: An “Open” Perspective. In: Open
Source Systems (IFIP Working Group 2.13 Foundation Conference on Open Source Soft-
ware), Vol. 203, Springer Verlag. (2006) 143–154


	DIT-06-052-cover
	OF TRENTO
	DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY


	freeservices

