
Well posedness results for a class of

partial differential equations with hysteresis

arising in electromagnetism

Michela Eleuteri1

Abstract

We consider an evolutionary P.D.E. motivated by models for electromag-
netic processes in ferromagnetic materials. Magnetic hysteresis is represented by
means of a hysteresis operator. Under suitable assumptions, an existence and
uniqueness theorem is obtained, together with the Lipschitz continuous depen-
dence on the data and some further regularity results. The discussion of the
behaviour of the solution in dependence on physical parameters of the problem
is also outlined.
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1 Introduction

The aim of this paper is to study a class of P.D.E.s containing a continuous hysteresis
operator G, whose model equation can be represented by

ε
∂2u

∂t2
+ σ

∂u

∂t
−4

(
γ

∂u

∂t
+ G(u)

)
= σ f in Ω× (0, T ) , (1.1)

where Ω is an open bounded set of RN , N ≥ 1, ε, σ and γ are given positive constants,
4 is the Laplace operator and f is a given function.

This model equation appears when dealing with electromagnetic processes; in particular
it can be obtained by coupling in a suitable way the Maxwell equations, the Ohm law
and a constitutive relation between the magnetic field and the magnetic induction. In
this context ε is the dielectric permittivity, σ is the electric conductivity and γ is
a relaxation parameter depending on the geometry of the circuit. More precisely, we
consider the Ampère and the Faraday laws in a bounded open set of R3, we combine
them with the Ohm law and get an equation only involving ~B and ~H, the magnetic
induction and the magnetic field respectively. The vectorial model obtained is then
simplified by imposing some restrictions on the fields; this leads to the scalar character
of (1.1). At this point we prescribe a constitutive relation between the magnetic field

1Università degli Studi di Trento, Dipartimento di Matematica, Via Sommarive 14, I–38050 Povo
(Trento), Italy, E-mail: eleuteri@science.unitn.it. Guest of WIAS - Weierstrass-Institute for
Applied Analysis and Stochastics, Mohrenstr. 39, D–10117 Berlin, Germany. Partially supported
by INdAM and by MIUR - COFIN project “Mathematical modelling and analysis of free boundary
problems”.

1



and the magnetic induction. The one we choose can be for example obtained by putting
in series a ferromagnetic element with hysteresis and a conducting solenoid filled with
a paramagnetic core; the first one is a rate independent element while the second one
is a rate dependent one. More about modeling issues is given below in Section 3.

First of all we introduce a weak formulation in Sobolev spaces for a Cauchy problem
associated to equation (1.1); under suitable assumptions on the hysteresis operator G
and on the data we get existence and uniqueness of the solution of our model problem.
The proof of this result is carried on by means of a technique which is based on the
contraction mapping principle. Several difficulties arise due the choice of the unusual
functional setting: in fact the problem is set within the frame of a non-classical Hilbert
triplet

L2(Ω) ⊂ H−1(Ω) ≡ (H−1(Ω))′ ⊂ (L2(Ω))′

with continuous and dense injections; here the role of the pivot space is played by the
Sobolev space H−1(Ω) endowed with a scalar product chosen ad hoc.

We also obtain the Lipschitz continuous dependence of the solution on the data and
some further regularity results.

It is interesting to analyze the behaviour of the solution in dependence of the parameters
ε, σ and γ . The case ε = 0 corresponds to the so called eddy-current approximation,
where the displacement current in Ampère’s law is neglected; the case σ = 0 means
instead that the electric current density ~J vanishes in the whole Euclidean space.
Finally the case γ = 0 corresponds to a purely hysteretic constitutive relation, without
the presence of rate dependent components of the memory. While the behaviour of the
solution as ε → 0 and σ → 0 can be easily treated, difficulties arise when the parameter
γ is supposed to vanish. In this case a complete analysis is obtained dealing with a
particular case (see [10]).

The Maxwell equations considered in this paper are set in a bounded open set Q ⊂ R3 .
However the fields outside this domain may have an influence in the processes which
take place inside Q . It seems therefore quite difficult to describe this interaction by
formulating a boundary value problem on a bounded domain. For this reason we try
to describe a more realistic physical approach, where the Ampère law and the Faraday
law are taken in the whole R3 . Also the Ohm law is extended to a law which holds
in the whole Euclidean space; in particular we assume the usual Ohm law inside Q
while we suppose that ~J equals a prescribed time-dependent vector field ~Jext outside
Q . This is equivalent to assume σ = χQ , where χQ is the characteristic function of
the set Q , so σ is no longer a constant but a space parameter dependent function.
The vectorial system which comes out from this construction can be also in this case
simplified and some particular solutions can be found. For example in [11] we obtain
existence and uniqueness of a solution in the one dimensional case, which corresponds
to a plane wave. We leave for the moment open the problem to deal with the complete
vectorial model.

The paper is organized as follows: after recalling some classical examples of continuous
hysteresis operators in Section 2, we analyse the physical interpretation of the model
equation (1.1) (Section 3) and present in Section 4 the well posedness results, some of
what have been announced in [8] (see also [9], Chapter 2), together with the analysis
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of the behaviour of our solution in dependence of the parameters ε and σ . Finally
Section 5 is devoted to the presentation of a more realistic physical setting, when the
electric conductivity is no longer a constant but a space-dependent function.

2 Hysteresis operators

2.1 Hysteresis

Hysteresis is a phenomenon that appears in several and quite different situations; for
example we can encounter it in physics, in engineering, in biology and in many other
settings.

According to [26], we can distinguish two main features of hysteresis phenomena: the
memory effect and the rate independence.

More precisely, let us consider a system which is described by the couple input-output
(u,w) . The memory effect means that at any instant t the value of the output is not
simply determined by the value u(t) of the input at the same instant but it depends
also on the previous evolution of the input u. The rate independence instead means
that the path of the couple (u(t), w(t)) is invariant with respect to any increasing time
homeomorphism and so it is independent of its velocity.

A basic contribution to the theory of hysteresis has certainly been brought by Kras-
nosel’skĭı and its collaborators. Their work has been summarized in the monograph
[13]. In this fundamental work, they introduced the concept of hysteresis operator and
started a systematic investigation of its properties. After this pioneering monograph,
many scientists, coming also from different areas, contributed to the research on mod-
els of hysteresis phenomena; we refer to the recent monographs devoted to this topic
of Brokate and Sprekels [5], Krejč́ı [15], Visintin [26] and also of Bertotti [1], Della
Torre [7], Mayergoyz [18] (together with the references therein) for mathematically
and physically oriented approaches respectively.

Finally we would like to point out a different approach to hysteresis which has been
proposed in the recent years by Mielke, Theil, Levitas and others collaborators; we refer
for example to [19], [20], [21]. Their formulation does not involve explicit hysteresis
operators, but hysteresis arises implicitly as a result of coupling the energy balance
with a stability condition.

