

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

DYNAMIC-EPISTEMIC SPATIAL LOGIC

Radu Mardare and Corrado Priami

March 2006

Technical Report # DIT-06-010

.

Dynamic Epistemic Spatial Logic∗

Radu Mardare1 and Corrado Priami1,2

1University of Trento, Italy
2Microsoft Research - University of Trento Center

for Computational and Systems Biology

Abstract

In this paper we combine features of dynamic-epistemic logics with the spatial logics
in order to obtain a decidable, fully axiomatized logic for expressing information flow in
distributed multi-agent systems. Thus, Dynamic Epistemic Spatial Logic is as an extension
of Hennessy-Milner logic with spatial and epistemic operators.

1 Introduction

The development of computer networks came with new paradigms of computation by proposing
the concurrent distributed computing systems, which are not only sequential, goal-directed,
deterministic or hierarchical systems, but represent programs/processors running in parallel and
organized in networks of subsystems, each subsystem having its own identity. The subsystems
interact, collaborate, communicate and interrupt each other.

Underlying this new paradigm is the assumption that each part of such a system has its
own identity, which persists through time. We shall call these parts agents. Hence the agents
are separate and independently observable units of behavior and computation. They evolve in
a given environment, following some primitive rules, their evolution influencing the structure of
the whole (multi-agent) system. The main feature of the agents is their ability to communicate,
that is to exchange information inside their environment.

Multi-agent systems are extremely complex. The success in dealing with this complexity
depends on the mathematical model we choose to abstract the system. Further we focus on
two major paradigms.

To be is to behave

The first paradigm is proposed by Process Algebra [3], that abstracts the agents of the system,
on the level of their behavior, and using some algebraic calculi and operational semantics
[30] describes the evolution of the whole system. Inspired by λ-calculus and deeply related
with the programming languages, this paradigm succeeds in modelling complex computational
scenarios. Further, as the behavior of a concurrent system is, mainly, a succession of affine
states in (possibly branching) time, was considered the possibility of applying modal (especially
temporal) logics for specifying properties of the systems we modelled.

In studying security problems, for example, we may want to be able to specify systems
composed by agents that deal with fresh or secret resources. We may want to express properties
such as “the agent has the key”, “eventually the agent crosses the firewall” or “there is always
at most one agent here able to decrypt the message”.

∗Work partially supported by EU-IST project 016004 SENSORIA

1

In systems biology [10] we need to handle big complex systems having extreme dimensions
and variable environments. We need to express properties such as “somewhere there is a virus”,
“if the virus will meet the macrophage cell then it will be engulfed and eventually destroyed”,
or “the presence of the protein x will stimulate the reaction X”, etc.

Hennessy-Milner logic [24] is one of the first modal logics that proposes some modal opera-
tors, indexed by actions, to describe the behavior of the systems in CCS. The idea was further
developed in combination with temporal operators [31] or applied to other calculi [29, 16, 18].
Latter, Mads Dam introduced a tensor that can express properties of modularity in the system
[17], i.e. it can identify subsystems of a system. All these logics are characterized by their
extensional nature, meaning that they cannot distinguish between processes that behave the
same, even if these processes are different.

An increased degree of expressiveness is necessary if we want to specify and to reason about
notions such as locations, resources, independence, distribution, connectivity and freshness. The
specific applications of mobile computing call for properties that hold at particular locations,
and it becomes natural to consider spatial modalities for expressing properties that hold at a
certain location, at some locations or at every location. Thus, Spatial logics [7, 6, 12] propose,
in addition to the modal temporal operators, some modal spatial operators such as the parallel
operator φ|ψ (meaning that the current process can be split into a parallel composition Q|R of
a process Q satisfying φ and a process R satisfying ψ), and its adjoint - the guarantee operator
φ . ψ, or location operator1 n[φ] (meaning that the current process is an ambient n[P] and the
process P satisfies φ), etc. A formula in a spatial logic describes a property of a particular part
of the system at a particular time. These spatial modalities have an intensional flavor, the
properties they express being invariant only for simple spatial rearrangements of the system.

As the main reason for introducing spatial logics was to provide appropriate techniques for
specification and model checking concurrent distributed systems, most of the work done in this
field points to decidability problems. We briefly present hereafter the (un)decidability results
for spatial logics, proved in [8], which motivated our work.

Definition 1.1. Consider the fragment of CCS generated by the next syntax, where A is a
denumerable set of actions and α ∈ A:

P ::= 0 | α.P | P |P

Hereafter this calculus2 is the object of our paper. We will use α, β to range over A and we will
denote by P the class of processes.

For it, in [8], were considered two spatial logics:

• Lspat given by the syntax

φ ::= > | 0 | φ1 ∧ φ2 | ¬φ | φ1|φ2 | φ1 . φ2 | � φ

• Lmod given, over an infinite set of variables X 3 x, by the syntax

φ ::= > | 0 | φ1 ∧ φ2 | ¬φ | φ1|φ2 | φ1 . φ2 | � φ | 〈x〉φ | ∃x.φ

A valuation is a mapping from a finite subset of X to A. For any valuation v, we write v{x← α}
for the valuation v′ such that v′(x) = α, and v′(y) = v(y) if y 6= x.
The semantics for the two spatial logics, defined by the satisfaction relation P, v |=M φ where
P is a process, M is a set of processes that contains P , φ a formula, and v is a valuation for
the free variables of φ, is presented in Table 1.

1This operator is characteristic for Ambient Logic [12], a special spatial logic developed for Ambient Calculus
[11].

2We can, additionally, consider an involution on A that associate to each action α ∈ A an action α ∈ A,
as usual in CCS, and also to take into consideration the silent action τ . But all these represent just syntactic
sugar, irrelevant from the point of view of the logic we discuss.

2

P, v |=M > for any process P
P, v |=M ¬φ iff P, v 6|= φ
P, v |=M φ ∧ ψ iff P, v |=M φ and P, v |=M ψ
P, v |=M 0 iff P ≡ 0
P, v |=M φ|ψ iff P ≡ Q|R, Q, v |=M φ and R, v |=M ψ
P, v |=M φ . ψ iff for any process Q, v |=M φ we have P |Q, v |=M ψ
P, v |=M ∃x.φ iff ∃α ∈ A such that P, (v{x← α}) |=M φ

P, v |=M 〈x〉φ iff ∃Q.P v(x)−→ Q and Q, v |=M φ

Table 1: Semantics of Spatial Logics

In [8] it is proved that Lspat can encode Lmod, hence they are equally expressive. Then it
is proved that model-checking and validity/satisfiability checking for Lspat with respect to this
finite fragment of CCS are all undecidable. But Lspat is the core of all Spatial Logics.

Thus it was proved that the basic spatial operators, in combination with temporal operators,
generate undecidable logics [8, 14, 13], even against small finite pieces of CCS. This means that
we cannot solve most of the problems concerning satisfiability, validity and model checking.
The situation is caused, mainly, by the presence of the guarantee operator, which acts as a
universal quantifier over the class of processes. The reason for introducing such an operator
was to have possibility to specify not only local, but global properties of the system. Without it
spatial logics are not enough expressive for fulfilling the requirements of relevant applications.

However, some decidable sublogics have been investigated [5, 9, 28, 27] and some model-
checking algorithms exist for them. In the light of these results we have two alternatives for
avoiding undecidability: either we choose a logic based on a static calculus [9], thus the logic
cannot specify properties of our system in evolution, or we choose a dynamic calculus, but we
have to avoid the use of a guarantee operator [5, 28], hence we can express only local properties
of the system. The latter alternative is useful only if our system is an isolated one (there is no
upper-system for it) and we have a full description of it. In this sense the possible applications
are quite limited. In problems such as those proposed by systems biology, for example, it is not
acceptable, as biological systems are almost always subsystems of bigger ones with which they
interact. Very often we do not know too much about these upper systems, or we cannot decide
how far up we should go with modeling the systems in order to obtain the information we are
looking for.

Concluding, though expressive and useful, most of the spatial logics proved to be undecid-
able, even in the absence of quantifiers. Unlike in static spatial logics, the composition adjunct
adds to the expressiveness of the logic, so that adjunct elimination is not possible for dynamic
spatial logics, even quantifier-free [8]. To the best of our knowledge, no alternative operator, to
replace the guarantee one in order to express global properties and still ensuring decidability,
has been studied. We propose further such an alternative.

To be is to know

The other paradigm of modelling multi-agent systems comes from logics and philosophy: rea-
soning about systems in terms of knowledge [19]. At the beginning, the interest was to find
inherent properties of knowledge and related concepts. More recently, the computer scientists
have become increasingly interested in reasoning about knowledge. Within computer science,
reasoning about knowledge plays an extremely important role in contemporary theories of (in-
telligent) agents and it has been proved to be useful in modelling and understanding complex
communication-based systems.

3

In the transition from human agents to (artificial) intelligent agents and latter to the multi-
agent system in the most general sense, the meaning of the term “knowledge” evolved. It
was originally used in its ordinary language meaning: to say that an agent knows a sentence
either means that it consciously assents to it, or that it immediately sees it to be true when
the question is presented. Latter, in the new interpretation, the knowledge of the agent is
understood as the sum of actions the agent may take as a function of its local state in a given
environment. Thus the agent knows its protocol in a given system. In this context we have
an external notion of knowledge in the sense that there is no notion of the agent computing
his knowledge and no requirement that the agent being able to answer questions based on his
knowledge.

Epistemic/doxastic logics [19] formalize, in a direct manner, notions of knowledge, or belief,
possessed by an agent, or a group of agents, using modalities like KAφ - A knows φ, �Aφ - A
justifiably believes that φ, or Ckφ - all the agents knows φ (φ is a common knowledge). These
logics supports Kripke-model based semantics, each basic modality being associated with a
binary accessibility relation in these models. Thus for each epistemic agent A we devise an
accessibility relation A−→ , called indistinguishability relation for A, expressing the agent’s un-
certainty about the current state. The states s′ such that s A−→ s′ are the epistemic alternatives
of s to agent A: if the current state is s, A thinks that any of the alternatives s′ may be the
current state. These logics have been extensively studied and applied to multi-agent systems.

Suppose that we have a group consisting of n agents. Then we augment the language of
propositional logic by n knowledge operators K1, ...Kn (one for each agent), and form formulas
in the obvious way. A statement like K1φ is read “agent 1 knows φ”. The state that agent 1
knows that agent 2 knows φ is formalized by K1K2φ. A formula like K1φ∧K1(φ→ ψ)→ K1ψ
is interpreted: “if agent 1 knows α and α→ β then it knows β”.

Definition 1.2 (The language of epistemic logic). Let Φ be a nonempty, countable set of
atomic formulae and S = {1, ...n} a set of agents. We introduce the language of epistemic logic
as the least set FS of formulas such that:

1. Atom ⊆ FS 3. if φ ∈ FS then ¬φ ∈ FS

2. if φ, ψ ∈ FS then φ ∧ ψ ∈ FS 4. if α ∈ FS and i ∈ S then Kiφ ∈ FS

One approach to defining semantics for epistemic logic is in terms of possible worlds. The
intuitive idea behind the possible worlds approach is that an agent can build different models
of the world using some suitable language. He usually does not know exactly which one of the
models is the right model of the world. However, he does not consider all these models equally
possible. Some world models are incompatible with his current information state, so he can
exclude these incompatible models from the set of his possible world models. Only a subset of
the set of all (logically) possible models are considered possible by the agent.

The set of worlds considered possible by an agent i depends on the “actual world”, or the
agent’s actual state of information. This dependency can be captured formally by introducing
a binary relation, say Ri, on the set of possible worlds. To express the idea that for agent i, the
world t is compatible with his information state when he is in the world s, we require that the
relation Ri holds between s and t. One says that t is an epistemic alternative to s (for agent
i). If a sentence φ is true in all worlds which agent i considers possible then we say that this
agent knows φ.

Formally, the concept of models is defined in terms of Kripke structures, as follows:

Definition 1.3 (Semantics of Epistemic Logic). A model M for the language FS is a
Kripke structure for the agents in S over Φ, i.e. is a structure M = (S, π, (Ri)i∈S) where

• S is a nonempty set of possible worlds (states)

• π is an interpretation which associates with each state in S a truth assignment to the
primitive propositions in Φ (i.e. for s ∈ S, π(s) : Φ→ {>,⊥})

4

• Ri is a binary relation on S associated to the agent i ∈ S

The satisfaction relation |= is defined recursively on FS as follows:

• M, s |= p iff π(s)(p) = > for any p ∈ Φ

• M, s |= ¬φ iff M, s 6|= φ

• M, s |= φ ∧ ψ iff M, s |= φ and M, s |= ψ

• M, s |= Kiφ iff for all t ∈ S such that sRit we have M, t |= φ

A modal epistemic logic for the agents in S is obtained by joining together n modal logics
[4], one for each agent in S. It is usually assumed that the agents are homogeneous, i.e., they
can be described by the same logic. So an epistemic logic for n agents consists of n copies of
a certain modal logic. Such a system over S will be denoted by the same name as the modal
system, but with the superscript S.

Definition 1.4 (Modal epistemic logic KS). The modal epistemic logic KS is the logic
specified by the following axioms and rules of inference, where i ∈ S:

(PC): All propositional tautologies.
(K): ` Kiφ ∧Ki(φ→ ψ)→ Kiψ
(MP): Modus ponens: if ` φ and ` φ→ ψ then ` ψ
(NEC): Necessity: if ` φ then ` Kiφ

Stronger logics can be obtained by adding additional principles, which express the desirable
properties of the concept of knowledge, to the basic system KS. The following properties are
often considered:

(T): Knowledge axiom: ` Kiφ→ φ (4): Positive introspection: ` Kiφ→ KiKiφ
(D): Consistency axiom: ` Kiφ→ ¬Ki¬φ (5): Negative introspection: ` ¬Kiφ→ Ki¬Kiφ

The formula (T) states that knowledge must be true. In the doxastic logic this axiom is
taken to be the major one distinguishing knowledge from belief. For that reason (T) is called
the Knowledge Axiom or the Truth Axiom (for knowledge). Systems containing the schema
(T) (such as S4 and S5) are then called logics of knowledge, and logics without the schema (T)
are called logics of belief.

The property (D), called the Consistency Axiom, requires that agents be consistent in their
knowledge: they do not know both a formula and its negation. Generally, (D) is a weaker
condition than (T).

The properties (4) and (5) are called positive and negative introspection axioms, respectively.
They say that an agent is aware of what he knows and what he does not know. Their converses,
i.e., the formulae ` KiKiφ → Kiφ and ` Ki¬Kiφ → ¬Kiφ, are instances of the schema (T).
Taking (4) and (5) together with their converses we have ` KiKiφ ↔ Kiφ and ` Ki¬Kiφ ↔
¬Kiφ, which allow to reduce multiple knowledge operators to a single (positive or negative)
knowledge operator.
The commonly used epistemic logics are specified as follows:

• TS is KS plus (T) • S4S is TS plus (4) • S5S is S4S plus (5)
• KDS is KS plus (D) • KD4S is KDS plus (4) • KD45S is KD4S plus (5)

The following theorem summarizes some completeness and decidability results for modal
epistemic logic [15, 25, 21, 22].

Theorem 1.1 (Completeness and decidability of epistemic logics).

1. KS describes the class of models with accessibility relations indexed by elements in S.

5

2. TS describes the class of models with reflexive accessibility relations.

3. S4S describes the class of models with reflexive and transitive accessibility relations.

4. S5S describes the class of models with equivalence relations as accessibility relations.

5. KDS describes the class of models with serial accessibility relations.

6. KD4S describes the class of models with serial and transitive accessibility relations.

7. KD45S describes the class of models with serial, transitive and Euclidean accessibility
relations.

8. KS, TS, S4S, S5S, KDS, KD4S, and KD45S are all decidable.

Dynamic logics [23] are closer to process calculi, in that they have names for programs
(actions) and operators to combine them. Accessibility relations are interpreted as transitions
induced by programs, and a dynamic modality [π]φ captures the weakest precondition of such a
program w.r.t. a given post-specification φ. Modalities in a dynamic logic form an algebraical
structure: programs are built using basic program constructors such as sequential composition
π.π′ or iteration π∗.

By mixing dynamic and epistemic formalisms Dynamic Epistemic Logics have been devel-
oped [1, 2, 26, 32, 33, 34], aiming to capture properties of evolving knowledge and of belief-
changing actions, such as communication. These logics combine a rich expressivity with low
complexity ensuring decidability and complete axiomatizations.

Our approach

The two paradigms of modelling concurrent distributed systems - the process algebraical paradigm
with the epistemic-doxastic one - were developed in parallel, but to our knowledge, there has
been no unified paradigm. We propose such a paradigm in this paper, used for constructing a
new logic for concurrency completely axiomatized and decidable. The main idea is to combine
the features of spatial logics with the epistemic logics thus obtaining a special type of dynamic
epistemic logic equipped with spatial operators. We call it Dynamic Epistemic Spatial Logic.

More concretely, our logic extends Hennessy-Milner logic with the parallel operator (hence
it is a spatial logic) and epistemic operators. The role of the epistemic operators is to do most
of the job of the guarantee operator while maintaining decidability. In our logics the epistemic
agents are related (identified) with processes. Thus KPφ holds, the agent related with P knows
φ, iff φ is satisfied by any process having P as subprocess. The intuition is that the agent
related with P is an observer inside our system that can see only P . So, this epistemic agent
cannot differentiate between the global states P , P |Q or P |R of the whole system, as in all
these states it sees only P . Thus its knowledge rests on properties φ that are satisfied by each
of these states (processes). For avoiding unnecessary syntactic sugar we name the epistemic
agents by the processes they are related with.

We prove, for Dynamic Epistemic Spatial Logic, the finite model property with respect to
the chosen semantics. Thus, we have decidability for satisfiability, validity and model-checking
problems.

In proving the finite model property we used a new congruence on processes - the structural
bisimulation. A conceptually similar congruence has been proposed in [9], but for static pro-
cesses only. The structural bisimulation is interesting in itself, as it provides a bisimulation-like
description of the structural congruence. Informally, it is an approximation of the structural
congruence bound by two dimensions: the height and the weight of a process. The bigger
these sizes, the better approximation we obtain. At the limit we find exactly the structural
congruence.

6

For the logic we propose a complete Hilbert-style axiomatic system, which helps in un-
derstanding the basic algebraical behavior of the classical process operators. We prove its
soundness and completeness with respect to the piece of CCS for which the classic spatial logic
has been proved to be undecidable in [8]. Thus, many properties can be syntactically verified
and proved. Moreover the interplay of our logical operators allows expression, inside the syntax,
of validity and satisfiability for formulas. We also have characteristic formulas able to identify
a process (agent) up to structural congruence (cloned copies).

Concluding, the novelty of our logic with respect to the classical spatial logics is the use of the
epistemic operators, as alternative to guarantee operator, for expressing global properties while
ensuring decidability. The epistemic operators allow to refer directly to agents of our system
by mean of their knowledge. An epistemic agent is, thus, an observer that can be placed
in different places in our system and has access to partial information. By combining these
partial information (“points of view” of different observers) we can specify complex properties
of distributed systems.

From the epistemic logics perspective, we propose a new class of epistemic logics by imposing
an algebraical structure (CCS-like) on the class of epistemic agents. In this way we may assume
compositional and hierarchically organized agents. Thus P and Q are epistemic agents, but
also P |Q may be another agent. As they are ontologically related (P and Q are ontological
subsidiary of P |Q), our logic allows to derive relations between their knowledge and dynamics
from their ontological relations. In the classical epistemic logics [19] the agents are assumed to
be ontologically independent entities, while our logics accepts dependencies. Other peculiarities
of our epistemic logic comes from the fact that we can activate and deactivate agents: thus in
a system having the current state described by α.P , the agent that sees P is not active, but
it might be activated in a future state. Our logic allows also cloned agents. Thus in a system
described by P |Q|P we have two clones of the agent seeing P . All these features are new
for epistemic logics. Thus, we can model simultaneously, as agents in a system, individuals,
societies of individuals, societies of societies of individuals, etc and their evolutions.

2 On processes

In this chapter we return to CCS and we reconsider the subcalculus for which, in [8] the classical
spatial logic was proved undecidable. We will use it further as semantics for our logic. We
propose some new concepts that will help the future constructs. One of the most important is
a new congruence on processes - the structural bisimulation. This relation will be used, further,
to prove the finite model property for our logics against the process semantics in combination
with the concept of pruning processes.

The structural bisimulation is interesting in itself as it provides a bisimulation-like definition
for structural congruence. Informally, it is an approximation of the structural congruence
bounded by two sizes: the height (the depth of the syntactic tree) and the weight (the maximum
number of bisimilar subprocesses that can be found in a node of the syntactic tree) of a process.
The bigger these sizes, the better approximation we obtain. At the limit, for sizes big enough
with respect to the sizes of the processes involved, we find exactly the structural congruence.
A conceptually similar congruence was proposed in [9] for analyzing trees of location for the
static ambient calculus.

On the two sizes defined for processes, height and weight, we will introduce an effective
method to construct, given process P , a minimal process Q that has an established size (h,w)
and is structurally bisimilar to P on this size. Because, for a small size, the construction is
supposed to prune the syntactic tree of P , we will call this method pruning, and we refer to Q
as the pruned of P on the size (h,w).

Eventually we will extend the notions of size, structural bisimulation and pruning from
processes to classes of processes. We focus our interest on contexts, defined as being special

7

classes of processes that contain, in a maximal manner, processes of interest for us (that might
model completely or partially our system together with all its subsystems). The contexts will
be used, in the next chapters, as the sets of processes on which we will define the satisfiability
relation for the logics.

We recall the definition 1.1 as defining the subcalculus of CCS on which we will focus for the
rest of the paper. We will not consider additional features of CCS, such as pairs of names, etc.,
as we want to avoid all the syntactic sugar that is irrelevant from the point of view of the logic.
We might define an involution on A and the silent action τ , but all these can be introduced, in
our logic, as derived operators.

Definition 2.1. We call a process P guarded iff P ≡ α.Q for α ∈ A.
We introduce the notation P k def

= P |...|P︸ ︷︷ ︸
k

, and convey to denote P 0 ≡ 0.

Assumption (Representativeness modulo structural congruence). By definition, ≡ is
a congruence (thence an equivalence relation) over P. Consequently, we convey to identify
processes up to structural congruence, because the structural congruence is the ultimate level of
expressivity we want for our logic. Hereafter in the paper, if it is not explicitly otherwise stated,
we will speak about processes up to structural congruence.

2.1 Size of a process

Further we propose a definition for the size of a process, following a similar idea developed in
[9] for sizes of trees. The intuition is that the process has a height given by the vertical size
of its syntactic tree, and a width equal to the maximum number of bisimilar subprocesses that
can be identified in a node of the syntactic tree.

Definition 2.2 (Size of a process). We define the size (height and width) of a process P ,
denoted by JP K, by:

• J0K def
= (0, 0)

• JP K def
= (h,w) iff

– P ≡ (α1.Q1)k1 |(α2.Q2)k2 |...|(αj .Qj)kj and JQiK = (hi, wi), i ∈ 1..j

– h = 1 +max(h1, ..., hk), w = max(k1, ..., kj , w1, ..., wj)

where we used h for height and w for width. We convey to write (h1, w1) ≤ (h2, w2) for h1 ≤ h2

and w1 ≤ w2 and (h1, w1) < (h2, w2) for h1 < h2 and w1 < w2.

Remark 2.1. Observe that, by construction, the size of a process is unique up to structural
congruence. Moreover, if JP K = (h,w) then for any subprocess P ′ of P we have JP ′K ≤ (h,w).

Example 2.1. We show further the size for some processes:

J0K = (0, 0) Jα.0K = (1, 1) Jα.0|β.0K = (1, 1)
Jα.0|α.0K = (1, 2) Jα.α.0K = Jα.β.0K = (2, 1) Jα.(β.0|β.0)K = (2, 2)

Definition 2.3 (Size of a set of processes). Let M ⊂ P. We write JMK = (h,w) iff
(h,w) = max{JP K | P ∈M}.
As the sets of processes may be infinite, not for all of them this definition works, in the sense
that some sets may have infinite sizes3. For this reason we convey to extend the order, and
when M has infinite size, to still write (h,w) ≤ JMK and (h,w) < JMK for any (h,w).

3Such a situation is in the case of the set M = {0, α.0, α.α.0, ..., α....α.0, ...}.

8

2.2 Structural bisimulation

In this section we introduce the structural bisimulation, a congruence relation on processes
bounded by size. It analyzes the behavior of a process focusing on a boundary of its syntactic
tree. This relation will be used in the next chapter to prove the finite model property for our
logics.

The intuition behind the structural bisimulation is that P ≈w
h Q (P and Q are structurally

bisimilar on size (h,w)) iff when we consider for both processes their syntactic trees up to the
depth h only (we prune them on the height h) and we ignore the presence of more than w
parallel bisimilar subprocesses in any node of the syntactic trees (we prune the trees on weight
w), we obtain syntactic trees depicting two structurally congruent processes.

The relation between the structural bisimulation and the structural congruence is interesting.
We will see that the structural bisimulation depicts, step by step, the structural congruence
being, in a sense, a bisimulation-like approximation of it on a given size. We will see further
how P ≈w

h Q entails that, if we choose any subprocess of P with the size smaller than (h,w),
then there exists a subprocess of Q structurally congruent with it, and vice versa. Now, if
the size indexing the structural bisimulation is bigger than the size of the processes, then our
relation will describe structurally congruent processes. Moreover, the structural bisimulation is
preserved by transitions with the price of decreasing the size.

Definition 2.4 (Structural bisimulation). Let P,Q be any processes. We define P ≈w
h Q

by:

• P ≈w
0 Q always

• P ≈w
h+1 Q iff for any i ∈ 1..w and any α ∈ A we have

– if P ≡ α.P1|...|α.Pi|P ′ then Q ≡ α.Q1|...|α.Qi|Q′ with Pj ≈w
h Qj , for j = 1..i

– if Q ≡ α.Q1|...|α.Qi|Q′ then P ≡ α.P1|...|α.Pi|P ′ with Qj ≈w
h Pj , for j = 1..i

Example 2.2. Consider the processes

R ≡ α.(β.0|β.0|β.0)|α.β.0 and S ≡ α.(β.0|β.0)|α.β.α.0

We can verify the requirements of the definition 2.4 and decide that R ≈2
2 S. But R 6≈2

3 S
because on the depth 2 R has an action α (in figure 1 marked with a dashed arrow) while S
does not have it (because the height of S is only 2). Also R 6≈3

2 S because R contains only
2 (bisimilar) copies of β.0 while S contains 3 (the extra one is marked with a dashed arrow).
Hence, for any weight bigger than 2 this feature will show the two processes as different. But if

S ≡ R ≡
α.(β.0|β.0|β.0)|α.β.0

�� **TTTTTTTTTTTTTTTTTT

β.0|β.0|β.0

wwooooooooooooo

�� ''OOOOOOO β.0

��
0 0 0 0

α.(β.0|β.0)|α.β.α.0

�� ((PPPPPPPPPPPP

β.0|β.0

wwooooooooooooo

��

β.α.0

��
0 0 α.0

���
�
�

0

Figure 1: Syntactic trees

9

we remain on depth 1 we have R ≈3
1 S, as on this deep the two processes have the same number

of bisimilar subprocesses, i.e. any of them can perform α in two ways giving, further, processes
in the relation ≈3

0. Indeed

R ≡ αR′|αR′′, where R′ ≡ β.0|β.0|β.0 and R′′ ≡ β.0
S ≡ α.S′|α.S′′, where S′ ≡ β.0|β.0 and S′′ ≡ β.α.0

By definition, R′ ≈3
0 S

′ and R′′ ≈3
0 S

′′

We focus further on the properties of the relation ≈w
h . We start by proving that structural

bisimulation is a congruence relation.

Theorem 2.1 (Equivalence Relation). The relation ≈w
h on processes is an equivalence re-

lation.

Proof. We verify the reflexivity, symmetry and transitivity directly.
Reflexivity: P ≈w

h P - we prove it by induction on h
the case h = 0: we have P ≈w

0 P from the definition 2.4.
the case h+ 1: suppose that P ≡ α.P1|...|α.Pi|P ′ for i ∈ 1..w and some α ∈ A. The inductive
hypotheses gives Pj ≈w

h Pj for each j = 1..i. Further we obtain, by the definition 2.4, that
P ≈w

h P .
Symmetry: if P ≈w

h Q then Q ≈w
h P

Suppose that P ≡ α.P1|...|α.Pi|P ′ for some i ∈ 1..w and α ∈ A then, by the definition 2.4,
exists Q ≡ α.Q1|...|α.Qi|Q′ with Pj ≈w

h−1 Qj for j = 1..i and vice versa. Similarly, if we start
from Q ≡ β.R1|...|β.Rk|R′ for k ∈ 1..w and β ∈ A we obtain P ≡ β.S1|...|β.Sk|S′ for some Sj ,
with Rj ≈w

h−1 Sj for j = 1..k and vice versa. Hence Q ≈w
h P .

Transitivity: if P ≈w
h Q and Q ≈w

h R then P ≈w
h R - we prove it by induction on h.

the case h = 0 is trivial, because by the definition 2.4, for any two processes P,R we have
P ≈w

0 R
the case h + 1: suppose that P ≡ α.P1|...|α.Pi|P ′ for some i ∈ 1..w and α ∈ A. Then from
P ≈w

h Q we obtain, by the definition 2.4, that Q ≡ α.Q1|...|α.Qi|Q′ with Pj ≈w
h−1 Qj for

j = 1..i and vice versa. Further, because Q ≈w
h R, we obtain that R ≡ α.R1|...|α.Ri|R′ with

Qj ≈w
h−1 Rj for j = 1..i and vice versa.

As Pj ≈w
h−1 Qj and Qj ≈w

h−1 Rj for j = 1..i, we obtain, using the inductive hypothesis that
Pj ≈w

h−1 Rj for j = 1..i.
Hence, for P ≡ α.P1|...|α.Pi|P ′, some i ∈ 1..w and α ∈ A we have that R ≡ α.R1|...|α.Ri|R′

with Qj ≈w
h−1 Rj for j = 1..i and vice versa. This entails P ≈w

h R.

Theorem 2.2. If P ≈w
h Q and Q ≡ R then P ≈w

h R.

Proof. Suppose that P ≡ α.P1|...|α.Pi|P ′ for some i ∈ 1..w and α ∈ A. As P ≈w
h Q, we

obtain Q ≡ α.Q1|...|α.Qi|Q′ with Pj ≈w
h−1 Qj for j = 1..i and vice versa. But Q ≡ R, so

R ≡ α.Q1|...|α.Qi|Q′ with Pj ≈w
h−1 Qj for j = 1..i and vice versa. Hence P ≈w

h R.

Theorem 2.3 (Antimonotonicity). If P ≈w
h Q and (h′, w′) ≤ (h,w) then P ≈w′

h′ Q.