2.2 The play and the stop operators

Now we briefly recall the definition and some properties of the play and the stop oper-
ators, which can be certainly considered the simplest examples of continuous hysteresis
operators.
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It is possible to show that (see [15], Section I.3) the following system

(i) |xr(t)| ≤ r ∀t ∈ [0, T ],

(ii) (u̇(t)− ẋr(t)) (xr(t)− ϕ) ≥ 0 a.e. ∀ϕ ∈ [−r, r],

(iii) xr(0) = x0
r

(2.1)

admits a unique solution xr ∈ W 1,1(0, T ) for any given input function u ∈ W 1,1(0, T )
and any given initial condition x0

r ∈ [−r, r]. Then the stop and the play operators
Sr, Pr : [−r, r]×W 1,1(0, T ) → W 1,1(0, T ) can be introduced as solution operators of
Problem (2.1) by the formula

Sr(x
0
r, u) := xr Pr(x

0
r, u) := u− xr. (2.2)

It is also possible to extend these operators to continuous input functions. The set
Z := [−r, r] is called characteristic of the operators Sr and Pr. In this case it is a
symmetric one-dimensional set but there exist also situations in which more general
closed convex sets or tensorial extensions are considered. Other equivalent definitions
of the play operator can be found in [5], [13], [16], [17], [26].

Let Pr be the scalar play with characteristic [−r, r]. Then for any given input function
u ∈ W 1,1(0, T ) and any given initial condition x0

r ∈ [−r, r] we have

Pr(x
0
r, u)(0) := u(0)− x0

r.

We notice that we can associate to any r ∈ R the corresponding value x0
r; this suggests

the idea of making the initial configuration of the play system independent of the
initial conditions {x0

r}r∈R for the output function by the introduction of some suitable
function of r. More precisely, following [15] Section II.2, let us consider any function
λ ∈ Λ where

Λ :=

{
λ ∈ W 1,∞(0,∞);

∣∣∣∣
dλ(r)

dr

∣∣∣∣ ≤ 1 a.e. in [−r, r]

}
.

We also introduce some useful subspaces of Λ, i.e.

ΛR := {λ ∈ Λ; λ(r) = 0 for r ≥ R}, Λ0 :=
⋃
R>0

ΛR. (2.3)

Λ is called configuration space and the functions λ are called memory configurations.
If Qr : R→ [−r, r] is the projection

Qr(x) := sign (x) min{r, |x|} = min{r, max{−r, x}},
then we set

x0
r := Qr(u(0)− λ(r)).

This implies that the initial configuration of the play system only depends on λ and
u(0). The same can be done for the initial configuration Sr(x

0
r, u)(0) := x0

r of the stop
operator. We introduce the following more convenient notation which will be needed
later

℘r(λ, u) := Pr(x
0
r, u)

for any λ ∈ Λ, for any u ∈ C0([0, T ]) and r > 0.
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2.3 The Preisach operator

We briefly recall here the definition and some properties of a more complex example
of continuous hysteresis operator: the Preisach operator. The construction presented
here (which in origin appeared in [14]) can be seen as an alternative to the classical
model studied for example in [22] and further investigated in [5], [13], [15], [18], [26]
(see also [3], [4], [27], [25]). This approach allows us to obtain a more direct derivation
of Theorem 2.4, which plays a central role in our developments.

Let us introduce the Preisach plane, defined as

Q := {(r, v) ∈ R2 : r > 0}.
We introduce a function ψ ∈ L1

loc(Q) such that the following holds

Assumption 2.1.

there exists β1 ∈ L1
loc(0,∞), such that 0 ≤ ψ(r, v) ≤ β1(r) for a.e. (r, v) ∈ Q.

We put b1(R) :=

∫ R

0

β1(r) dr for R > 0 and set

g(r, v) :=

∫ v

0

ψ(r, z) dz for (r, v) ∈ Q. (2.4)

We have the following definition

Definition 2.2. Let ψ ∈ L1
loc(Q) be given and let g be chosen as in (2.4). Then

the Preisach operator W : Λ0 × C0([0, T ]) → C0([0, T ]) generated by the function g is
defined by the formula

W [λ, u](t) :=

∫ ∞

0

g(r, ℘r[λ, u](t)) dr (2.5)

for any given λ ∈ Λ0, u ∈ C0([0, T ]) and t ∈ [0, T ], where Λ0 is introduced in (2.3).

Then we can state the following result (see [15], Section II.3, Proposition 3.11)

Proposition 2.3. Let Assumption 2.1 be satisfied and let R > 0 be given. Then
W is a hysteresis operator and for every λ, µ ∈ ΛR and u, v ∈ C0([0, T ]) such that
||u||C0([0,T ]), ||v||C0([0,T ]) ≤ R, it satisfies

||W [λ, u]−W [µ, v]||C0([0,T ]) ≤
∫ R

0

|λ(r)− µ(r)| β1(r) dr + b1(R) ||u− v||C0([0,T ]).

The following important result which will play a central role in the following (see [15],
Section II.3, Theorem 3.17, see also [6], Theorem 5.8), holds

Theorem 2.4. Let Assumption 2.1 be fulfilled and let λ ∈ Λ0, b > 0 be given. Then
the operator b I +W(λ, ·) : C0([0, T ]) → C0([0, T ]), where I is the identity operator and
W is the Preisach operator introduced in (2.5), is invertible and its inverse is Lipschitz
continuous.
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As a straightforward application of this theorem, let us fix any λ ∈ Λ and introduce
the operator

F : C0([0, T ]) → C0([0, T ]) F(v)(t) = v(t) + 4 πW [λ, v](t), (2.6)

where W [λ, ·] is defined in (2.5) (the introduction of the operator F will become clear
in Section 3, where the physical context in which our model problem arises will be
outlined).

Now Theorem 2.4 gives us that F is invertible and its inverse is a Lipschitz continuous
operator. Let us set G = F−1 and denote with LG the Lipschitz constant of the
operator G . It can be easily shown that also G is a hysteresis operator.

2.4 Parameter dependent hysteresis

Operators like W [λ, ·] in (2.5) can be used to model phenomena in which time is
the only independent variable like in O.D.E.s. In the case of P.D.E.s, when also the
space variable appears, it is necessary to extend the construction of the Preisach model
outlined so far. More precisely, we have to consider both the input and the initial
memory configuration λ that additionally depend on the space parameter x.

Thus, from now on, let us fix any initial memory configuration

λ ∈ L2(Ω; ΛR), for some R > 0 , (2.7)

where ΛR has been introduced in (2.3). Let M(Ω; C0([0, T ])) be the Fréchet space
of strongly measurable functions Ω → C0([0, T ]), i.e. the space of functions v : Ω →
C0([0, T ]) such that there exists a sequence vn of simple functions with vn → v strongly
in C0([0, T ]) a.e. in Ω.

Now let us set

F : M(Ω; C0([0, T ])) →M(Ω; C0([0, T ])) F(u)(x, t) := F(u(x, ·))(t)
G : M(Ω; C0([0, T ])) →M(Ω; C0([0, T ])) G := F −1

,
(2.8)

where F has been introduced in (2.6).