Proof. We prove it by induction on h.
The case h = 0 is trivial, as (h′, w′) ≤ (0, w) gives h′ = 0 and for any processes P,Q we

have P ≈w
0 Q.

The case h+ 1 in the context of the inductive hypothesis:
Suppose that P ≈w

h+1 Q and (h′, w′) ≤ (h+ 1, w).

10

If h′ = 0 we are, again, in a trivial case as for any two processes P,Q we have P ≈w
0 Q.

If h′ = h′′ + 1 then consider any i ∈ 1..w′, and any α ∈ A such that P ≡ α.P1|...|α.Pi|P ′.
Because i ≤ w′ ≤ w, and as P ≈w

h+1 Q, we have Q ≡ α.Q1|...|αi.Qi|Q′ with Pj ≈w
h Qj , for

j = 1..i. A similar argument can de developed if we start the analysis from Q.
But (h′′, w′) ≤ (h,w), so we can use the inductive hypothesis that gives Pj ≈h′′,w′ Qj for
j = 1..i. Hence P ≈w′

h′′+1 Q, that is, P ≈w′

h′ Q q.e.d.

Theorem 2.4 (Congruence). The following holds:

1. if P ≈w
h Q then α.P ≈w

h+1 α.Q

2. if P ≈w
h P ′ and Q ≈w

h Q′ then P |Q ≈w
h P ′|Q′

Proof. 1.: Suppose that P ≈w
h Q. Because α.P is guarded, it cannot be represented as P ≡

α.P ′|P ′′ for P ′′ 6≡ 0. The same about α.Q. But this observation, together with P ≈w
h Q gives,

in the light of definition 2.4, α.P ≈w
h+1 α.Q.

2.: We prove it by induction on h.
If h = 0 then the conclusion is immediate.
For h+ 1, suppose that P ≈w

h+1 P
′ and Q ≈w

h+1 Q
′; then consider any i = 1..w, α and Rj for

j = 1..i such that

P |Q ≡ α.R1|...|α.Ri|Ri+1

Suppose, without loss of generality, that Rj are ordered in such a way that there exist k ∈ 1..i,
P ′′, Q′′ such that

P ≡ α.R1|...|α.Rk|P ′′
Q ≡ α.Rk+1|...|α.Ri|Q′′

Ri+1 ≡ P ′′|Q′′

Because k ∈ 1..w, from P ≈w
h+1 P ′ we have P ′ ≡ α.P ′1|...|α.P ′k|P0 such that Rj ≈w

h P ′j for
j = 1..k.
Similarly, from Q ≈w

h+1 Q′ we have Q′ ≡ α.Q′k+1|...|α.Q′i|Q0 such that Rj ≈w
h Q′j for j =

(k + 1)..i. Hence, we have

P ′|Q′ ≡ α.P ′1|...|α.P ′k|α.Q′k+1|...|α.Q′i|P0|Q0

As Rj ≈w
h P ′j for j = 1..k and Rj ≈w

h Q′j for j = (k + 1)..i, and because a similar argument
starting from P ′|Q′ is possible, we proved that P |Q ≈w

h+1 P
′|Q′.

Theorem 2.5 (Inversion). If P ′|P ′′ ≈w1+w2
h Q then exists Q′, Q′′ such that Q ≡ Q′|Q′′ and

P ′ ≈w1
h Q′, P ′′ ≈w2

h Q′′.

Proof. Let w = w1 + w2. We prove the theorem by induction on h:
The case h = 0: is trivial.
The case h+ 1: Suppose that P ′|P ′′ ≈w

h+1 Q.
Consider the following definition: a process P is in (h,w)-normal form if whenever P ≡

α1.P1|α2.P2|P3 and P1 ≈w
h P2 then P1 ≡ P2. Note that P ≈w

h+1 α1.P1|α2.P1|P3. This shows
that for any P and any (h,w) we can find a P0 such that P0 is in (h,w)-normal form and
P ≈w

h+1 P0.
Now, we can suppose, without loosing generality, that4:

4Else we can replace P ′, P ′′ with (h + 1, w)-related processes having the same (h, w)-normal forms

11

P ′ ≡ (α1.P1)k′1 |...|(αn.Pn)k′n

P ′′ ≡ (α1.P1)k′′1 |...|(αn.Pn)k′′n

Q ≡ (α1.P1)l1 |...|(αn.Pn)ln

For each i ∈ 1..n we split li = l′i+l
′′
i in order to obtain a splitting of Q. We define the splitting of

li such that (αi.Pi)k′i ≈h+1,w1 (αi.Pi)l′i and (αi.Pi)k′′i ≈h+1,w2 (αi.Pi)l′′i . We do this as follows:

• if k′i + k′′i < w1 + w2 then P ′|P ′′ ≈w
h+1 Q implies li = k′i + k′′i , so we can choose l′i = k′i

and l′′i = k′′i .

• if k′i + k′′i ≥ w1 + w2 then P ′|P ′′ ≈w
h+1 Q implies li ≥ w1 + w2. We meet the following

subcases:

– k′i ≥ w1 and k′′i ≥ w2. We choose l′i = w1 and l′′i = li−w1 (note that as li ≥ w1 +w2,
we have l′′i ≥ w2).

– k′i < w1, then we must have k′′i ≥ w2. We choose l′i = k′i and l′′i = li−k′i. So l′′i ≥ w2

as li ≥ w1 + w2 and l′i < w1.

– k′′i < w2 is similar with the previous one. We choose l′′i = k′′i and l′i = li − k′′i .

Now for Q′ ≡ (α1.P1)l′1 |...|(αn.Pn)l′n and Q′′ ≡ (α1.P1)l′′1 |...|(αn.Pn)l′′n the theorem is verified
by repeatedly using theorem 2.4.

The next theorems point out the relation between the structural bisimulation and the struc-
tural congruence. We will prove that for a well-chosen boundary, which depends on the processes
involved, the structural bisimulation guarantees the structural congruence. P ≈w

h Q entails that
if we choose any subprocess of P having the size smaller than (h,w), we will find a subprocess
of Q structurally congruent with it, and vice versa. Now, if the size indexing the structural
bisimulation is bigger than the size of the processes, then our relation will describe structurally
congruent processes. We also prove that the structural bisimulation is preserved by transitions
with the price of decreasing the size.

Theorem 2.6. If JP K ≤ (h,w) and JP ′K ≤ (h,w) then P ≈w
h P ′ iff P ≡ P ′.

Proof. P ≡ P ′ implies P ≈w
h P ′, because by reflexivity P ≈w

h P and then we can apply theorem
2.2.
We prove further that P ≈w

h P ′ implies P ≡ P ′. We’ll do it by induction on h.
The case h = 0: JP K ≤ (0, w) and JP ′K ≤ (0, w) means P ≡ 0 and P ′ ≡ 0, hence P ≡ P ′.
The case h + 1: suppose that JP K ≤ (h + 1, w), JP ′K ≤ (h + 1, w) and P ≈w

h+1 P
′. We can

suppose, without loosing generality, that

P ≡ (α1.Q1)k1 |...|(αn.Qn)kn

P ′ ≡ (α1.Q1)l1 |...|(αn.Qn)ln

where for i 6= j, αi.Qi 6≡ αj .Qj . Obviously, as JP K ≤ (h+ 1, w) and JP ′K ≤ (h+ 1, w) we have
ki ≤ w and li ≤ w.

We show that ki ≤ li. If ki = 0 then, obviously, ki ≤ li. If ki 6= 0 then P ≡ (αi.Qi)ki |Pi and
P ≈w

h+1 P
′ provides that P ′ ≡ αi.Q

′′
1 |...αi.Q

′′
ki
|R with Qi ≈w

h Q′′j for j = 1..ki. By construction,
JQiK ≤ ((h + 1) − 1, w) = (h,w) and JQ′′j K ≤ ((h + 1) − 1, w) = (h,w). So, we can apply the
inductive hypothesis that provides Qi ≡ Q′′j for j = 1..i. Hence P ′ ≡ (αi.Qi)ki |R that gives
ki ≤ li.

With a symmetrical argument we can prove that li ≤ ki that gives ki = li and, finally,
P ≡ P ′.

12

Theorem 2.7. If P ≈w
h Q and JP K < (h,w) then P ≡ Q.

Proof. Suppose that JP K = (h′, w′) and P ≡ (α1.P1)k1 |...|(αn.Pn)kn with αi.Pi 6≡ αj .Pj for
i 6= j. Obviously we have ki ≤ w′ < w.

We prove the theorem by induction on h. The first case is h = 1 (because h > h′).
The case h = 1: we have h′ = 0 that gives P ≡ 0. Further 0 ≈w

1 Q gives Q ≡ 0, because else
Q ≡ α.Q′|Q′′ asks for 0 ≡ α.P ′|P ′′ - impossible. Hence P ≡ Q ≡ 0.
The case h+1: as P ≡ (αi.Pi)ki |P+, P ≈w

h Q and ki < w, we obtain thatQ ≡ αi.R1|...|αi.Rki
|R+

with Pi ≈w
h−1 Rj for any j = 1..ki.

But Pi ≈w
h−1 Rj allows us to use the inductive hypothesis, because JPiK ≤ (h′ − 1, w′) <

(h− 1, w), that gives Pi ≡ Rj for any j = 1..ki. Hence Q ≡ (αi.Pi)ki |R+ and this is sustained
for each i = 1..n. As αi.Pi 6≡ αj .Pj for i 6= j, we derive Q ≡ (α1.P1)k1 |...|(αn.Pn)kn |R.

We prove now that R ≡ 0. Suppose that R ≡ (α.R′)|R′′. Then Q ≡ α.R′|R−, and as
P ≈w

h Q, we obtain that there is an i = 1..n such that α = αi and R′ ≈h−1,w Pi.
Because JPiK ≤ (h′−1, w′) < (h−1, w), we can use the inductive hypothesis and obtain R′ ≡ Pi.
Therefore R ≡ αi.Pi|R′′, that gives further

Q ≡ (α1.P1)k1 |...(αi−1.Pi−1)k(i−1) |(αi.Pi)ki+1|(αi+1.Pi+1)k(i+1) |...|(αn.Pn)kn |R

So, we can consider Q ≡ (αi.Pi)ki+1|Q+. Because P ≈w
h Q and ki + 1 ≤ w′ + 1 ≤ w, we obtain

that P ≡ αi.P
′
1|...|αi.P

′
ki+1|P ′ with P ′j ≈w

h−1 Pi for any j = 1..ki + 1.
But JPiK ≤ (h′ − 1, w′) < (h − 1, w), consequently we can use the inductive hypothesis and
obtain P ′j ≡ Pi for any j = 1..ki + 1.
Hence P ≡ (αi.Pi)ki+1|P ′′ which is impossible because we supposed that P ≡ (α1.P1)k1 |...|(αn.Pn)kn

with αi.Pi 6≡ αj .Pj for i 6= j.
Concluding, R ≡ 0 and Q ≡ (α1.P1)k1 |...|(αn.Pn)kn , i.e. Q ≡ P .

Theorem 2.8. If P ≡ R|P ′, P ≈w
h Q and JRK < (h,w) then

Q ≡ R|Q′.

Proof. Suppose that JRK = (h′, w′) < (h,w). Because P ≡ R|P ′ and P ≈w
h Q, using theorem

2.5, we obtain that exists Q1, Q2 such that Q ≡ Q1|Q2 and R ≈w′+1
h Q1 and P ′ ≈w−(w′+1)

h Q2.
Further, as R ≈w′+1

h Q1 and JRK = (h′, w′) < (h,w′ + 1) we obtain, by using theorem 2.7, that
Q1 ≡ R, hence Q ≡ R|Q2.

Theorem 2.9. Let P ≈w
h Q. If P ≡ α.P ′|P ′′ then Q ≡ α.Q′|Q′′ and P ′|P ′′ ≈w−1

h−1 Q
′|Q′′

Proof. As P ≈w
h Q and P ≡ α.P ′|P ′′, we obtain that, indeed, Q ≡ α.Q′|Q′′ with P ′ ≈w

h−1 Q
′.

We will prove that P ′|P ′′ ≈w−1
h−1 Q

′|Q′′. Consider any i = 1..w − 1 and β ∈ A such that:

P ′|P ′′ ≡ β.P1|...|β.Pi|P ? (2.1)

We can suppose, without loos of generality that for some k ≤ i we have

P ′ ≡ β.P1|...|β.Pk|P+

P ′′ ≡ β.Pk+1|...|β.Pi|P−
P ? ≡ P+|P−

Because P ′ ≈w
h−1 Q

′ and k ≤ i ≤ w−1, we obtain that Q′ ≡ β.Q1|...|β.Qk|Q+ with Pj ≈w
h−2 Qj

for j = 1..k. Further we distinguish two cases:

• if α 6= β then we have

13

P ≡ β.Pk+1|...|β.Pi|(P−|α.P ′)

and because P ≈w
h Q, we obtain

Q ≡ β.Rk+1|...|β.Ri|R? with Rj ≈w
h−1 Pj for j = k + 1..i

But Q ≡ α.Q′|Q′′ and because α 6= β, we obtain Q′′ ≡ β.Rk+1|...|β.Ri|R+ that gives us
in the end

Q′|Q′′ ≡ β.Q1|...|β.Qk|β.Rk+1|...|β.Ri|(R+|Q+)

with Pj ≈w
h−2 Qj for j = 1..k (hence Pj ≈w−1

h−2 Qj) and Pj ≈w
h−1 Rj for j = k+1..i (hence

Pj ≈w−1
h−2 Rj).

• if α = β then we have

P ≡ α.Pk+1|...|α.Pi|α.P ′|P−

and as P ≈w
h Q and i ≤ w − 1, we obtain

Q ≡ α.Rk+1|...|α.Ri|α.R′|R?

with Rj ≈w
h−1 Pj for j = k + 1..i and R′ ≈w

h−1 P
′. Because P ′ ≈w

h−1 Q
′ and ≈w

h is an
equivalence relation, we can suppose that R′ ≡ Q′ (Indeed, if α.Q′ is a subprocess of
R? then we can just substitute R′ with Q′; if α.Q′ ≡ α.Rs, then Q′ ≈w

h−1 Ps and as
Q′ ≈w

h−1 P
′ and P ′ ≈w

h−1 R
′ we derive R′ ≈w

h−1 Ps and Q′ ≈w
h−1 P

′, so we can consider
this correspondence). So

Q ≡ α.Rk+1|...|α.Ri|α.Q′|R?

that gives

Q′′ ≡ α.Rk+1|...|α.Ri|R?

which entails further

Q′|Q′′ ≡ α.Q1|...|α.Qk|α.Rk+1|...|α.Ri|(R?|Q+)

with Pj ≈w
h−2 Qj for j = 1..k (hence Pj ≈w−1

h−2 Qj) and Pj ≈w
h−1 Rj for j = k+1..i (hence

Pj ≈w−1
h−2 Rj).

All these prove that P ′|P ′′ ≈w−1
h−1 Q′|Q′′ (as we can develop a symmetric argument starting in

(2.1) with Q|Q′).

Theorem 2.10 (Behavioral simulation). Let P ≈w
h Q. If P

α−→ P ′ then exists a transition

Q
α−→ Q′ such that P ′ ≈w−1

h−1 Q
′.

Proof. If P α−→ P ′ then P ≡ α.R′|R′′ and P ′ ≡ R′|R′′. But P ≈w
h Q gives, using theorem

2.9 that Q ≡ α.S′|S′′ and R′|R′′ ≈w−1
h−1 S′|S′′. And because Q α−→ S′|S′′, we can take Q′ ≡

S′|S′′.

14

2.3 Bound pruning processes

In this subsection we prove the bound pruning theorem, stating that for a given process P and a
given size (h,w), we can always find a process Q having the size at most equal with (h,w) such
that P ≈w

h Q. Moreover, in the proof of the theorem we will present a method for constructing
such a process from P , by pruning its syntactic tree to the given size.

Theorem 2.11 (Bound pruning theorem). For any process P ∈ P and any (h,w) exists a
process Q ∈ P with P ≈w

h Q and JQK ≤ (h,w).

Proof. We describe the construction5 of Q by induction on h.
For h = 0: we just take Q ≡ 0, because P ≈w

0 Q and J0K = (0, 0).
For h+ 1: suppose that P ≡ α1.P1|...|αn.Pn.

Let P ′i be the result of pruning Pi by (h,w) (we use the inductive step of construction) and
P ′ ≡ α1.P

′
1|...|αn.P

′
n. As for any i = 1..n we have Pi ≈w

h P ′i (by the inductive hypothesis), we
obtain, using theorem 2.4, that αi.Pi ≈w

h+1 αi.P
′
i and further P ≈w

h+1 P
′.

Consider the canonical representation of P ′ ≡ (β1.Q1)k1 |...|(βm.Qm)km .
Let li = min(ki, w) for i = 1..m. Then we define Q ≡ (β1.Q1)l1 |...|(βm.Qm)lm . Obviously
Q ≈w

h+1 P
′ and as P ≈w

h+1 P
′, we obtain P ≈w

h+1 Q. By construction, JQK ≤ (h+ 1, w).

Definition 2.5 (Bound pruning processes). For a process P and for a tuple (h,w) we
denote by P(h,w) the process obtained by pruning P to the size (h,w) by the method described
in the proof of theorem 2.11.

Example 2.3. Consider the process P ≡ α.(β.(γ.0|γ.0|γ.0) | β.γ.0) | α.β.γ.0.
Observe that JP K = (3, 3), hence P(3,3) ≡ P . For constructing P(3,2) we have to prune the
syntactic tree of P such that to not exist, in any node, more than two bisimilar branches.
Hence P(3,2) = α.(β.(γ.0|γ.0) | β.γ.0) | α.β.γ.0
If we want to prune P on the size (3, 1), we have to prune its syntactic tree such that, in any
node, there are no bisimilar branches. The result is P(3,1) = α.β.γ.0.
For pruning P on the size (2, 2), we have to prune all the nodes on depth 2 and in the new
tree we have to let, in any node, a maximum of two bisimilar branches. As a result of these
modifications, we obtain P(2,2) = α.(β.0|β.0) | α.β.0. Going further we obtain the smaller
processes P(0,0) = 0, P(1,1) = α.0, P(1,2) = α.0|α.0, P(2,1) = α.β.0.

Corollary 2.12. If P ≡ Q then P(h,w) ≡ Q(h,w).

Proof. Because a process is unique up to structural congruence, the result can be derived
trivially, following the construction in the proof of theorem 2.11.

Corollary 2.13. JP K ≤ (h,w) iff P(h,w) ≡ P .

Proof. (⇒) If JP K ≤ (h,w), then, by construction, JP(h,w)K ≤ (h,w) and P ≈w
h P(h,w), we can

use theorem 2.6 and obtain P(h,w) ≡ P .
(⇐) Suppose that P(h,w) ≡ P . Suppose, in addition that JP K > (h,w). By construction,

JP(h,w)K ≤ (h,w), hence JP(h,w)K ≤ (h,w) < JP K, i.e. JP(h,w)K 6= JP K. But this is impossible,
because the size of a process is unique up to structural congruence, see remark 2.1.

2.4 Substitutions

For the future constructs is also useful to introduce the substitutions of actions in a process.
5This construction is not necessarily unique.

15

Definition 2.6 (The set of actions of a process). We define Act(P) ⊂ A, inductively by:

1. Act(0)
def
= ∅ 2. Act(α.P)

def
= {α}∪Act(P) 3. Act(P |Q)

def
= Act(P)∪Act(Q)

For a set M ⊂ P of processes we define Act(M)
def
=

⋃
P∈M Act(P).

We will define further the set of all processes having a size smaller than a given tuple (h,w)
and the actions in a set A ⊂ A, and we will prove that for the fragment of CCS we considered
they are finitely many (modulo ≡).

Definition 2.7. Let A ⊂ A. We define

PA
(h,w)

def
= {P ∈ P | Act(P) ⊂ A, JP K ≤ (h,w)}

Theorem 2.14. If A ⊂ A is finite, then PA
(h,w) is finite6.

Proof. We will prove more, that if we denote by n = (w + 1)card(A), then

card(PA
(h,w)) =

1 if h = 0

nnn...n︸ ︷︷ ︸
h

if h 6= 0

We prove this by induction on h.
The case h = 0: we have JQK = (0, w) iff Q ≡ 0, so PA

(0,w) = {0} and card(PA
(0,w)) = 1.

The case h = 1: let Q ∈ P(1,w). Then

Q ≡ (α1.Q1)k1 |...|(αs.Qs)ks with Qi ∈ PA
(0,w) and αi.Qi 6≡ αj .Qj for i 6= j.

But Qi ∈ PA
(0,w) means Qi ≡ 0, hence

Q ≡ (α1.0)k1 |...|(αs.0)ks

Since JQK ≤ (1, w) we obtain that ki ≤ w. The number of guarded processes α.0 with α ∈ A is
card(A) and since ki ∈ 0..w, the number of processes in PA

(1,w) is (w + 1)card(A) = n1.
The case h+ 1: let Q ∈ PA

(h+1,w). Then

Q ≡ (α1.Q1)k1 |...|(αs.Qs)ks with Qi ∈ PA
(h,w) and αi.Qi 6≡ αj .Qj for i 6= j.

Since JQK ≤ (h + 1, w) we obtain that ki ≤ w. The number of guarded processes α.R with
α ∈ A and R ∈ PA

(h,w) is card(A)× card(PA
(h,w)) and since ki ∈ 0..w, the number of processes

in PA
(h+1,w) is (w+ 1)card(A)×card(PA

(h,w)) = ((w+ 1)card(A))card(PA
(h,w)) = ncard(PA

(h,w)). But the

inductive hypothesis gives card(PA
(h,w)) = nnn...n︸ ︷︷ ︸

h

, so card(PA
(h+1,w)) = nnn...n︸ ︷︷ ︸

h+1

.

Definition 2.8 (Action substitution). We call action substitution any function σ : A −→ A.
We extend it further, syntactically, from actions to processes, σ : P −→ P, by

σ(P) =

 0 if P ≡ 0
σ(Q)|σ(R) if P ≡ Q|R
σ(γ).σ(R) if P ≡ γ.R

We extend σ for sets of processes M ⊂ P by σ(M)
def
= {σ(P) | P ∈M}.

For short, we will denote, sometimes, σ(P) by Pσ and σ(M) by Mσ.

Remark 2.2. Observe that P ≡ Q entails Act(P) = Act(Q) and Pσ ≡ Qσ.
6We count the processes up to structural congruence.

16

Definition 2.9. Let σ be a substitution. We define the subject of σ, sub(σ) and the object of
σ, obj(σ), by:

sub(σ)
def
= {α ∈ A | σ(α) 6= α}

obj(σ)
def
= {β ∈ A | β 6= α, σ(α) = β}

Theorem 2.15. If sub(σ) ∩Act(P) = ∅ then σ(P) ≡ P .

Proof. We prove it by induction on P .
The case P ≡ 0: by definition, σ(0) ≡ 0.
The case P ≡ α.Q: σ(P) ≡ σ(α).σ(Q). But α ∈ Act(P), and because Act(P) ∩ sub(σ) = ∅,
we obtain α 6∈ sub(σ), hence σ(α) = α. But then σ(P) ≡ α.σ(Q). Further Act(Q) ⊂ Act(P),
i.e. Act(Q) ∩ sub(σ) = ∅ and we can apply the inductive hypothesis that provides σ(Q) ≡ Q,
so σ(P) ≡ α.Q, q.e.d.
The case P ≡ Q|R: σ(P) ≡ σ(Q)|σ(R). But Act(Q), Act(R) ⊂ Act(P), hence Act(Q) ∩
sub(σ) = Act(R) ∩ sub(σ) = ∅. Hence we can apply the inductive hypothesis that provides
σ(Q) ≡ Q and σ(R) ≡ R, thus σ(P) ≡ Q|R ≡ P .

Theorem 2.16. If obj(σ) ∩Act(P) = ∅ then σ(Q) ≡ P implies Q ≡ P .

Proof. We prove it by induction on P .
If P ≡ 0: if Q 6≡ 0 then Q ≡ α.Q′|Q′′, thus σ(Q) ≡ σ(α).σ(Q′)|σ(Q′′) 6≡ 0. Impossible.
If P 6≡ 0: Suppose that

P ≡ α1.P1|...|αn.Pn

and
Q ≡ β1.Q1|...|βm.Qm

Then σ(Q) ≡ σ(β1).σ(Q1)|...|σ(βm).σ(Qm) and

α1.P1|...|αn.Pn ≡ σ(β1).σ(Q1)|...|σ(βm).σ(Qm)

But then m = n and for each i = 1..n there exists j = 1..n such that αi.Pi ≡ σ(βj).σ(Qj),
thus αi = σ(βj). But from obj(σ) ∩ Act(P) = ∅ we derive σ(βj) = βj = αi. Further, from
αi.Pi ≡ σ(βj).σ(Qj) we infer Pi ≡ σ(Qj), and since Act(Pi) ⊂ Act(P), we can use the inductive
hypothesis and derive Pi ≡ Qj . Thus P ≡ Q.

Theorem 2.17. If σ(P) ≡ Q|R then there exist processes Q′, R′ such that P ≡ Q′|R′, with
σ(Q′) ≡ Q and σ(R′) ≡ R.

Proof. Suppose that P ≡ α1.P1|...|αn.Pn. Then

σ(P) ≡ σ(α1).σ(P1)|...|σ(αn).σ(Pn) ≡ Q|R

We can suppose, without loosing generality, that

Q ≡ σ(α1).σ(P1)|...|σ(αi).σ(Pi)

R ≡ σ(αi+1).σ(Pi+1)|...|σ(αn).σ(Pn)

Then we can define Q′ ≡ α1.P1|...|αi.Pi and R′ ≡ αi+1.Pi+1|...|αn.Pn.

17

Theorem 2.18. If P 6≡ R|Q and obj(σ) ∩Act(R) = ∅, then σ(P) 6≡ R|S.

Proof. Suppose that σ(P) ≡ R|S for some S. Then, by the theorem 2.17, there exists R′, S′

such that P ≡ S′|R′ and σ(R′) ≡ R, σ(S′) ≡ S. But because obj(σ) ∩ Act(R) = ∅ and
σ(R′) ≡ R, we derive, applying the theorem 2.16, that R′ ≡ R, hence P ≡ R|S′. But this
contradicts the hypothesis of the theorem. So, there is no S such that σ(P) ≡ R|S.

3 Contexts

In this section we introduce the contexts, sets of processes that will be used to evaluate formulas
of our logics. The intuition is that a context M is a (possibly infinite) set of processes that
contains, in a maximal manner, any process representing a possible state of our system or of
a subsystem of our system. Hence if a process belongs to a context then any process obtained
by pruning its syntactic tree, in any way7, should belong to the context, as it might represent
a subsystem. For the same reason, the context should be also closed to transitions.

It is useful in this point to define some operations on sets of processes.

Definition 3.1. For any sets of processes M,N ⊂ P and any α ∈ A we define:
α.M

def
= {α.P | P ∈M} M |N def

= {P |Q | P ∈M,Q ∈ N}
As we speak about processes up to structural congruence, the parallel operator on sets of
processes will be commutative, associative and will have {0} as null.

We associate further to each process P the set π(P) of all processes obtained by pruning,
in the most general way, the syntactic tree of P .

Definition 3.2. For P ∈ P we define8 π(P) ⊂ P inductively by:

1. π(0)
def
= {0} 2. π(α.P)

def
= {0} ∪ α.π(P) 3. π(P |Q)

def
= π(P)|π(Q)

We extend the definition of π to sets of processes M ⊂ P by π(M)
def
=

⋃
P∈M π(P).

Theorem 3.1. The next assertions hold:

1. P ∈ π(P) 2. 0 ∈ π(P) 3. P ∈ π(P |Q) 4. P(h,w) ∈ π(P)

Proof. 1. We prove it by induction on P

• if P ≡ 0 then π(P) = {0} 3 0 ≡ P

• if P ≡ α.Q then π(P) = {0} ∪ α.π(Q). But the inductive hypothesis gives Q ∈ π(Q),
hence α.Q ∈ α.π(Q) ⊂ π(P).

• if P ≡ Q|R then π(P) = π(Q)|π(R). The inductive hypothesis provide Q ∈ π(Q) and
R ∈ π(R), hence P ≡ Q|R ∈ π(Q)|π(R) = π(P).

2. We prove it by induction on P .

• if P ≡ 0 we have, by definition, π(P) = {0} 3 0

• if P ≡ α.Q then π(P) = {0} ∪ α.π(Q) 3 0.

• if P ≡ Q|R then π(P) = π(Q)|π(R). The inductive hypothesis provide 0 ∈ π(Q) and
0 ∈ π(R), hence 0 ≡ 0|0 ∈ π(Q)|π(R) = π(P).

7We do not refer here on bound pruning only, but on any possible pruning of the syntactic tree.
8We consider also π(P) defined up to structural congruence.

18

3. We have π(P |Q) = π(P)|π(Q). But P ∈ π(P) and 0 ∈ π(Q), hence P ≡ P |0 ∈ π(P)|π(Q) =
π(P |Q).
4. We prove the theorem by induction on the structure of P .

• if P ≡ 0: we have P(h,w) ≡ 0 ∈ {0} = π(P) for any (h,w).

• if P ≡ α.Q: we distinguish two more cases:
if w = 0 then P(h,0) ≡ 0 ∈ π(P)
if w 6= 0 then (α.Q)(h,w) ≡ α.Q(h−1,w) by the construction of the adjusted processes. If
we apply the inductive hypothesis we obtain that Q(h−1,w) ∈ π(Q), hence (α.Q)(h,w) ∈
α.π(Q) ⊂ π(P).

• if P ≡ (α.Q)k: we have P(h,w) ≡ (α.Q(h−1,w))l where l = min(k,w), by the construc-
tion of the adjusted processes. The inductive hypothesis gives Q(h−1,w) ∈ π(Q), hence
α.Q(h−1,w) ∈ α.π(Q) ⊂ π(α.Q). But because 0 ∈ π(α.Q) and

P(h,w) ≡ α.Q(h−1,w)|...|α.Q(h−1,w)︸ ︷︷ ︸
l

| 0|...|0︸ ︷︷ ︸
k−l

we obtain
P(h,w) ∈ π(α.Q)|...|π(α.Q)︸ ︷︷ ︸

k

= π(P)

• if P ≡ (α1.P1)k1 |...|(αn.Pn)kn with n ≥ 2: we split it in two subprocessesQ ≡ (α1.P1)k1 |...|(αi.Pi)ki

and R ≡ (αi+1.Pi+1)ki+1 |...|(αn.Pn)kn . By the way we split the process P we will
have P(h,w) ≡ Q(h,w)|R(h,w) and using the inductive hypothesis on Q and R we derive
P(h,w) ≡ Q(h,w)|R(h,w) ∈ π(Q)|π(R) = π(P).

Theorem 3.2. 1. Act(π(P)) ⊆ Act(P) 2. If P −→ Q then Act(Q) ⊆ Act(P).