It turns out that

G(w)(x, t) := G(w(x, ·))(t) ∀w ∈M(Ω; C0([0, T ]));

moreover, as G is a Lipschitz continuous hysteresis operator with Lipschitz constant
LG, we have that G is also a hysteresis operator and in addition G is:

• Lipschitz continuous with Lipschitz constant LG, in the following sense: for any
u1, u2 ∈M(Ω; C0([0, T ])), a.e in Ω

||[G(u1)](x, ·)− [G(u2)](x, ·)||C0([0,T ]) ≤ LG||u1(x, ·)− u2(x, ·)||C0([0,T ]); (2.9)

• gradient bounded in the following sense: for all u ∈M(Ω; C0([0, T ])), for a.e. x, y ∈
Ω,

||[G(u)](x, ·)− [G(u)](y, ·)||C0([0,T ]) ≤ LG||u(x, ·)− u(y, ·)||C0([0,T ]). (2.10)
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3 Physical interpretation of the model equation (1.1)

Electromagnetic processes in ferromagnetic materials can be described by coupling in
a suitable way the Maxwell equations with the Ohm law. Here we consider Q ⊂ R3

to be an electromagnetic material; we set QT := Q× (0, T ), for a fixed T > 0 and we
recall the Ampère, Faraday and Ohm laws (where ∇× is the curl operator)

c∇× ~H = 4π ~J +
∂ ~D

∂t
in QT (3.1)

c∇× ~E = −∂ ~B

∂t
in QT (3.2)

~J = σ( ~E + ~g) in QT (3.3)

where c is the speed of light in vacuum, ~H is the magnetic field, ~J is the electric
current density, ~D is the electric displacement, ~E is the electric field, ~B is the magnetic
induction, σ is the electric conductivity and finally ~g is an applied electromotive force.
For more details about these facts see a classical text of electromagnetism, for example
[12].

We assume for simplicity that ~D = ε ~E, where ε is the dielectric permittivity. Applying
the curl operator to (3.1), differentiating (3.2) in time and eliminating ~J, ~D and ~E we
then get

ε
∂2 ~B

∂t2
+ 4πσ

∂ ~B

∂t
+ c2∇×∇× ~H = 4π c σ∇× ~g in QT . (3.4)

We further simplify equation (3.4) by considering planar waves only. More precisely,
let Ω be a domain of R2, we set ΩT := Ω× (0, T ) and assume that (using orthogonal

Cartesian coordinates x, y, z ) both ~B and ~H are parallel to the z -axis and only

depend on the coordinates x, y, i.e. ~B = (0, 0, B(x, y)) and ~H = (0, 0, H(x, y)) . Then

∇×∇× ~H = (0, 0,−4x,yH)

(
4x,y :=

∂2

∂x2
+

∂2

∂y2

)
in ΩT .

If moreover ∇× ~g := (0, 0, g), equation (3.4) is then reduced to an equation for scalar
variables

ε
∂2B

∂t2
+ 4πσ

∂B

∂t
− c24x,yH = 4π c σ g = σ f in ΩT , (3.5)

where we set f := 4 π c g.

At this point we would like to combine equation (3.5) with the constitutive relation

H = G(B) + γ
∂B

∂t
(3.6)

where G is a suitable hysteresis operator and γ > 0 is a given constant. The relation
(3.6) can be for example obtained by the combination in series of a ferromagnetic
element with hysteresis and a conducting solenoid filled with a paramagnetic material.
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We model a ferromagnetic element with hysteresis by assuming that B = H + 4πM
with a hysteresis dependence of the magnetization M on H , i.e. M = W(H) where
W is a scalar Preisach operator. This means that B = H + 4πW(H) =: F(H).
Providing that the inverse of the operator F exists we may then assume that

H = F−1
(B) =: G(B).

This justifies the choice of the operators (2.6) and (2.8).

In the case of the conducting solenoid having a paramagnetic core, the equation

H = γ
∂B

∂t
(3.7)

describes the so called linear induction; this equation can be justified as follows: a flux

variation
∂B

∂t
induces the magnetic field

H̃ = −γ
∂B

∂t

and this can be seen using the Faraday-Lenz and the Ampère laws (the constant γ > 0
depends on the geometry of the circuit). Hence to vary the flux, the opposite magnetic
field must be applied H = −H̃ and this leads to equation (3.7). So in (3.6) we have
the presence of a rate independent element and a rate dependent one.

Now we consider the equation which results from the combination of (3.5) with (3.6).
We write it only displaying the coefficients ε, σ and γ which are the only ones of some
importance in our development. We get

ε
∂2B

∂t2
+ σ

∂B

∂t
−4x,y

(
γ

∂B

∂t
+ G(B)

)
= σ f,

i.e. equation (1.1).

4 Well posedness results for model equation (1.1)

4.1 Choice of the functional setting

We fix an open bounded set Ω ⊂ RN , N ≥ 1 of Lipschitz class with boundary Γ and
set ΩT := Ω× (0, T ).

In this section we are going to discuss the setting of our model problem. The choice of
the right functional spaces to work with plays a fundamental role in order to have some
positive results. Let us explain a bit in detail our choice of functional framework which
will be relevant for the right interpretation of the weak formulation of our problem.

Let H−1(Ω) be the dual of H1
0 (Ω) . First of all we consider the injection of the space

L2(Ω) into the space H−1(Ω). More precisely we take the map j : L2(Ω) → H−1(Ω)
which acts in the following way

H−1(Ω)〈j (φ), ϕ〉H1
0 (Ω) :=

∫

Ω

φ ϕdx ∀φ ∈ L2(Ω), ∀ϕ ∈ H1
0 (Ω). (4.1)
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It is not difficult to see that j is a continuous and dense injection, i.e. L2(Ω) is
a linear subspace of H−1(Ω) and it is dense with respect to the strong topology of
H−1(Ω). Then we may identify the space (H−1(Ω))′ with a linear subspace of (L2(Ω))′,
i.e. (H−1(Ω))′ ⊂ (L2(Ω))′ with continuous injection (let us call this map j∗ ). More
precisely we identify functionals with their restrictions, i.e.

(L2(Ω))′〈j∗ψ, φ〉L2(Ω) :=(H−1(Ω))′ 〈ψ, j(φ)〉H−1(Ω) ∀ψ ∈ (H−1(Ω))′, ∀φ ∈ L2(Ω).
(4.2)

In the following we will avoid to write each time j, j∗ when it will be clear from the
context, in order to simplify the notations. So for example (4.2) will simply become

(L2(Ω))′〈ψ, φ〉L2(Ω) :=(H−1(Ω))′ 〈ψ, φ〉H−1(Ω), ∀ψ ∈ (H−1(Ω))′, ∀φ ∈ L2(Ω).

Now we introduce the operator A : H1
0 (Ω) → H−1(Ω) defined as follows

H−1(Ω) 〈Au, v 〉H1
0 (Ω) :=

∫

Ω

∇u · ∇v dx ∀u, v ∈ H1
0 (Ω);

so it is clear that Au = −4u

(
:= −

N∑
i=1

∂2u

∂x2
i

)
in the sense of distributions.

In this setting we can think to invert the Laplace operator, i.e. the operator A−1 can
be interpreted as the inverse of the operator −4 associated with the homogeneous
Dirichlet boundary conditions. More precisely, for any v ∈ H−1(Ω),

u = A−1v if and only if





u ∈ H1(Ω)

−4u = v in D′(Ω)

γ0u = 0 on ∂Ω = Γ,

(4.3)

where γ0 : H1(Ω) → H1/2(Γ) is the unique linear continuous trace operator such that

γ0v = v|Γ ∀ v ∈ C∞(Ω̄) ∩H1(Ω).