Proof. 1. We prove it by induction on P .
if P ≡ 0 then Act(π(P)) = Act(∅) = ∅ ⊆ Act(P).
if P ≡ α.Q then Act(π(P)) = Act({0} ∪ α.π(Q)) = Act(α.π(Q)) = {α} ∪ Act(π(Q)). By
inductive hypothesis, Act(π(Q)) ⊆ Act(Q), hence Act(π(P)) ⊆ {α} ∪Act(Q) = Act(P).
if P ≡ Q|R then Act(π(P)) = Act(π(Q)|π(R)) = Act(π(Q)) ∪ Act(π(R)). Using the induc-
tive hypothesis, Act(π(Q)) ⊆ Act(Q) and Act(π(R)) ⊆ Act(R), hence Act(π(P)) ⊆ Act(Q) ∪
Act(R) = Act(Q|R) = Act(P).
2. If P −→ Q then P ≡ α.Q1|Q2 and Q ≡ Q1|Q2. Then Act(Q) = Act(Q1) ∪ Act(Q2) ⊆
{α} ∪Act(Q1) ∪Act(Q2) = Act(P).

Theorem 3.3. π(π(P)) = π(P).

Proof. We prove it by induction on P .
The case P ≡ 0: π(π(0)) = π({0}) = π(0)
The case P ≡ α.Q: π(π(α.Q)) = π({0} ∪ α.π(Q)) = π(0) ∪ π(α.π(Q)) = {0} ∪ α.π(π(Q)).
Now we can use the inductive hypothesis and we obtain π(π(Q)) = π(Q). Hence π(π(α.Q)) =
{0} ∪ α.π(Q) = π(α.Q) = π(P).
The case P ≡ Q|R: π(π(P)) = π(π(Q|R)) = π(π(Q)|π(R)) = π(π(Q))|π(π(R)). Now we
ca apply the inductive hypothesis on Q and R and obtain π(π(P)) = π(Q)|π(R) = π(Q|R) =
π(P).

19

Theorem 3.4. If Q ∈ π(P) then π(Q) ⊂ π(P).

Proof. Q ∈ π(P) implies π(Q) ⊂ π(π(P)), and applying the theorem 3.3, we obtain π(Q) ⊂
π(P).

Theorem 3.5. If σ is a substitution, then π(σ(P)) = σ(π(P)).

Proof. We prove it by induction on P .
The case P ≡ 0: π(σ(P)) = π(0) = {0} = σ({0}) = σ(π(P)).
The case P ≡ α.Q: π(σ(P)) = π(σ(α).σ(Q)) = {0} ∪ σ(α).π(σ(Q)). But the inductive
hypothesis gives π(σ(Q)) = σ(π(Q)), hence

π(σ(P)) = {0} ∪ σ(α).σ(π(Q))

from the other side, σ(π(P)) = σ({0} ∪ α.π(Q)) = {0} ∪ σ(α).σ(π(Q)).
The case P ≡ Q|R: π(σ(Q|R)) = π(σ(Q)|σ(R)) = π(sigma(Q))|π(σ(R)). But the in-
ductive hypothesis gives π(σ(Q)) = σ(π(Q)) and π(σ(R)) = σ(π(R)). Hence π(σ(P)) =
σ(π(Q))|σ(π(R)) = σ(π(Q)|π(R)) = σ(π(P)).

These being proved, we can propose the definition of context:

Definition 3.3 (Context). A context is a nonempty set M⊆ P of processes such that

• if P ∈M and P −→ P ′ then P ′ ∈M

• if P ∈M then π(P) ⊂M

Theorem 3.6. IfM is a context and σ a substitution, thenMσ is a context.

Proof. Let P ∈ Mσ. Then it exists a process Q ∈ M such that σ(Q) ≡ P . Then π(P) =
π(σ(Q)), and using theorem 3.5 we derive π(P) = σ(π(Q)). But Q ∈ M implies π(Q) ⊂ M,
thus σ(π(Q)) ⊂Mσ. Then π(P) ⊂Mσ.
Let P ∈Mσ and P −→ P ′. Then it exists Q ∈M such that σ(Q) ≡ P . Suppose that

Q ≡ α1.Q1|...|αk.Qk

then
P ≡ σ(Q) ≡ σ(α1).σ(Q1)|...|σ(αk).σ(Qk)

But then P −→ P ′ gives that it exists i = 1..k such that

P ′ ≡ σ(α1).σ(Q1)|...|σ(αi−1).σ(Qi−1) | σ(Qi) | σ(αi+1).σ(Qi+1)|...|σ(αk).σ(Qk)

and if we define
Q′ ≡ α1.Q1|...|αi−1.Qi−1 | Qi | αi+1.Qi+1|...|αk.Qk

we obtain Q −→ Q′ (i.e. Q′ ∈M) and σ(Q′) ≡ P ′. Hence P ′ ∈Mσ.

Observe that, due to the closure clauses in definition 3.3, we can consider the possibility
to define systems of generators for a context, as a class of processes that, using the rules in
definition 3.3 can generate the full context.

Definition 3.4 (System of generators for a context). We say that the set M ⊂ P is
a system of generators for the context M if M is the smallest context that contains M . We
denote this by M =M.

Theorem 3.7. If M ∈ P is a finite set of processes, then M is a finite context.

Proof. Trivial.

20

3.1 Structural bisimulation on contexts

We extend the definitions of structural bisimulation from processes to contexts. This will allow
us to prove the context pruning theorem, a result similar to the bound pruning theorem proved
for processes.

Definition 3.5 (Structural bisimulation over contexts). LetM,N be two contexts. We
write M≈w

h N iff
1. for any P ∈M there is a Q ∈ N with P ≈w

h Q
2. for any Q ∈ N there is a P ∈M with P ≈w

h Q
We convey to write (M, P) ≈w

h (N , Q) for the case when P ∈ M, Q ∈ N , P ≈w
h Q and

M≈w
h N .

Theorem 3.8 (Antimonotonicity over contexts). If M ≈w
h N and (h′, w′) ≤ (h,w) then

M≈w′

h′ N .

Proof. For any process P ∈ M there exists a process Q ∈ N such that P ≈w
h Q and using

theorem 2.3 we obtain P ≈w′

h′ Q. And the same if we start from a process Q ∈ N . These proves
that M≈w′

h′ N .

3.2 Pruning contexts

As for processes, we can define the pruning of a contextM as the context generated by the set
of pruned processes ofM, taken as system of generators.

Definition 3.6 (Pruning contexts). For any context M and any (h,w) we define

M(h,w)
def
= {P(h,w) | P ∈M}

Theorem 3.9. For any context M, and any size (h,w) we have M(h,w) ≈h
w M.

Proof. Denote by
M = {P(h,w) | P ∈M}

Let P ∈M. Then it exists a process Q ∈M(h,w), more exactly Q ≡ P(h,w) such that P ≈h
w Q.

Let Q ∈M(h,w). Since M is the smallest context containing M , and because, by construction,
M ⊆ M we derive that M ⊆ M. Hence, for any process Q ∈ M there is a process P ∈ M,
more exactly P ≡ Q such that P ≈h

w Q (since P ≡ Q implies P ≈h
w Q).

Theorem 3.10. For any context M and any size (h,w) we have Act(M(h,w)) ⊆ Act(M).

Proof. As P(h,w) ∈ π(P) for any process P ∈ M and any (h,w), by theorem 3.1, we obtain,
by applying theorem 3.2, Act(P(h,w)) ⊆ Act(M), hence Act({P(h,w) | P ∈ M}) ⊆ Act(M).
Further applying again theorem 3.2, we trivially derive the desired result.

Definition 3.7. Let A ⊂ A. We denote by MA
(h,w) the set of all contexts generated by systems

with the size at most (h,w) and the actions in A:

MA
(h,w)

def
= {M ⊂ P | Act(M) ⊆ A, JMK ≤ (h,w)}

21

Theorem 3.11. If A ⊂ A is a finite set of actions, then the following hold:

1. IfM∈MA
(h,w) thenM is a finite context.

2. MA
(h,w) is finite.

Proof. 1.: If M ∈ MA
(h,w) then M = M , JMK ≤ (h,w) and Act(M) ⊂ A. Thus M ⊂ PA

(h,w).
But PA

(h,w) is finite, by theorem 2.14. Thus, by theorem 3.7, M =M is a finite context.
2.: As PA

(h,w) is finite by theorem 2.14, the set of its subsets is finite, and as all the elements
of MA

(h,w) are generated by subsets of PA
(h,w), we obtain that MA

(h,w) is finite.

Theorem 3.12 (Pruning theorem). Let M be a context. Then for any (h,w) there is a

context N ∈M
Act(M)
(h,w) such thatM≈w

h N .

Proof. The context N = M(h,w) fulfills the requirements of the theorem, by construction.
Indeed, it is a context, and it is generated by the set N = {P(h,w) | P ∈ M}. Moreover
JNK ≤ (h,w) and, by theorem 3.10, Act(M(h,w)) ⊆ Act(M). Hence N ∈M

Act(M)
(h,w) .

4 Dynamic Epistemic Spatial Logic

In this section we introduce Dynamic Epistemic Spatial Logic, LS
DES , which extends Hennessy-

Milner logic with the parallel operator and epistemic operators. The intuition is to define the
knowledge of the process P in the context M as the common properties of the processes in
M that contain P as subprocess. If we think to the epistemic agent as to an observer that
can see only the process P , then its knowledge about any state of global system concerns only
P . Thus, for it, the global states P |Q and P |R looks indistinguishable. Hence the knowledge
implies a kind of universal quantifier overM, since KPφ, if is satisfied by a process P |Q, then it
is satisfied by any process P |R ∈M. We find this enough for expressing most of the properties
considered in the spatial logic literature, which required the use of the guarantee operator.

By using the structural bisimulation and pruning method, we will prove the finite model
property for LS

DES in relation to the semantics we considered. Consequently, we obtain decid-
ability for satisfiability/validity and model checking.

For LS
DES we will develop a Hilbert-style axiomatic system that will be proved to be sound

and complete with respect to process semantics. Thus we identify the main axioms and rules
that regularize the behavior of the classical, spatial, dynamic and epistemic logical operators.
We will stress the similarities between our axioms and the classical axioms of epistemic logic,
and we will prove some meaningful theorems.

Combined with the decidability, the properties of soundness and completeness make our
logic a useful tool in analyzing complex multi-agent systems.

To introduce epistemic operators into our syntax we need to specify, for the beginning, the
epistemic agents. As in classic epistemic logic, we may start with a class of agents, each agent
pointing to a predefined subsystem (subprocess) of the system we consider. In this respect, we
should consider quite a large class of agents, also for the processes that are not active in the
current state but might be activated in future.

Hence for a system containing an agent associated with the process α.P |Q, we might want
to have also agents associated with α.P , P , P |Q and Q respectively.

To avoid a syntax that is too complex, we decided to identify the agents with the processes
they represent. Hence, in our logic the class of epistemic agents is just a subclass of P. We

22

will call this class signature, as it contains processes that will be part of the syntax as indexes
of the epistemic agents. To denote the signature of our logic we will use the symbol S.

Definition 4.1 (Signature). A signature over P is a set of processes S ⊂ P, hereafter called
epistemic agents, satisfying the conditions:

• if P |Q ∈ S then P,Q ∈ S

• if P ∈ S and P −→ Q, then Q ∈ S

Observe that, by the previous definition, any signature S contains 0.

4.1 Syntax of LS
DES

Definition 4.2 (Syntax of LS
DES). Let S be a signature over P. We define the language of

Dynamic Epistemic Spatial Logic over S, FS
DES , by the following grammar:

φ := 0 | > | ¬φ | φ ∧ φ | φ|φ | 〈α〉φ | KQφ

where Q ∈ S and α ∈ A.

Anticipating the semantics, we will outline here the intuition that motivates the choice of
the formulas. Mainly it is similar to that of Hennessy-Milner and spatial logics.

The formula 0 is meant to characterize any process structurally congruent with 0 (and only
these) in any context, expressing “there is no activity here”. It should not be confused with
“false”.9

> will be satisfied by any process in any context.
The reason for introducing the parallel operator φ|ψ is that we want to be able to express, as

in other spatial logics, the situation in which our system is composed by two parallel subsystems,
one satisfying φ and the other satisfying ψ.

The dynamic-like operator 〈α〉φ is meant to be used, as in Hennessy-Milner logic, to speak
about the transitions of our system. It expresses “the system may perform the action α thus
meeting a state described by φ”.

We associate to each process P ∈ S an epistemic operator KPφ meaning the agent (process)
P knows φ. Obviously, for our agents the notion of knowledge is different than in the standard
approaches to intelligent agents, in the sense that we do not expect our agents to answer
questions concerning their knowledge or to compute it. The knowledge of the agent P in a
context M is strictly related to the spectrum of actions P can perform in this environment.

In our approach an inactive agent does not have a knowledge. This is an expected fact,
as an inactive agent does not exist. Indeed, approaching systems from the point of view of
behavior, to be is to behave. This aspect is new for the class of epistemic logic where, always,
all the agents exist and know at least the tautologies.

Definition 4.3 (Derived operators). In addition we introduce some derived operators:

1. ⊥ def
= ¬> 4. [α]φ

def
= ¬(〈α〉(¬φ)) 6. 〈!α〉ψ def

= (〈α〉ψ) ∧ 1

2. φ ∨ ψ def
= ¬((¬φ) ∧ (¬ψ)) 5. 1

def
= ¬((¬0) | (¬0)) 7.

∼
KQφ

def
= ¬KQ¬φ

3. φ→ ψ
def
= (¬φ) ∨ ψ

9We insist on this aspect as some syntaxes of classical logic use 0 for denoting false. This is not our intention.
We use ⊥ to denote false.

23

We could also introduce, for each action α, a derived operator10 〈α, α〉 to express communication
by α, supposing that we have defined an involution co : A −→ A which associates to each action
α its co-action α:

〈α, α〉φ def
=

∨
φ↔φ1|φ2

〈α〉φ1|〈α〉φ2

⊥ will be used to express the inconsistent behavior of the system. For this reason no process,
in any context, will satisfy ⊥.

The dynamic-like operator [α]φ, the dual operator of 〈α〉φ, expresses the situation where
either the system cannot perform α, or if the system can perform α then any future state that
can be reached by performing α can be described by φ.

The formula 1 is meant to describe the situation in which the system cannot be decomposed
into two non-trivial subsystems. 1 can describe also the trivial system 0.

The formula 〈!α〉ψ expresses a process guarded by α, which, after consuming α, will satisfy
ψ.

Assumption. We convey that the precedence order of the operators in the syntax of LS
DES is

¬, KQ, 〈α〉, |,∧ ,∨ ,→ where ¬ has precedence over all the other operators.

4.2 Process semantics

A formula of FS
DES will be evaluated to processes in a given context, by mean of a satisfaction

relation M, P |= φ.

Definition 4.4 (Models and satisfaction). A model of LS
DES is a contextM for which we

define the satisfaction relation, for P ∈M, as follows:
M, P |= > always
M, P |= 0 iff P ≡ 0
M, P |= ¬φ iff M, P 2 φ
M, P |= φ ∧ ψ iff M, P |= φ and M, P |= ψ
M, P |= φ|ψ iff P ≡ Q|R and M, Q |= φ,M, R |= ψ

M, P |= 〈α〉φ iff there exists a transition P α−→ P ′ and M, P ′ |= φ
M, P |= KQφ iff P ≡ Q|R and ∀Q|R′ ∈M we have M, Q|R′ |= φ

Then the semantics of the derived operators will be:
M, P |= [α]φ iff for any P ′ ∈M such that P α−→ P ′ (if any),M, P ′ |= φ
M, P |= 1 iff P ≡ 0 or P ≡ α.Q (P is null or guarded)
M, P |= 〈!α〉φ iff P ≡ α.Q andM, Q |= φ

M, P |=
∼
KQφ iff either P 6≡ Q|R for any R, or it exists Q|S ∈M such thatM, Q|S |= φ

Remark the interesting semantics of the operators K0 and
∼
K0:

M, P |= K0φ iff for any Q ∈M we have M, Q |= φ

M, P |=
∼
K0φ iff it exists a process Q ∈M such thatM, Q |= φ

If a process P ∈ M satisfies K0φ then φ is valid in M (the same about K0φ) and vice versa.
Hence we can encode, in the syntax, the validity with respect to a given context.