At this point we consider the space H−1(Ω) endowed with the scalar product

(u, v)H−1(Ω) :=H−1(Ω)< u, A−1v >H1
0 (Ω) . (4.4)

It is clear, using (4.1), that

(u, v)H−1(Ω) :=

∫

Ω

u A−1v dx ∀u ∈ L2(Ω).

Finally we identify the space H−1(Ω) with its dual by means of the Riesz operator
R : H−1(Ω) → (H−1(Ω))′ which acts in the following way

(H−1(Ω))′〈Ru, v〉H−1(Ω) := (u, v)H−1(Ω) ∀u, v ∈ H−1(Ω). (4.5)

Let us remark that with this identification we immediately get, (omitting from now on
also the Riesz operator R for the sake of simplicity),

(L2(Ω))′〈ψ, φ〉L2(Ω)
(4.2) (4.5)

= (ψ, φ)H−1(Ω) = (φ, ψ)H−1(Ω)
(4.4)
= H−1(Ω) 〈φ, A−1ψ〉H1

0 (Ω)

(4.1)
=

∫

Ω

φ A−1ψ dx ∀φ ∈ L2(Ω), ∀ψ ∈ H−1(Ω),
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where we also used the fact that the scalar product (·, ·)H−1(Ω) is symmetric.

As L2(Ω) ⊂ H−1(Ω) with continuous and dense injection, we then have the Hilbert
triplet

L2(Ω) ⊂ H−1(Ω) ≡ (H−1(Ω))′ ⊂ (L2(Ω))′

with continuous and dense injections.

4.2 Weak formulation of the model problem

For the sake of simplicity, from now on we set L2(Ω) := V, H−1(Ω) := H and
(L2(Ω))′ := V ′. We suppose that u0 ∈ V, v0 ∈ H and f ∈ L2(0, T ; H) are given;
we also assume that ε, σ and γ are given positive constants. Let us consider an initial
memory configuration λ as in (2.7) and let G be the hysteresis operator introduced in
(2.8). We want to solve the following problem.

Problem 4.1. We search for two functions u ∈ M(Ω; C0([0, T ])) ∩ H1(0, T ; V ) and
v ∈ L2(ΩT ) such that G(u) ∈ L2(ΩT ) and for any ψ ∈ H1(0, T ; V ) with ψ(·, T ) = 0
a.e. in Ω

∫ T

0

− V ′ 〈ε v + σ u,
∂ψ

∂t
〉V dt +

∫ T

0

∫

Ω

(γ v + G(u)) ψ dx dt = σ

∫ T

0
V ′〈f, ψ 〉V dt

+ V ′ 〈(ε v0 + σ u0)(·), ψ(·, 0) 〉V
(4.6)

−
∫ T

0

∫

Ω

u
∂ψ

∂t
dx dt =

∫ T

0

∫

Ω

v ψ dx dt +

∫

Ω

u0(·) ψ(·, 0) dx. (4.7)

Interpretation. Following [24], we first introduce, for any given Banach space X ,
the space of distributions D′(0, T ; X) on (0, T ) taking values in X which is defined
as D′(0, T ; X) := L(D(0, T ); X), where L(Y, Z) is the space of linear and continuous
mappings from Y to Z .

If f ∈ D′(0, T ; X) one can define its distributional derivative in the following way

∂f

∂t
(ϕ) = −f

∂ϕ

∂t
∀ϕ ∈ D(0, T ). (4.8)

For a function f ∈ Lp(0, T ; X) one can introduce a distribution (still denoted by f )
on (0, T ) taking values in X in the following way

f(ϕ) =

∫ T

0

f(t) ϕ(t) dt ϕ ∈ D(0, T ); (4.9)

this integral is an element of X . Also in this case we can define
∂f

∂t
as an element of

D′(0, T ; X) using (4.8). For more details on the definition of derivatives taking values
in a Banach space and related topics, see for example [24].

After this preamble, let us show that (4.6) implies

A−1

(
ε
∂v

∂t
+ σ

∂u

∂t

)
+ γ v + G(u) = σ A−1f in D′(0, T ; L2(Ω)) . (4.10)
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In fact, let us take any ϕ ∈ D(0, T ) and any φ ∈ L2(Ω). Consider ψ ∈ D(0, T ; L2(Ω))
defined in the following way

ψ(t, x) := ϕ(t)φ(x).

It is easy to see that in particular ψ ∈ H1(0, T ; V ) and ψ(·, T ) = 0 a.e. in Ω, so

(4.6) holds for this particular choice of ψ. Taking into account that
∂ϕ

∂t
(t) ∈ R for any

t ∈ [0, T ], we have
∫ T

0

−V ′〈ε v(t) + σ u(t),
∂ψ

∂t
(t)〉V dt

(4.2) (4.5)
=

∫ T

0

−
(

ε v(t) + σ u(t),
∂ϕ

∂t
(t) φ

)

H−1(Ω)

dt

(4.4)
=

∫ T

0

−H−1(Ω)〈φ,
∂ϕ

∂t
(t) A−1(ε v(t) + σ u(t))〉H1

0 (Ω) dt

(4.1)
= −

∫ T

0

∫

Ω

∂ϕ

∂t
A−1(ε v + σ u) φ dx dt,

where we also used the fact the scalar product of H−1(Ω) is symmetric and the fact

that φ does not depend on t. The same can be done with the term σ

∫ T

0
V ′〈f, ψ〉V dt

so that we obtain for all φ ∈ L2(Ω)

∫

Ω

[∫ T

0

{
− A−1(ε v(t) + σ u(t))

∂ϕ

∂t
(t) + (γ v(t) + G(u)(t)) ϕ(t)

− σ A−1f(t)ϕ(t)

}
dt

]
φ dx = 0;

let us notice that with our choice of ψ the term V ′〈(ε v0 + σ u0)(·), ψ(·, 0)〉V vanishes
as we have ψ(·, 0) = 0 a.e. in Ω. The previous equation is equivalent to

∫ T

0

{
− A−1(ε v(t) + σ u(t))

∂ϕ

∂t
(t) + (γ v(t) + G(u)(t)) ϕ(t)

− σ A−1f(t)ϕ(t)

}
dt = 0

in L2(Ω) . Using (4.8) and (4.9), we easily obtain (4.10), so at the end (4.6) and (4.7)
yield





A−1 ε
∂v

∂t
+ A−1 σ

∂u

∂t
+ γ v + G(u) = σ A−1f

∂u

∂t
= v

in D′(0, T ; L2(Ω)) . (4.11)

At this point, by comparison we have that

εA−1∂v

∂t
∈ L2(ΩT )
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thus (4.11) holds in L2(Ω) a.e. in (0, T ). Therefore A−1v ∈ H1(0, T ; L2(Ω)) and,
integrating by parts in (4.6) and (4.7), we obtain

A−1 u|t=0 = A−1 u0 A−1 v|t=0 = A−1 v0 in L2(Ω), in the sense of traces. (4.12)

In turn, (4.11) and (4.12) yield (4.6) and (4.7) and the two formulations are equivalent.

We end this part by noticing that, if in addition the solution (u, v) is more regular in
space, (as indeed happens at the end in Theorem 4.5), then (4.6) and (4.7) can be also
interpreted as





ε
∂v

∂t
+ σ

∂u

∂t
−4(γ v + G(u)) = σ f

∂u

∂t
= v

in L2(0, T ; V ′)

and so we come back to the original model equation from what our discussion started.

4.3 An existence and uniqueness result

Theorem 4.2. (Existence and uniqueness).
Let G : M(Ω; C0([0, T ])) →M(Ω; C0([0, T ])) be the operator introduced in (2.8). Sup-
pose that

u0 ∈ V, v0 ∈ H, f ∈ L2(0, T ; H).

Then Problem 4.1 has a unique solution

u ∈ H1(0, T ; L2(Ω)), v ∈ L2(ΩT )

such that
G(u) ∈ H1(0, T ; L2(Ω)).

Proof. The proof of this theorem consists in two steps.

• step 1: auxiliary problem. In this first step we fix z ∈ H1(0, T ; V ) , where we
recall that we set, for brevity, V := L2(Ω) , and we consider Problem 4.1Z which is the
auxiliary problem obtained from Problem 4.1 by replacing G(u) with G(z). We can
interpret Problem 4.1Z as





ε A−1 ∂v

∂t
+ σ A−1∂u

∂t
+ γ v = σ A−1f − G(z) = σ A−1(f − AG(z)) =: A−1Gz

∂u

∂t
= v,

which holds in D′(0, T ; L2(Ω)) , together with the initial values

A−1 u|t=0 = A−1 u0 A−1 v|t=0 = A−1 v0 in L2(Ω), in the sense of traces. (4.13)

By comparison, the previous system actually holds in L2(ΩT ) and then in L2(Ω) a.e.
in (0, T ). So in order to prove that this problem admits a unique solution (u, v), it is

12



enough to show that there exists a unique v such that, for all φ ∈ L2(Ω) and for a.e.
t ∈ [0, T ],

∫

Ω

φA−1 ε
∂v

∂t
dx +

∫

Ω

(A−1σ v + γ v) φ dx =

∫

Ω

φA−1Gz dx, (4.14)

with the initial data (4.13). This can be done using a classical theorem for evolution
equations of parabolic type, such as for example, Theorem X.9 contained in Chapter
X of [2]. This theorem also gives the following regularity for v

v ∈ L2(ΩT ) ∩ C0(0, T ; H−1(Ω)),
∂v

∂t
∈ L2(0, T ; (L2(Ω))′).

• second step: fixed point. At this point, we introduce the set

B =
{
z ∈ H1(0, T ; V ) : z(0) = u0

}
.

For each z ∈ B we found, in the previous step, a unique solution (u, v) of Problem
4.1Z . Thus we may construct an operator

J : B → B z 7→ u.

Now we consider a couple of data z1, z2 ∈ B; let us define u1 := J(z1), u2 := J(z2). If

vi :=
∂ui

∂t
for i = 1, 2, then we have the following equation

εA−1 ∂

∂t
(v1 − v2) + σ A−1 ∂

∂t
(u1 − u2) + γ (v1 − v2) + G(z1)− G(z2) = 0, (4.15)

which holds in L2(ΩT ) . Let us multiply (4.15) by (v1 − v2) in the scalar product of
L2(Ω) . We have

ε

∫

Ω

(
A−1 ∂

∂t
(v1 − v2)

)
(v1 − v2) dx + σ

∫

Ω

(
A−1 ∂

∂t
(u1 − u2)

)
(v1 − v2) dx

+ γ

∫

Ω

|v1 − v2|2 dx +

∫

Ω

(G(z1)− G(z2)) (v1 − v2) dx

= ε

(
∂

∂t
(v1 − v2), v1 − v2

)

H

(t) + σ ||v1 − v2||2H(t) + γ

∫

Ω

|v1 − v2|2 dx

+

∫

Ω

(G(z1)− G(z2)) (v1 − v2) dx = ε
1

2

d

dt
||v1 − v2||2H(t)

+ σ ||v1 − v2||2H(t) + γ ||v1 − v2||2L2(Ω)(t) +

∫

Ω

(G(z1)− G(z2)) (v1 − v2) dx = 0.

Now, setting D(t) =
1

2
||v1 − v2||2H(t), we deduce

ε
dD

dt
(t) + γ ||v1−v2||2L2(Ω)(t) ≤

1

γ
||G(z1)−G(z2)||2L2(Ω)(t)+

γ

4
||v1−v2||2L2(Ω)(t). (4.16)
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On the other hand∫

Ω

[G(z1)(x, t)− G(z2)(x, t)]2 dx
(2.9)

≤ L2
G

∫

Ω

||z1(x, ·)− z2(x, ·)||2C0([0,t]) dx

≤ L2
G

∫

Ω

(∫ t

0

∣∣∣∣
∂

∂τ
(z1 − z2)

∣∣∣∣ (x, τ) dτ

)2

dx

≤ L2
G t

∫ t

0

∫

Ω

∣∣∣∣
∂

∂τ
(z1 − z2)

∣∣∣∣
2

(x, τ) dx dτ,

(4.17)

where we used the fact that z1(0) = z2(0), as z1, z2 ∈ B.

We introduce an equivalent norm on H1(0, T ; V ) , namely

|||z||| :=
(
||z(0)||2L2(Ω) +

∫ T

0

exp

(
−2 L2

Gt
2

γ2

) ∣∣∣∣
∣∣∣∣
∂z

∂t

∣∣∣∣
∣∣∣∣
2

L2(Ω)

(t) dt

)1/2

∀ z ∈ H1(0, T ; V ).

(4.18)

At this point we multiply (4.16) by exp

(
−2 L2

Gt
2

γ2

)
and integrate in time, for t ∈

(0, T ). We use (4.17) and the fact that v1(x, 0) = v2(x, 0) (this makes sense since,
from the previous step we have v ∈ C0(0, T ; H−1(Ω))). So we deduce

3

4
|||J(z1)− J(z2)|||2 ≤

∫ T

0

exp

(
−2 L2

Gt
2

γ2

)
L2
G t

γ2

∫ t

0

∫

Ω

∣∣∣∣
∂

∂τ
(z1 − z2)

∣∣∣∣
2

(x, τ) dx dτ

=− 1

4
exp

(
−2 L2

GT
2

γ2

) ∫ T

0

∫

Ω

∣∣∣∣
∂

∂t
(z1 − z2)

∣∣∣∣
2

(x, t) dx dt

+
1

4

∫ T

0

exp

(
−2 L2

Gt
2

γ2

) ∫

Ω

∣∣∣∣
∂

∂t
(z1 − z2)

∣∣∣∣
2

(x, t) dx dt

which in turn gives

|||J(z1)− J(z2)|||2 ≤ 1

3
|||z1 − z2|||2.

Hence J is a contraction on the closed subset B of H1(0, T ; V ), which yields the
existence and uniqueness of solutions.