If a process P ∈ M satisfies
∼
K0φ (then all the processes in M satisfy

∼
K0φ) then it exists

a process Q ∈ M that satisfies φ and vice versa. Hence
∼
K0φ provides a way to encode the

satisfiability with respect to a given model.

In the end of this section we recall some classic definitions.
10The disjunction is considered up to logically-equivalent decompositions φ ↔ φ1|φ2 that ensures the use of

a finitary formula.

24

Definition 4.5. We call a formula φ ∈ FS
DES satisfiable if there exists a context M and a

process P ∈M such thatM, P |= φ.
We call a formula φ ∈ FS

DES validity if for any context M and any process P ∈ M we have
M, P |= φ. In such a situation we write |= φ.
Given a contextM, we denote byM |= φ the situation when for any P ∈M we haveM, P |= φ.

Remark 4.1. φ is satisfiable iff ¬φ is not a validity, and vice versa, φ is a validity iff ¬φ is not
satisfiable.

4.3 Finite model property and decidability

Now we prove the finite model property for our logic that will entail the decidability against
the process semantics. To prove the finite model property means to prove that it exists, for a
formula φ, a finite class Cφ of couples (M, P) with M context and P ∈ M such that if φ is
satisfiable then, necessarily, an element (M, P) ∈ Cφ exists such thatM, P |= φ. Anticipating,
we define a size for φ; then we prove that if M, P |= φ then substituting, by σ, all the actions
in M (and implicitly in P) that are not in the syntax of φ (as indexes of dynamic operators)
by a fixed action with the same property, and then pruningMσ and Pσ to the size of φ we will
obtain a couple (N , Q) such that N , Q |= φ. The fixed action of substitution can be chosen as
the successor11 of the maximum action of φ, which is unique. Hence N ∈MA

(h,w) where (h,w)
is the size of φ and A is the set of actions of φ augmented with the successor of its maximum,
thus A is finite. But then theorem 3.11 ensures that the set of pairs (N , Q), with this property,
is finite.

Definition 4.6 (Size of a formula). We define the sizes of a formula, LφM (height and width),
inductively on FS

DES , by:

1. L0M = L>M def
= (0, 0) 2. L¬φM def

= LφM

and supposing that LφM = (h,w), LψM = (h′, w′) and JRK = (hR, wR) we define further:

3. Lφ ∧ ψM def
= (max(h, h′),max(w,w′)) 4. Lφ|ψM def

= (max(h, h′), w + w′)

5. L〈α〉φM def
= (1+h, 1+w) 6. LKRφM def

= (1+max(h, hR), 1+max(w,wR))

The next theorem states that φ is “sensitive” via satisfaction only up to size LφM. In other
words, the relation M, P |= φ is conserved by substituting the couple (M,P) with any other
couple (N,P) structurally bisimilar to it at the size LφM.

Definition 4.7 (Extending the structural bisimulation). We write (M, P) ≈w
h (N , Q)

for the case when P ∈M, Q ∈ N , P ≈w
h Q and M≈w

h N .

Lemma 4.1. If LφM = (h,w),M, P |= φ and (M, P) ≈w
h (N , Q) then N , Q |= φ.

Proof. We prove it by induction on the syntactical structure of φ.

• The case φ = 0: LφM = (1, 1).
M, P |= 0 implies P ≡ 0.
As P ≈1

1 Q we should have Q ≡ 0 as well, because else Q ≡ α.Q′|Q′′ asks for P ≡ α.P ′|P ′′
for some P ′, P ′′, but this is impossible because P ≡ 0.
So Q ≡ 0 ∈ N and we have N , Q |= 0, q.e.d.

• The case φ = >: is a trivial case as N , Q |= > always.

11We consider defined, on the class of actions A, a lexicographical order.

25

• The case φ = φ1 ∧ φ2: denote by (hi, wi) = LφiM for i = 1, 2. Then we have LφM =
(max(h1, h2),max(w1, w2)).

M, P |= φ is equivalent withM, P |= φ1 and M, P |= φ2.

Because (M, P) ≈max(w1,w2)
max(h1,h2)

(N , Q) we obtain, by using theorem 3.8, that (M, P) ≈w1
h1

(N , Q) and (M, P) ≈w2
h2

(N , Q).

Now (M, P) ≈w1
h1

(N , Q) andM, P |= φ1 give, by inductive hypothesis, N , Q |= φ1, while
(M, P) ≈w2

h2
(N , Q) andM, P |= φ2 give, by inductive hypothesis N , Q |= φ2.

Hence N , Q |= φ1 ∧ φ2, q.e.d.

• The case φ = ¬φ′: LφM = Lφ′M = (h,w).

We have M, P |= ¬φ′ and (M, P) ≈w
h (N , Q).

If N , Q 6|= ¬φ′, then N , Q |= ¬¬φ′, i.e. N , Q |= φ′.
Because (M, P) ≈w

h (N , Q) and N , Q |= φ′, the inductive hypothesis gives that M, P |=
φ′, which combined withM, P |= ¬φ′ gives M, P |= ⊥ - impossible. Hence N , Q |= ¬φ′.

• The case φ = φ1|φ2: suppose that LφiM = (hi, wi) for i = 1, 2. Then LφM = (max(h1, h2), w1+
w2).

Further,M, P |= φ1|φ2 requires P ≡ P1|P2, withM, P1 |= φ1 andM, P2 |= φ2.

As (M, P) ≈w1+w2
max(h1,h2)

(N , Q) we obtain P ≈w1+w2
max(h1,h2)

Q. Than, from P ≡ P1|P2, using
theorem 2.5, we obtain Q ≡ Q1|Q2 and Pi ≈wi

max(h1,h2)
Qi for i = 1, 2. Hence, using

theorem 3.8,
(M, Pi) ≈wi

max(h1,h2)
(N , Qi). Further, using again theorem 3.8, we obtain (M, Pi) ≈wi

hi

(N , Qi), and using the inductive hypothesis,
N , Q1 |= φ1 and N , Q2 |= φ2. Hence N , Q |= φ.

• The case φ = 〈α〉φ′: suppose that Lφ′M = (h′, w′). We have L〈α〉φ′M = (1 + h′, 1 + w′).

M, P |= 〈α〉φ′ means that P α−→ P ′ and M, P ′ |= φ′.

Now (M, P) ≈1+w′

1+h′ (N , Q) gives P ≈1+w′

1+h′ Q, and using theorem 2.10, we obtain that
Q

α−→ Q′ and P ′ ≈w′

h′ Q
′.

But (M, P) ≈1+w′

1+h′ (N , Q) gives also M ≈w′+1
h′+1 N , so using theorem 3.8, M ≈w′

h′ N .
Hence (M, P ′) ≈w′

h′ (N , Q′).

Now from M, P ′ |= φ′ and (M, P ′) ≈w′

h′ (N , Q′), we obtain, by using the inductive
hypothesis, that N , Q′ |= φ′, and as Q α−→ Q′, we obtain further that N , Q |= φ.

• The case φ = KRφ
′ with R ∈ S: suppose that Lφ′M = (h′, w′) and JRK = (hR, wR).

Then LKRφ
′M = (1 +max(h′, hR), 1 +max(w′, wR)).

Now M, P |= KRφ
′ gives P ≡ R|P ′ and for any R|S ∈M we have M, R|S |= φ′.

As (M, P) ≈1+max(w′,wR)
1+max(h′,hR) (N , Q) then P ≈1+max(w′,wR)

1+max(h′,hR) Q and because P ≡ R|P ′ and
JRK = (hR, wR) < (1+max(h′, hR), 1+max(w′, wR)), we obtain, using theorem 2.7, that
Q ≡ R|Q′.

Let R|S′ ∈ N be an arbitrary process. BecauseM≈1+max(w′,wR)
1+max(h′,hR) N we obtain that exists

a process P ′′ ∈ M such that P ′′ ≈1+max(w′,wR)
1+max(h′,hR) R|S′. But JRK < (1 + max(h′, hR), 1 +

max(w′, wR)), so, using theorem 2.7, P ′′ ≡ R|S′′.
ThenM, R|S′′ |= φ′, as M, R|S |= φ′ for any R|S ∈M.

26

From the other side, (M, P) ≈1+max(w′,wR)
1+max(h′,hR) (N , Q) gives, using theorem 3.8, (M, P) ≈w′

h′

(N , Q) where from we obtainM≈w′

h′ N .

Also R|S′′ ≈1+max(w′,wR)
1+max(h′,hR) R|S

′ gives R|S′′ ≈w′

h′ R|S′, i.e. (M, R|S′′) ≈w′

h′ (N , R|S′).

Now M, R|S′′ |= φ′ and (M, R|S′′) ≈w′

h′ (N , R|S′) give, using the inductive hypothesis,
that N , R|S′ |= φ′.

Concluding, we obtained that Q ≡ R|Q′ and for any R|S′ ∈ N we have N , R|S′ |= φ′.
These two give N , Q |= KRφ

′ q.e.d.

Now, using this lemma, we conclude that if a process, in a context, satisfies φ then by
pruning the process and the context on the size LφM, we still have satisfiability for φ.

Theorem 4.2. IfM, P |= φ thenMLφM, PLφM |= φ.

Proof. Let LφM = (h,w). By contexts pruning theorem 3.12, we have M ≈h
w M(h,w). By

process pruning theorem 2.11, we have P ≈h
w P(h,w) and P(h,w) ∈ M(h,w). Hence (M, P) ≈h

w

(M(h,w), P(h,w)). Further lemma 4.1 establishes M(h,w), P(h,w) |= φ q.e.d.

Definition 4.8 (The set of actions of a formula). We define the set of actions of a formula
φ, act(φ) ⊂ A, inductively by:

1. act(0)
def
= ∅ 3. act(φ∧ψ) = act(φ|ψ)

def
= act(φ)∪act(ψ) 5. act(KRφ)

def
= Act(R)∪act(φ)

2. act(>)
def
= ∅ 4. act(¬φ) = act(φ) 6. act(〈α〉φ)

def
= {α} ∪ act(φ)

The next result states that a formula φ does not reflect properties that involves more then
the actions in its syntax. Thus if M, P |= φ then any substitution σ having the elements of
act(φ) as fix points preserves the satisfaction relation, i.e. Mσ, P σ |= φ.

Theorem 4.3. IfM, P |= φ and σ is a substitution with act(σ)
⋂
act(φ) = ∅ thenMσ, P σ |= φ.

Proof. We prove, simultaneously, by induction on φ, that

1. ifM, P |= φ then σ(M), σ(P) |= φ

2. ifM, P 6|= φ then σ(M), σ(P) 6|= φ

The case φ = 0:

1. M, P |= 0 iff P ≡ 0. Then σ(P) ≡ 0 and σ(M), σ(0) |= 0 q.e.d.

2. M, P 6|= 0 iff P 6≡ 0, iff σ(P) 6≡ 0. Hence σ(M), σ(P) 6|= 0.

The case φ = >:

1. M, P |= > implies σ(M), σ(P) |= >, because this is happening for any context and
process.

2. M, P 6|= > is an impossible case.

The case φ = ψ1 ∧ ψ2:

27

1. M, P |= ψ1∧ψ2 implies thatM, P |= ψ1 andM, P |= ψ2. Because act(σ)∩act(φ) = ∅ we
derive that act(σ)∩act(ψ1) = ∅ and act(σ)∩act(ψ2) = ∅. Further, applying the inductive
hypothesis, we obtainMσ, P σ |= ψ1 andMσ, P σ |= ψ2 that implies Mσ, P σ |= ψ1 ∧ ψ2.

2. M, P 6|= ψ1 ∧ ψ2 implies that M, P 6|= ψ1 or M, P 6|= ψ2. But, as argued before,
act(σ)∩act(ψ1) = ∅ and act(σ)∩act(ψ2) = ∅, hence we can apply the inductive hypothesis
that entails Mσ, P σ 6|= ψ1 orMσ, P σ 6|= ψ2. Thus Mσ, P σ 6|= ψ1 ∧ ψ2.

The case φ = ¬ψ:

1. M, P |= ¬ψ is equivalent withM, P 6|= ψ and because act(σ)∩act(φ) = ∅ guarantees that
act(σ)∩act(ψ) = ∅, we ca apply the inductive hypothesis and we obtain σ(M), σ(P) 6|= ψ
which is equivalent with σ(M), σ(P) |= ¬ψ.

2. M, P 6|= ¬ψ is equivalent withM, P |= ψ and applying the inductive hypothesis, σ(M), σ(P) |=
ψ, i.e. σ(M), σ(P) 6|= ¬ψ.

The case φ = ψ1|ψ2:

1. M, P |= ψ1|ψ2 implies that P ≡ Q|R,M, Q |= ψ1 andM, R |= ψ2. As act(σ)∩act(φ) = ∅
we have act(σ) ∩ act(ψ1) = ∅ and act(σ) ∩ act(ψ2) = ∅. Then we can apply the inductive
hypothesis and obtain σ(M), σ(Q) |= ψ1 and σ(M), σ(R) |= ψ2. But σ(P) ≡ σ(Q)|σ(R),
hence σ(M), σ(P) |= φ.

2. M, P 6|= ψ1|ψ2 implies that for any decomposition P ≡ Q|R we have eitherM, Q 6|= ψ1 or
M, R 6|= ψ2. But, as before, from act(σ)∩act(φ) = ∅ guarantees that act(σ)∩act(ψ1) = ∅
and act(σ)∩act(ψ2) = ∅. Hence, we can apply the inductive hypothesis and consequently,
for any decomposition P ≡ Q|R we have either σ(M), σ(Q) 6|= ψ1 or σ(M), σ(R) 6|= ψ2.
Consider any arbitrary decomposition σ(P) ≡ P ′|P ′′. By theorem 2.17, there exists P ≡
Q|R such that σ(Q) ≡ P ′ and σ(R) ≡ P ′′. Thus either σ(M), P ′ 6|= ψ1 or σ(M), P ′′ 6|= ψ2.
Hence σ(M), σ(P) 6|= ψ1|ψ2.

The case φ = 〈γ〉ψ:

1. M, P |= 〈γ〉ψ means that there is a transition P
γ−→ Q and M, Q |= ψ. Because

act(σ)∩act(〈γ〉ψ) = ∅ implies act(σ)∩act(ψ) = ∅. We can apply the inductive hypothesis
and derive σ(M), σ(Q) |= ψ. As P

γ−→ Q we have P ≡ γ.P ′|P ′′ and Q ≡ P ′|P ′′. This
mean that σ(P) ≡ σ(γ).σ(P ′)|σ(P ′′). Now act(σ)∩ act(〈γ〉ψ) = ∅ ensures that σ(γ) = γ.
So σ(P) ≡ γ.σ(P ′)|σ(P ′′) and σ(Q) ≡ σ(P ′)|σ(P ′′). Hence σ(P)

γ−→ σ(Q). Now because
σ(M), σ(Q) |= ψ, we derive σ(M), σ(P) |= 〈γ〉ψ.