At this point (2.9) and the fact that H1(0, T ; L2(Ω)) ⊂ L2(Ω; C0([0, T ])) with con-
tinuous injection, entail that G(u) ∈ L2(Ω; C0([0, T ])). Let us show that actually
G(u) ∈ H1(0, T ; L2(Ω)).

It is not difficult to see that (2.9), together with the fact that G is a hysteresis operator,
yields the following property for G, named piecewise Lipschitz continuity property




∀ v ∈M(Ω; C0([0, T ])), ∀ [t1, t2] ⊂ [0, T ]

if v(x, ·) is affine in [t1, t2] a.e. in Ω, then

|[G(v)](x, t2)− [G(v)](x, t1)| ≤ LG |v(x, t1)− v(x, t2)| a.e. in Ω.

(4.19)

As the family of continuous, piecewise linear functions is dense in W 1,1(0, T ), then
(4.19) entails that G(u) ∈M(Ω; W 1,1(0, T )) , for all u ∈M(Ω; W 1,1(0, T )) ; moreover

∣∣∣∣
∂

∂t
G(u)

∣∣∣∣ ≤ L

∣∣∣∣
∂u

∂t

∣∣∣∣ a.e. in ΩT . (4.20)
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But we have that u ∈ H1(0, T ; L2(Ω)) ; therefore from (4.20) we also deduce that
G(u) ∈ H1(0, T ; L2(Ω)) . This finishes the proof. ¤

Remark 4.3. The proof that G(u) ∈ H1(0, T ; L2(Ω)) is the only point in the paper
where the rate independence property of G is used. For all the other results G is not
required to be also rate independent.

4.4 Lipschitz continuous dependence on the data

Theorem 4.4. (Lipschitz continuous dependence on the data).
Let G : M(Ω; C0([0, T ])) →M(Ω; C0([0, T ])) be the operator introduced in (2.8). Then
the dependence of the solution on the data is Lipschitz continuous in the following
sense. For i = 1, 2, let u0

i , v0
i , fi be such that

u0
i ∈ V, v0

i ∈ H, fi ∈ L2(0, T ; H) i = 1, 2

and let (ui, vi) be the corresponding unique solution of Problem 4.1. Then

||u1 − u2||2L2(ΩT ) ≤ c1 ||u0
1 − u0

2||2L2(Ω) + c2 ||v0
1 − v0

2||2H + c3 ||A−1(f1 − f2)||2L2(ΩT ),

where c1 ≡ c1(γ, T, LG) , c2 ≡ c2(ε, γ, T, LG) and c3 ≡ c3(σ, γ, T, LG) .

Proof. From our assumptions, we immediately have that the following system





εA−1 ∂

∂t
(v1 − v2) + σA−1 ∂

∂t
(u1 − u2) + γ(v1 − v2) + G(u1)− G(u2) = σA−1(f1 − f2)

∂

∂t
(u1 − u2) = v1 − v2,

holds in L2(ΩT ). We multiply the first equation of the previous system by v1 − v2 =
∂

∂t
(u1 − u2) in the scalar product of L2(Ω) . We get

ε
dD

dt
(t) +

5

8
γ

∣∣∣∣
∣∣∣∣
∂

∂t
(u1 − u2)

∣∣∣∣
∣∣∣∣
2

L2(Ω)

(t) ≤ 1

γ
||G(u1)− G(u2)||2L2(Ω)(t)

+
2

γ
σ2 ||A−1(f1 − f2)||2L2(Ω)(t),

where we recall that D(t) =
1

2
||v1 − v2||2H(t).

Working as we did in order to obtain (4.17), we deduce

ε

2 γ

dD

dt
(t) +

5

16

∣∣∣∣
∣∣∣∣
∂

∂t
(u1 − u2)

∣∣∣∣
∣∣∣∣
2

L2(Ω)

(t) ≤ L2
G

γ2
||u1(x, 0)− u2(x, 0)||2L2(Ω)

+
L2
G t

γ2

∫ t

0

∫

Ω

∣∣∣∣
∂

∂τ
(u1 − u2)

∣∣∣∣
2

(x, τ) dx dτ +
σ2

γ2
||A−1(f1 − f2)||2L2(Ω)(t)

(4.21)
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Now we multiply (4.21) by exp

(
−2 L2

G t2

γ2

)
and we integrate in time from 0 to T . We

denote by ||| · ||| the equivalent norm on H1(0, T ; L2(Ω)) which has been introduced
in (4.18). We have

|||u1 − u2|||2 ≤ c̃1 ||u1(x, 0)− u2(x, 0)||2L2(Ω) + c̃2 ||v1(x, 0)− v2(x, 0)||2H
+ c̃3 ||A−1(f1 − f2)||2L2(ΩT ),

where c̃1 ≡ c̃1(γ, T, LG) , c̃2 ≡ c̃2(ε, γ) and c̃3 ≡ c̃3(σ, γ) . From this we finally deduce
that

||u1 − u2||2L2(ΩT ) ≤ c1 ||u1(x, 0)− u2(x, 0)||2L2(Ω) + c2 ||v1(x, 0)− v2(x, 0)||2H
+ c3 ||A−1(f1 − f2)||2L2(ΩT ),

with c1 ≡ c1(γ, T, LG) , c2 ≡ c2(ε, γ, T, LG) and c3 ≡ c3(σ, γ, T, LG) . This finishes the
proof. ¤

4.5 Some further regularity results

Theorem 4.5. (Regularity).
Let G : M(Ω; C0([0, T ])) → M(Ω; C0([0, T ])) be the operator introduced in (2.8) and
let f ∈ L2(0, T ; H−1(Ω)), u0, v0 ∈ H1(Ω). Then Problem 4.1 has a unique solution

u ∈ H1(0, T ; H1(Ω)), v ∈ L2(0, T ; H1(Ω)).

If instead f ∈ L2(0, T ; H−1(Ω)), u0, v0 ∈ H1
0 (Ω) , then the unique solution of Problem

4.1 is such that

u ∈ H1(0, T ; H1
0 (Ω)), v ∈ L2(0, T ; H1

0 (Ω)).

In both cases it also turns out that

v ∈ C0(0, T ; L2(Ω)) (4.22)

and there exists a constant C > 0 such that

sup
t∈[0,T ]

||v(t)||L2(Ω) ≤ C

(
||v||L2(0,T ;H1(Ω)) +

∣∣∣∣
∣∣∣∣
dv

dt

∣∣∣∣
∣∣∣∣
L2(0,T ;H−1(Ω))

)
. (4.23)

Proof. The proof of the first part of Theorem 4.5 is based on the classical character-
ization of the Sobolev spaces H1(Ω) and H1

0 (Ω) , which can be found for example in
[2], Sections IX.1, IX.4.

Let us fix some notations. We consider any D ⊂⊂ Ω, i.e. D is an open bounded set
contained in Ω such that D̄ ⊂ Ω. Let χD be the characteristic function of the open
set D ; for any h ∈ RN with |h| < dist (D, Ωc) we set

τhu(x) := u(x + h) and δhu(x) := τhu(x)− u(x).
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Moreover let (u, v) be the unique solution of Problem 4.1. We take the space increments
in equation

A−1 ∂

∂t
(ε v + σ u) + γ v + G(u) = σ A−1 f,

which holds in L2(ΩT ), where v =
∂u

∂t
; we multiply the result first by χD (so that

now the equation holds in L2(D × (0, T )) ) and then by δh v χD in the scalar product
of L2(Ω) (or equivalently in the scalar product of L2(D) ). Then we integrate in time
between 0 and T. We get

∫ T

0

∫

D

[
A−1 ∂

∂t
(ε δh v + σ δh u)

]
(δh v) dx dt +

∫ T

0

∫

D

(γ δh v + δh G(u)) (δh v) dx dt

=
ε

2

∫ T

0

∂

∂t
||δh v||2H−1(D) dt +

∫ T

0

[
σ ||δh v||2H−1(D) + γ ||δh v||2L2(D)

]
dt

+

∫ T

0

∫

D

δh G(u) δh v dx dt =

∫ T

0

∫

D

(A−1 δh f) (δh v) dx dt

≤ γ

8

∫ T

0

||δh v||2L2(D) dt +
2

γ
σ2

∫ T

0

||A−1 δh f ||2L2(D) dt.

At this point, using assumption (2.10) and working as in (4.17)

||δh G(u)||L2(0,T ;L2(D)) ≤ ||δh G(u)||L2(D; C0([0,T ]))

≤LG ||δh u||L2(D; C0([0,T ]))

≤
√

T LG ||δh v||L2(0,T ;L2(D)) + LG ||δhu(x, 0)||L2(D)

from what we deduce

ε

2
||δh v(x, T )||2H−1(D) + σ ||δh v||2L2(0,T ;H−1(D)) dt +

7

8
γ ||δh v||2L2(0,T ;L2(D))

≤ γ

4
||δh v||2L2(0,T ;L2(D)) +

2

γ
σ2 ||A−1δh f ||2L2(0,T ;L2(D)) +

1

γ
||δh G(u)||2L2(0,T ;L2(D))

+
ε

2
||δhv(x, 0)||2H−1(D) ≤

(
γ

4
+ 2

T L2
G

γ

)
||δh v||2L2(0,T ;L2(D))

+
2

γ
σ2 ||A−1δh f ||2L2(0,T ;L2(D)) +

ε

2
||δhv(x, 0)||2H−1(D) +

2

γ
L2
G ||δhu(x, 0)||2L2(D).

Using the same argument employed in the previous cases and exploiting our assump-
tions on the data, we obtain

ε

2
||δh v(x, T )||2H−1(D) +

γ

8
||δh v||2L2(0,T ;L2(D)) ≤ C (T, ε, σ, γ, LG) |h|2,

where the constant C depends on T, ε, σ, γ, LG but it is independent of D. Thus, using
the characterization of the space H1(Ω) we have that

v(x, t) ∈ H1(Ω) a.e. in [0, T ] ;
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on the other hand, using the Lebesgue dominated convergence theorem, we also imme-
diately get

v ∈ L2(0, T ; H1(Ω)).

which gives us the regularity we were looking for.

The case of the space H1
0 (Ω) can be carried on in a similar way.

Finally the last regularity results (4.22) and (4.23) are directly obtained using a classical
theorem (see for example [23], pag. 191). ¤

4.6 Dependence of the solution on the parameters ε and σ

We are able to state and prove the following two results

Theorem 4.6. (dependence on ε).
For any given ε > 0 , let (uε, vε) be the unique solution of Problem 4.1 corresponding
to the data

fε := f ∈ L2(0, T ; H−1(Ω)), u0
ε := u0 ∈ H1

0 (Ω), v0
ε := v0 ∈ H1

0 (Ω)

such that
uε ∈ H1(0, T ; H1

0 (Ω)) vε ∈ L2(0, T ; H1
0 (Ω)).

Then there exist two functions u ∈ H1(0, T ; H1
0 (Ω)) and v ∈ L2(0, T ; H1

0 (Ω)) such
that, if ε → 0 , then

uε → u

{
weakly in H1(0, T ; H1

0 (Ω))

strongly in L2(Ω; C0([0, T ]))

vε → v weakly in L2(0, T ; H1
0 (Ω));

moreover the pair (u, v) fulfills the following system




σ v −4 (
γ v + G(u)

)
= σ f

∂u

∂t
= v.

(4.24)

Proof. From our assumptions we obtain




ε
∂vε

∂t
+ σ vε −4

(
γ

∂uε

∂t
+ G(uε)

)
= σ f

∂uε

∂t
= vε,

where the first equation of the previous system holds in L2(0, T ; H−1(Ω)) . We test

this equation by
∂uε

∂t
, obtaining

ε

2

d

dt

∫

Ω

∣∣∣∣
∂uε

∂t

∣∣∣∣
2

(t) dx + σ

∫

Ω

∣∣∣∣
∂uε

∂t

∣∣∣∣
2

(t) dx + γ

∫

Ω

∣∣∣∣∇
(

∂uε

∂t

)∣∣∣∣
2

(t) dx

≤ 2 σ2

γ
||f(t)||2H−1(Ω) +

γ

8

∫

Ω

∣∣∣∣∇
(

∂uε

∂t

)∣∣∣∣
2

(t) dx +

∫

Ω

|∇G(uε)(t)|
∣∣∣∣∇

(
∂uε

∂t

)
(t)

∣∣∣∣ dx.
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At this point, (2.10) yields, for any t ∈ [0, T ]

||∇G(uε)||2L2(Ω) ≤ ||∇G(uε)||2L2(Ω;C0([0,T ])) ≤ L2
G ||∇uε||2L2(Ω;C0([0,T ]))

≤ 2 L2
G ||∇u0||2L2(Ω) + 2 L2

G t

∫

Ω

∫ t

0

∣∣∣∣∇
(

∂uε

∂t

)∣∣∣∣
2

dt dx.

This in turn entails that

ε

4 γ

d

dt

∫

Ω

∣∣∣∣
∂uε

∂t

∣∣∣∣
2

(t) dx +
5

16

∫

Ω

∣∣∣∣∇
(

∂uε

∂t

)∣∣∣∣
2

(t) dx

≤ σ2

γ2
||f(t)||2H−1(Ω) +

1

2 γ2
||∇G(uε)(t)||2L2(Ω)

≤ σ2

γ2
||f(t)||2H−1(Ω) +

L2
G

γ2
||∇u0||2L2(Ω) +

L2
G t

γ2

∫

Ω

∫ t

0

∣∣∣∣∇
(

∂uε

∂t

)∣∣∣∣
2

dt dx.

(4.25)

We are now basically in the same situation as in (4.21). We use therefore the same

idea of multiplying (4.25) by exp

(
−2 L2

G t2

γ2

)
and integrating in time for t ∈ (0, T ) ;

we use once more the equivalent norm ||| · ||| introduced in (4.18). We obtain

5

16
|||∇uε|||2 ≤ ε

4 γ
||v0||2L2(Ω)+ c̃ ||∇u0||2L2(Ω) +

1

4
|||∇uε|||2

+
σ2

γ2

∫ T

0

exp

(
−2 L2

G t2

γ2

)
||f(t)||2H−1(Ω) dt,

(4.26)

where c̃ only depends on LG, γ, T and it is independent of ε and σ .