2. M, P 6|= 〈γ〉ψ implies one of two cases: either there is no transition of P by γ, or there is
such a transition and for any transition P

γ−→ Q we have M, Q 6|= ψ.
If there is no transition of P by γ then P ≡ α1.P1|...|αk.Pk with αi 6= γ for each i 6= 1..k.
Because σ(P) ≡ σ(α1).σ(P1)|...|σ(αk).σ(Pk), and because γ 6= αi, and γ 6∈ act(σ), we can
state that γ 6= σ(αi), hence σ(P) cannot perform a transition by γ. Thus σ(M), σ(P) 6|=
〈γ〉ψ.
If there are transitions of P by γ, and for any such a transition P

γ−→ Q we have
M, Q 6|= ψ: then, because from act(σ)∩ act(〈γ〉ψ) = ∅ we can derive act(σ)∩ act(ψ) = ∅,
the inductive hypothesis can be applied and we obtain σ(M), σ(Q) 6|= ψ. But because
γ 6∈ act(σ) we obtain σ(γ) = γ and σ(P)

γ−→ σ(Q). Hence σ(M), σ(P) 6|= 〈γ〉ψ.

The case φ = KRψ:

28

1. M, P |= KRψ implies P ≡ R|S and for any R|S′ ∈ M we have M, R|S′ |= ψ. From
act(σ) ∩ act(φ) = ∅ we derive act(σ) ∩ act(ψ) = ∅ and act(σ) ∩ Act(R) = ∅. So, we
can apply the inductive hypothesis that gives Mσ, σ(R|S′) |= ψ and, because σ(R) ≡ R,
Mσ, R|σ(S′) |= ψ.
Consider an arbitrary process R|S′′ ∈ Mσ. There exists a process Q ∈ M such that
σ(Q) ≡ R|S′′. Thus, by theorem 2.17, Q ≡ R′|S′′′ with σ(R′) = R and σ(S′′′) = S′′.
But Act(R) ∩ act(σ) = ∅ implies Act(R) ∩ obj(σ) = ∅, so applying the theorem 2.16, we
derive R ≡ R′. Thus Q ≡ R|S′′′ and because Mσ, R|σ(S′) |= ψ for any S′, we derive
Mσ, R|S′′ |= ψ.

Because R|S′′ ∈ Mσ was arbitrarily chosen, and because σ(P) = σ(R|S) = R|σ(S), we
obtainMσ, P σ |= KRψ.

2. M, P 6|= KRψ implies that either P 6≡ R|S for any S, or P ≡ R|S for some S and there
exists a process R|S′ ∈M such thatM, R|S′ 6|= ψ.
If P 6≡ R|P ′, because act(σ) ∩ Act(R) = ∅ implies obj(σ) ∩ Act(R) = ∅ we derive, by
theorem 2.18, that σ(P) 6≡ R|S for any S. Hence, we can state thatMσ, P σ 6|= KRψ.
If P ≡ R|S for some S and there exists a process R|S′ ∈ M such that M, R|S′ 6|= ψ,
then the inductive hypothesis givesMσ, σ(R)|σ(S′) 6|= ψ. But σ(R)|σ(S′) ≡ R|σ(S′), and
σ(P) ≡ R|σ(S) thus σ(M), R|σ(S′) 6|= ψ implies σ(M), σ(P) 6|= KRψ.

We suppose to have defined on A a lexicographical order �. So, for a finite set A ⊂ A we
can identify a maximal element that is unique. Hence the successor of this element is unique as
well. We convey to denote by A+ the set obtained by adding to A the successor of its maximal
element.

Theorem 4.4 (Finite model property).

IfM, P |= φ then ∃N ∈M
act(φ)+
LφM and Q ∈ N such that N , Q |= φ

Proof. Consider the substitution σ that maps all the actions α ∈ A \ act(φ) in the successor of
the maximum element of act(φ) (it exists as act(φ) is finite). Obviously act(σ) ∩ act(φ) = ∅,
hence, using theorem 4.3 we obtain Mσ, P σ |= φ. Further we take N = Mσ

(h,w) ∈ M
act(φ)+

(h,w)

and Q = Pσ
(h,w) ∈M

act(φ)+

(h,w) , and theorem 4.1 proves the finite model property.

Because act(φ) is finite implying act(φ)+ finite, we apply theorem 3.11 ensuring that M
act(φ)+
LφM

is finite and any contextM∈M
act(φ)+
LφM is finite as well. Thus we obtain the finite model prop-

erty for our logic. A consequence of theorem 4.4 is the decidability for satisfiability, validity
and model checking against the process semantics.

Theorem 4.5 (Decidability). For LS
DES validity, satisfiability and model checking are decid-

able against the process semantics.

4.4 Axioms of LS
DES

Now we propose a Hilbert-style axiomatic system for Dynamic Epistemic Spatial Logic, LS
DES .

The system will be constructed in top of the classical propositional logic. Hence all the axioms
and rules of propositional logic are available. In addition we will have a class of spatial axioms
and rules that describes, mainly, the behavior of the parallel operator, a class of dynamic axioms
and rules regarding the behavior of the dynamic operators, and a class of epistemic axioms and

29

rules focusing on the behavior of epistemic operators. In the next subsections we will prove
that the system is sound and complete with respect to process semantics.

We begin by defining, inductively on processes, some special classes of formulas that, will
be proved further, characterize processes and finite contexts.

Definition 4.9 (Characteristic formulas for processes). We define a class of formulas
(cP)P∈P, indexed by (≡-equivalence classes of) processes, as follows:

1. c0
def
= 0 2. cP |Q

def
= cP |cQ 3. cα.P

def
= 〈!α〉cP

Definition 4.10 (Characteristic formulas for contexts). IfM is a finite context, we define
its characteristic formula by:

cM = K0(
∨

Q∈M
cQ) ∧ (

∧
Q∈M

∼
K0cQ) (4.1)

Spatial axioms

Axiom E 1. ` >|⊥ → ⊥

Axiom E 2. ` φ|0↔ φ

Axiom E 3. ` φ|ψ → ψ|φ

Axiom E 4. ` (φ|ψ)|ρ→ φ|(ψ|ρ)

Axiom E 5. ` φ|(ψ ∨ ρ)→ (φ|ψ) ∨ (φ|ρ)

Axiom E 6. ` (cP ∧ φ|ψ)→
∨

P≡Q|R(cQ ∧ φ)|(cR ∧ ψ)

Spatial rules

Rule ER 1. If ` φ→ ψ then ` φ|ρ→ ψ|ρ

Axiom E1 states the propagation of the inconsistency from a subsystem to the upper system.
Axioms E2, E3 and E4 depict the structure of abelian monoid projected by the parallel

operator on the class of processes.
Concerning axiom E6, observe that the disjunction involved has a finite number of terms,

as we considered the processes up to structural congruence level. The theorem states that if
system has a property expressed by parallel composition of specifications, then it must have
two parallel complementary subsystems, each of them satisfying one of the specifications.

Rule ER1 states a monotony property for the parallel operator.

Dynamic axioms

Axiom E 7. ` 〈α〉φ|ψ → 〈α〉(φ|ψ)

Axiom E 8. ` [α](φ→ ψ)→ ([α]φ→ [a]ψ)

Axiom E 9. ` 0→ [α]⊥

Axiom E 10. If β 6= αi for i = 1..n then ` 〈!α1〉>|...|〈!αn〉> → [β]⊥

Axiom E 11. ` 〈!α〉φ→ [α]φ

30

Dynamic rules

Rule ER 2. If ` φ then ` [α]φ

Rule ER 3. If ` φ→ [α]φ′ and ` ψ → [α]ψ′ then ` φ|ψ → [α](φ′|ψ ∨ φ|ψ′).

Rule ER 4. If `
∨
M∈M

act(φ)+
LφM

cM → φ then ` φ.

The first dynamic axiom, axiom E7, presents a domain extrusion property for the dynamic
operator. It expresses the fact that if an active subsystem of a bigger system performs the
action α, then the bigger system performs it as a whole.

Axiom E8 is just the (K)-axiom for the dynamic operator.
Axiom E9 states that an inactive system cannot perform any action.
Given a complex process that can be exhaustively decomposed in n parallel subprocesses,

each of them being able to perform one action only, αi, for i = 1..n, axiom E10 ensures us that
the entire system, as a whole, cannot perform another action β 6= αi for i = 1..n.

Recalling that the operator 〈!α〉 describes processes guarded by α, axiom E11 states that a
system described by a guarded process can perform one and only one action, the guarding one.

Rule ER2 is the classic necessity rule used for the dynamic operator.
Rule ER3 is, in a sense, a counterpart of axiom E7 establishing the action of the operator

[α] in relation to the parallel operator.
Rule ER4 comes as a consequence of the finite model property and provides a rule that

characterizes, in a finite manner, the validity of a formula. Observe that the disjunction in the
first part of the rule has a finite number of terms.

Epistemic axioms

Axiom E 12. If P ∈ S then ` KP> ↔ cP |>

Axiom E 13. ` KQφ ∧KQ(φ→ ψ)→ KQψ

Axiom E 14. ` KQφ→ φ

Axiom E 15. ` KQφ→ KQKQφ.

Axiom E 16. ` KQ> → (¬KQφ→ KQ¬KQφ)

Axiom E 17. ` KQφ↔ (KQ> ∧K0(KQ> → φ))

Axiom E 18. ` K0φ ∧ ψ|ρ→ (K0φ ∧ ψ)|(K0φ ∧ ρ)

Axiom E 19. ` K0φ→ [α]K0φ

Axiom E 20. ` K0φ→ (KQ> → KQK0φ)

Epistemic rules

Rule ER 5. If ` φ then ` KQ> → KQφ.

Rule ER 6. IfM3 P is a finite context and ` cM ∧ cP → K0φ then ` cM → φ.

31

Axiom E12 states the equivalence between to be active and to know for the epistemic agents.
Indeed M, Q |= KP> means exactly P is an active subsystem of Q and nothing more. The
same can be expressed byM, Q |= cP |>.

Axiom E13 is the classical (K)-axiom stating that our epistemic operator is a normal one.
This is an expected axiom as all the epistemic logics have it.

The same remark on axiom E14 which is just the axiom (T) - necessity axiom, for the
epistemic operator.

Also axiom E15 is well known in epistemic logics. It states that our epistemic agents satisfy
the positive introspection property, i.e. if P knows something then it knows that it knows that
thing.

Axiom E16 states a variant of the negative introspection, saying that if an agent P is active
and if it doesn’t know φ, then it knows that it doesn’t know φ. The novelty in our axiom is the
precondition KP> of the negative introspection. This precondition guarantees that the agent
really exists, i.e. it is active. Such a precondition does not appear in the other epistemic logics
for the reason that, in those cases, the agents exists always and they knows, always, at least
the tautologies.

Axiom E17 provides a full description of the KQ operator by means of K0 and KQ>. As,
by axiom E12, KQ> can be expressed by the epistemic operators, our system might be reduced
to one epistemic operator only, K0. We leave for future work the analysis of minimality for
our axiomatic system. For the moment we consider it interesting to have all these epistemic
operators that provide links with the rest of epistemic logics.

Axioms E18, E19 and E20 present K0φ as a syntactic encryption of validity, stating that
once K0φ can be stated for a real system, it will be propagated to all the levels of it.

Rule ER5 states that any active agent knows all the tautologies. As in the case of the
negative introspection, we deal with a well known epistemic rule, widely spread in epistemic
logics, but our rules work under the assumption that the agent is active.

Also rule ER6 depicts the fact that K0φ is an encoding of the validity in a given context.

4.5 The soundness of LS
DES against the process semantics

In this section we will motivate the choice of the axioms by proving the soundness of our system
with respect to process semantics. In this way we will prove that everything expressed by our
axioms and rules about the process semantics is correct and, in conclusion, using our system,
we can derive only theorems that can be meaningfully interpreted.

Theorem 4.6 (Process-Soundness). The system LS
DES is sound against the process seman-

tics.

Proof. The soundness of LS
DES will be sustained by the soundness of all spatial, dynamic and

epistemic axioms and rules.

Soundness of the spatial axioms and rules

We start with proving the soundness of the spatial axioms and rules.

Lemma 4.7 (Soundness of axiom E1). |= >|⊥ → ⊥

Proof. Suppose that it exists a contextM and a process P ∈M such thatM, P |= >|⊥. Then
P ≡ Q|R with M, Q |= > and M, R |= ⊥; i.e. M, R 6|= >. But this is not possible. Hence,
there is no contextM and process P ∈M such thatM, P |= >|⊥, i.e. for any contextM and
any process P ∈M we have M, P |= ¬(>|⊥), i.e. M, P |= >|⊥ → ⊥.

32

Lemma 4.8 (Soundness of axiom E2). |= φ|0↔ φ.

Proof. M, P |= φ|0 iff P ≡ Q|R, M, Q |= φ and M, R |= 0. Then R ≡ 0, so P ≡ Q, hence
M, P |= φ.
IfM, P |= φ, because M, 0 |= 0 and P ≡ P |0 ∈M we obtain thatM, P |= φ|0.

Lemma 4.9 (Soundness of axiom E3). |= φ|ψ → ψ|φ.

Proof. M, P |= φ|ψ means that P ≡ Q|R, M, Q |= φ and M, R |= ψ. But P ≡ R|Q ∈ M,
hence M, P |= ψ|φ.

Lemma 4.10 (Soundness of axiom E4). |= (φ|ψ)|ρ→ φ|(ψ|ρ).

Proof. M, P |= (φ|ψ)|ρ implies that P ≡ Q|R, M, Q |= φ|ψ and M, R |= ρ. Then Q ≡ S|V
withM, S |= φ andM, V |= ψ. But P ≡ (S|V)|R ≡ S|(V |R), whereM, S |= φ andM, V |R |=
ψ|ρ. Hence M, P |= φ|(ψ|ρ).

Lemma 4.11 (Soundness of axiom E5). |= φ|(ψ ∨ ρ)→ (φ|ψ) ∨ (φ|ρ)

Proof. M, P |= φ|(ψ ∨ ρ) means that P ≡ Q|R, M, P |= φ and M, R |= ψ ∨ ρ, i.e. M, R |= ψ
orM, R |= ρ. Hence M, P |= φ|ψ orM, P |= φ|ρ. SoM, P |= (φ|ψ) ∨ (φ|ρ).

On this point we have enough information to prove two expected results: first that cP is,
indeed, satisfied by the process P and second, that the formula cP is satisfied by the whole
≡-equivalence class of P . These results will be useful in proving the rest of the soundness
lemmas.

Theorem 4.12. If P ∈M, thenM, P |= cP .

Proof. We prove it by induction on the structure of the process P .
The case P ≡ 0: M, 0 |= c0, because 0 ∈M, c0 = 0 and M, 0 |= 0.
The case P ≡ Q|R: we have Q,R ∈ M and cP = cQ|cR. By the inductive hypothesis
M, Q |= cQ andM, R |= cR, so M, Q|R |= cQ|cR. Hence M, P |= cP .
The case P ≡ α.Q: we have P α−→ Q, hence Q ∈ M. Moreover, cP = 〈α〉cQ ∧ 1. By the
inductive hypothesis M, Q |= cQ. Because P α−→ Q, we obtain M, P |= 〈α〉cQ, and because
P ≡ α.Q is a guarded process, we have also M, P |= 1. Hence M, P |= cP .

Theorem 4.13.M, P |= cQ iff P ≡ Q.

Proof. (⇐) We prove it by verifying that M, P |= cQ for any P,Q involved in the equivalence
rules.