Now, as at the end we will consider ε → 0 , it is not restrictive to assume ε < 1 . This
allows us to obtain the following estimate

||uε||H1(0,T ;H1
0 (Ω)) ≤ constant (independent of ε ).

Standard interpolation results then yield the desired passage to the limit. ¤

Remark 4.7. For slow processes the displacement term ε
∂2 ~B

∂t2
in (3.4) is dominated

by the Ohmic term 4 π σ
∂ ~B

∂t
. In this case (3.4) is then usually replaced by the so

called eddy-current equation

4 π σ
∂ ~B

∂t
+ c2∇×∇× ~H = 4 π c σ∇× ~g in QT . (4.27)

If now we apply to the fields ~B and ~H in (4.27) the same restrictions as we did in
Section 3 and couple the result with the constitutive relation (3.6), we obtain (4.24).

Theorem 4.8. (dependence on σ ).
For any given σ > 0 , let (uσ, vσ) be the unique solution of Problem 4.1 corresponding
to the data

fσ := f ∈ L2(0, T ; H−1(Ω)), u0
σ := u0 ∈ H1

0 (Ω), v0
σ := v0 ∈ H1

0 (Ω)
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such that
uσ ∈ H1(0, T ; H1

0 (Ω)) vσ ∈ L2(0, T ; H1
0 (Ω)).

Then there exist two functions u ∈ H1(0, T ; H1
0 (Ω)) and v ∈ L2(0, T ; H1

0 (Ω)) such
that, if σ → 0 , then

uσ → u

{
weakly in H1(0, T ; H1

0 (Ω))

strongly in L2(Ω; C0([0, T ]))

vσ → v weakly in L2(0, T ; H1
0 (Ω));

moreover the pair (u, v) satisfies the following system





ε
∂v

∂t
−4 (

γ v + G(u)
)

= 0

∂u

∂t
= v.

(4.28)

Proof. The proof of this theorem relays on the same idea employed in the proof of
Theorem 4.6. Indeed, as this time we are going to take σ → 0 , then it is not restrictive
to assume σ < 1 . Therefore (4.26) leads to the following estimate

||uσ||H1(0,T ;H1
0 (Ω)) ≤ constant (independent of σ ).

The desired passage to the limit is now carried on by means of some standard argu-
ments. ¤

Remark 4.9. Equation (3.4) applies for both ferromagnetic and ferrimagnetic mate-
rials. The case σ = 0 in (3.4) corresponds to ferrimagnetic insulators. In this case
~J = 0 in the whole R3 and (3.4) becomes

ε
∂2 ~B

∂t2
+ c2∇×∇× ~H = 0 in QT , (4.29)

where we account for the displacement currents. This equation applies for either slow
or fast processes. Also in this case, suitable restrictions on the fields involved lead
to (4.28), where (3.6) is once more used. We refer to [27] and [28] for more details
concerning the discussion of the vectorial models (4.27) and (4.29).

5 A more realistic physical situation

We know that by coupling in a suitable way the Maxwell equations and the Ohm law,
we are able to describe electromagnetic processes in ferromagnetic materials. In Section
3 we have chosen to work in a bounded domain Q of R3 but this approach does not
seem too realistic; in fact the evolution of the fields outside Q may have an influence
on the processes which take place inside Q and it seems difficult to describe in a proper
way this interaction by formulating a boundary value problem on a bounded domain.
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In a recent paper (see [28]), Visintin considers the Maxwell equations and the Ohm

law set in the whole Euclidean space R3 and relates the magnetic induction ~B and
the magnetic field ~H by means of two constitutive relations, inside and outside a
prescribed bounded domain; then he carries on his analysis working in the whole R3.
Here we would like to follow the same idea.

Consider an electromagnetic process in a magnetic material which occupies a Euclidean
domain Q ⊂ R3 in a time interval (0, T ). We set for the sake of simplicity

QT := Q× (0, T ) R3
T := R3 × (0, T ).

The Maxwell equations in the whole R3 (for the sake of simplicity we state only the
ones which will be useful later) read

c∇× ~H = 4π ~J +
∂ ~D

∂t
in R3

T (5.1)

c∇× ~E = −∂ ~B

∂t
in R3

T (5.2)

where ~H is the magnetic field, ~B is the magnetic induction, ~E is the electric field ~J
is the electric current density, ~D is the electric displacement and finally c is the speed
of light in vacuum.

Now, suppose to deal with a ferromagnetic metal; in this setting ~D = ε ~E, where ε is
the electric permittivity; therefore we can rewrite (5.1) in the following way

c∇× ~H = 4π ~J + ε
∂ ~E

∂t
in R3

T .

We denote by ~Eapp a prescribed applied electromotive force (this is possible, for exam-
ple, with a battery); we assume that the electric permittivity ε is a scalar constant and
moreover we introduce the electric conductivity σ which is assumed to vanish outside
Q. Concerning the material we are dealing with, we suppose that it is surrounded by
vacuum and that an electric current can circulate in an exterior conductor; we can
see this assuming that ~J equals a prescribed time dependent vector field ~Jext which
vanishes inside Q.

After this preamble (3.3) can be extended to the following law

~J =





σ( ~E + ~Eapp) in Q× (0, T )

~Jext in [R3 \Q]× (0, T ).
(5.3)

Moreover, after the assumptions we made on the conductivity, σ can be accordingly
replaced by χQ, the characteristic function of the set Q, i.e. χQ = 1 inside Q and
χQ = 0 outside Q. Thus (5.3) becomes

~J = χQ( ~E + ~Eapp) + (1− χQ) ~Jext in R3
T
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and we come at the end to the following system





c∇× ~H = 4 π
[
χQ ( ~E + ~Eapp) + (1− χQ) ~Jext

]
+ ε

∂ ~E

∂t

c∇× ~E = −∂ ~B

∂t

in R3
T .

This vectorial model must be coupled with a suitable constitutive relation. We could
choose for example to relate ~B and ~H by means of a constitutive law with hysteresis
inside Q and simply to set ~B = ~H outside Q . This could be made explicit in the
following way

~H = χQ

(
F( ~B) + γ

∂ ~B

∂t

)
+ (1− χQ) ~B,

where F is a suitable vector hysteresis operator and γ > 0 is a nonnegative relaxation
parameter. Therefore the model we would like to study is at the end the following





c∇× ~H = 4 π
[
χQ ( ~E + ~Eapp) + (1− χQ) ~Jext

]
+ ε

∂ ~E

∂t

c∇× ~E = −∂ ~B

∂t

~H = χQ

(
F( ~B) + γ

∂ ~B

∂t

)
+ (1− χQ) ~B

in R3
T . (5.4)

The problem of finding well posedness results for this model is for the moment an open
question. However also in this case some restrictions on the fields involved can be
assumed and solutions to (5.4) in some particular situations can be found. We refer to
[11] for existence and uniqueness of a solution (corresponding to a plane wave) for a
one-dimensional counterpart of (5.4).
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