• if P = R|S and Q = S|R, we have M, R|S |= cR|cS and using the soundness of axiom
E3, we obtainM, R|S |= cS |cR, i.e. M, P |= cQ

• if P = (R|S)|U and Q = R|(S|U) we have M, P |= (cR|cS)|cU . Using the soundness of
axiom E4, we obtain M, P |= cQ. Similarly M, Q |= cP , using the soundness of axioms
E3 and E4.

• if P = Q|0 then M, P |= cQ|0, i.e., by using the soundness of axiom E2, M, P |= cQ.
Similarly reverse, form M, Q |= cQ we derive, by using the soundness of axiom E2,
M, Q |= cQ|0, i.e. M, Q |= cP .

• if P = P ′|R and Q = Q′|R with P ′ ≡ Q′ and M, P ′ |= cQ′ , because M, R |= cR, we
obtain that M, P |= cQ′ |cR, i.e. M, P |= cQ.

33

• if P = α.P ′ and Q = α.Q′ with P ′ ≡ Q′ and M, P ′ |= cQ′ , as P α−→ P ′, then M, P |=
〈α〉cQ′ . But M, P |= 1, because P is a guarded process, hence M, P |= 〈α〉cQ′ ∧ 1, i.e.
M, P |= cQ.

(⇒) We prove the implication in this sense by induction on the structure of Q.

• if Q ≡ 0, thenM, P |= c0, means M, P |= 0. Hence P ≡ 0.

• if Q ≡ R|S then M, P |= cQ is equivalent with M, P |= cR|cS . So P ≡ U |V , M, U |= cR
and M, V |= cS . By the inductive hypothesis we obtain that U ≡ R and V ≡ S. Hence
P ≡ Q.

• if Q ≡ α.R, then M, P |= cQ is equivalent with M, P |= 〈α〉cR ∧ 1. So P α−→ P ′ with
M, P ′ |= cR. By the inductive hypothesis, P ′ ≡ R. And because M, P |= 1 we obtain
that P ≡ α.R, i.e. P ≡ Q.

Lemma 4.14 (Soundness of axiom E6). |= (cP ∧ φ|ψ)→
∨

P≡Q|R(cQ ∧ φ)|(cR ∧ ψ)

Proof. Suppose that M, S |= cP ∧ φ|ψ. Then S ≡ P (by theorem 4.13) and S ≡ S1|S2 with
M, S1 |= φ and M, S2 |= ψ.
ButM, S1 |= cS1 andM, S2 |= cS2 , by theorem 4.12.
Hence M, S1 |= φ ∧ cS1 andM, S2 |= ψ ∧ cS2 .
And because P ≡ S ≡ S1|S2, we obtainM, P |= (φ∧cS1)|(ψ∧cS2), henceM, P |=

∨
P≡Q|R(cQ∧

φ)|(cR ∧ ψ), q.e.d.

Lemma 4.15 (Soundness of rule ER1). If |= φ→ ψ then |= φ|ρ→ ψ|ρ

Proof. If M, P |= φ|ρ then P ≡ Q|R, M, Q |= φ and M, R |= ρ. But from the hypothesis,
M, Q |= φ→ ψ, hence M, Q |= ψ. ThenM, P |= ψ|ρ, so |= φ|ρ→ ψ|ρ.

Soundness of the dynamic axioms and rules

We prove now the soundness for the class of dynamic axioms and rules.

Lemma 4.16 (Soundness of axiom E7). |= 〈α〉φ|ψ → 〈α〉(φ|ψ).

Proof. If M, P |= 〈α〉φ|ψ, then P ≡ R|S, M, R |= 〈α〉φ and M, S |= ψ. So ∃R α−→ R′ and
M, R′ |= φ. So ∃P ≡ R|S α−→ P ′ ≡ R′|S andM, P ′ |= φ|ψ. Hence M, P |= 〈α〉(φ|ψ).

Lemma 4.17 (Soundness of axiom E8). |= [α](φ→ ψ)→ ([α]φ→ [α]ψ)

Proof. Let M, P |= [α](φ → ψ) and M, P |= [α]φ. If there is no P ′ such that P α−→ P ′, then
M, P |= [α]ψ. Suppose that exists such P ′. Then for any such P ′ we have M, P ′ |= φ → ψ
andM, P ′ |= φ. Hence M, P ′ |= ψ, i.e. M, P |= [α]ψ.

Lemma 4.18 (Soundness of axiom E9). |= 0→ [α]⊥

Proof. If M, P |= 0 then P ≡ 0 and there is no transition 0 α−→ P ′, hence M, P 6|= 〈α〉>, i.e.
M, P |= [α]⊥.

Lemma 4.19 (Soundness of axiom E10).

If β 6= αi for i = 1..n, then |= 〈!α1〉>|...|〈!αn〉> → [β]⊥

34

Proof. Suppose that M, P |= 〈!α1〉>|...|〈!αn〉>. Then necessarily P ≡ α1.P1|...|αn.Pn. But if
αi 6= β for i = 1..n, there is no transition

α1.P1|...|αn.Pn
β−→ P ′

hence M, P 6|= 〈β〉>, i.e. M, P |= [β]⊥.

Lemma 4.20 (Soundness of axiom E11). |= 〈!α〉φ→ [α]φ

Proof. Suppose that M, P |= 〈!α〉φ, then M, P |= 1 and M, P |= 〈α〉φ. Then necessarily
P ≡ α.P ′ and M, P ′ |= φ. But there is only one reduction that P can do, P α−→ P ′. So, for
any reduction P α−→ P ′′ (because there is only one), we haveM, P ′′ |= φ, i.e. M, P |= [α]φ

Lemma 4.21 (Soundness of rule ER2). If |= φ then |= [α]φ.

Proof. Let M be a context and P ∈ M a process. If there is no P ′ such that P α−→ P ′, then
M, P |= [α]φ. Suppose that exists such P ′ (obviously P ′ ∈M). Then for any such P ′ we have
M, P ′ |= φ, due to the hypothesis |= φ. Hence M, P |= [α]φ.

Lemma 4.22 (Soundness of rule ER3).

If |= φ→ [α]φ′ and |= ψ → [α]ψ′ then |= φ|ψ → [α](φ′|ψ ∨ φ|ψ′)

Proof. Suppose that M, P |= φ|ψ, then P ≡ Q|R, M, Q |= φ and M, R |= ψ. Because
|= φ → [α]φ′ and |= ψ → [α]ψ′, we derive M, Q |= [α]φ′ and M, R |= [α]ψ′. We analyze some
cases:

• if P cannot perform a transition by α, then M, P |= [α]⊥, and using the soundness of
axiom E8 and rule ER2 we derive

|= [α]⊥ → [α](φ′|ψ ∨ φ|ψ′)

hence, we obtain in the endM, P |= [α](φ′|ψ ∨ φ|ψ′).

• if Q α−→ Q′ and R cannot perform a transition by α, then Q|R α−→ Q′|R and the
transitions of P ≡ Q|R by α have always this form.
But M, Q |= [α]φ′, so for any such Q′ we have M, Q′ |= φ′, thus M, Q′|R |= φ′|ψ, i.e.
M, Q′|R |= (φ′|ψ ∨ φ|ψ′).
Hence for any transition P α−→ P ′ we haveM, P ′ |= (φ′|ψ∨φ|ψ′). In conclusion,M, P |=
[α](φ′|ψ ∨ φ|ψ′).

• if Q cannot perform a transition by α and R α−→ R′, similarly as in the previous case, we
can derive M, P |= [α](φ′|ψ ∨ φ|ψ′).

• if Q α−→ Q′ and R
α−→ R′ then P

α−→ P ′ has either the form Q|R α−→ Q′|R or Q|R α−→
Q|R′. But M, Q′|R |= φ′|ψ, hence M, Q′|R |= (φ′|ψ ∨ φ|ψ′) and M, Q|R′ |= φ|ψ′, hence
M, Q|R′ |= (φ′|ψ∨φ|ψ′). Thus, for any transition P α−→ P ′ we haveM, P ′ |= (φ′|ψ∨φ|ψ′),
i.e. M, P |= [α](φ′|ψ ∨ φ|ψ′).

So, in any case M, P |= [α](φ′|ψ ∨ φ|ψ′), that concludes the proof.

Lemma 4.23 (Soundness of rule ER4). If |=
∨
M∈M

act(φ)+
LφM

cM → φ then |= φ.

35

Proof. Suppose that |=
∨
M∈M

act(φ)+
LφM

cM → φ but it exists a model N and a process Q ∈ N

with N , Q 6|= φ. Then N , Q |= ¬φ.
Further, using the finite model property, theorem 4.4, we obtain that it exists a context N ′ ∈
M

act(φ)+
LφM and a process R ∈ N ′ with N ′, R |= ¬φ.

But LφM = L¬φM, and act(φ) = act(¬φ) so it exists a context N ′ ∈ M
act(φ)+
LφM and a process

R ∈ N ′ with N ′, R |= ¬φ. Because N ′, R |= cN ′ , we derive N ′, R |=
∨
M∈M

act(φ)+
LφM

cM.

But |=
∨
M∈M

act(φ)+
LφM

cM → φ implies N ′, R |=
∨
M∈M

act(φ)+
LφM

cM → φ, hence N ′, R |= φ.

As we also have N ′, R |= ¬φ, we obtain N ′, R |= ⊥ - impossible!
Then, for any model N and any process P ∈ N we have N , P |= φ, i.e. |= φ.

Soundness of the epistemic axioms and rules

Hereafter we prove the soundness for the epistemic axioms and rules.

Lemma 4.24 (Soundness of axiom E12). If Q ∈ S then |= cQ|> ↔ KQ>

Proof. IfM, P |= cQ|> then P ≡ R|S, withM, S |= cQ. Then theorem 4.36 gives S ≡ Q, hence
P ≡ Q|R. And because for any Q|R′ ∈M we have M, Q|R′ |= >, we derive M, P |= KQ>.
Suppose now the reverse, i.e. that M, P |= KQ>. Then P ≡ Q|R. But M, P |= cP , hence
M, P |= cQ|cR.
Because |= cQ → >, using the soundness of rule ER1, we derive |= cQ|cR → cQ|> from where
we conclude thatM, P |= cQ|>.

Lemma 4.25 (Soundness of axiom E13). |= KQφ ∧KQ(φ→ ψ)→ KQψ

Proof. Suppose thatM, P |= KQφ and thatM, P |= KQ(φ→ ψ). Then P ≡ Q|R and for any
S such that S|Q ∈ M we have M, S|Q |= φ and M, Q|S |= φ → ψ. Hence for any such Q|S
we have M, Q|S |= ψ and because P ≡ Q|R we obtain thatM, P |= KQψ.

Lemma 4.26 (Soundness of axiom E14). |= KQφ→ φ.

Proof. If M, P |= KQφ then P ≡ Q|R and for any Q|S ∈ M we have M, Q|S |= φ, i.e.
M, Q|R |= φ, soM, P |= φ.

Lemma 4.27 (Soundness of axiom E15). |= KQφ→ KQKQφ.

Proof. Suppose thatM, P |= KQφ, then P ≡ Q|R and for any Q|S ∈M we haveM, Q|S |= φ.
Let Q|S′ ∈ M be arbitrarily chosen. As for any Q|S ∈ M we have M, Q|S |= φ, we derive
that M, Q|S′ |= KQφ. But Q|S′ has been arbitrarily chosen, so for any Q|S ∈ M we have
M, Q|S |= KQφ, and because P ≡ Q|R we obtainM, P |= KQKQφ.

Lemma 4.28 (Soundness of axiom E16). |= KQ> → (¬KQφ→ KQ¬KQφ)

Proof. Suppose that M, P |= KQ> and M, P |= ¬KQφ. Then P ≡ Q|R and ∃S such that
M, S|Q |= ¬φ. But then for any U such that U |Q ∈ M we have M, U |Q |= ¬KQφ. Hence
M, P |= KQ¬KQφ.

Lemma 4.29 (Soundness of axiom E17). |= KQφ↔ (KQ> ∧K0(KQ> → φ))

Proof. Suppose thatM, P |= KQφ. Then P ≡ Q|R and for any Q|S ∈M we haveM, Q|S |= φ.
From P ≡ Q|R, because for any Q|S ∈ M we have M, Q|S |= >, we derive M, P |= KQ>.

36

Consider now an arbitrary process S ∈M. IfM, S 6|= KQ>, thenM, S |= KQ> → φ.
IfM, S |= KQ> we derive that S ≡ Q|S′, hence M, S |= φ.
So, for an arbitrarily chosen S ∈M we have M, S |= KQ> → φ.
Because P ≡ P |0 and for any process S ≡ S|0 ∈M we have
M, S |= KQ> → φ, we derive that M, P |= K0(KQ> → φ). Hence |= KQφ → (KQ> ∧
K0(KQ> → φ)).

Suppose now thatM, P |= KQ>∧K0(KQ> → φ). FromM, P |= KQ> we derive P ≡ Q|R.
Because M, P |= K0(KQ> → φ), we obtain that for any process S ∈ M we have M, S |=
KQ> → φ. Hence, for any process S|Q ∈M we haveM, S|Q |= φ (because M, S|Q |= KQ>).
And because P ≡ Q|R, we derive M, P |= KQφ.

Lemma 4.30 (Soundness of axiom E18). |= K0φ ∧ ψ|ρ→ (K0φ ∧ ψ)|(K0φ ∧ ρ)

Proof. Suppose that M, P |= K0φ ∧ ψ|ρ thenM, P |= K0φ and M, P |= ψ|ρ.
M, P |= K0φ gives that for any R ∈M we have M, R |= φ.
M, P |= ψ|ρ gives that P ≡ P ′|P ′′ and M, P ′ |= ψ, M, P ′′ |= ρ. Because P ′, P ′′ ∈ M and
because for any R ∈M,M, R |= φ we derive thatM, P ′ |= K0φ andM, P ′′ |= K0φ.
Hence M, P ′ |= ψ ∧K0φ and M, P ′′ |= ρ ∧K0φ. As P ≡ P ′|P ′′, we obtain further M, P |=
(K0φ ∧ ψ)|(K0φ ∧ ρ).

Lemma 4.31 (Soundness of axiom E19). |= K0φ→ [α]K0φ

Proof. Suppose that M, P |= K0φ, then for any R ∈M we have
M, R |= φ.
If P cannot perform a transition by α, we have M, P |= [α]K0φ.
If P can perform such transitions, then for any P α−→ P ′ we have
M, P ′ |= K0φ (as for any R ∈M we have M, R |= φ). This means M, P |= [α]K0φ.

Lemma 4.32 (Soundness of axiom E20). |= K0φ→ (KQ> → KQK0φ)

Proof. Suppose that M, P |= K0φ andM, P |= KQ>.
M, P |= K0φ gives that for any R ∈M we have M, R |= φ.
M, P |= KQ> means that P ≡ Q|S. Because for any R ∈ M we have M, R |= φ, we
obtain that for any Q|S′ ∈ M we have M, Q|S′ |= K0φ, and because P ≡ Q|S we obtain
M, P |= KQK0φ.

Lemma 4.33 (Soundness of rule ER5). If |= φ then |= KQ> → KQφ

Proof. If |= φ then for any context M and any process P ∈ M we have M, P |= φ. Suppose
now that M, P |= KQ>. Then P ≡ Q|R. Because M, S |= φ for each S ∈ M, we derive that
for any S|Q ∈M we have M, S|Q |= φ. Hence M, P |= KQφ.

Lemma 4.34 (Soundness of rule ER6).

IfM3 P is a finite context and |= cM ∧ cP → K0φ then |= cM → φ

Proof. Suppose that |= cM ∧ cP → K0φ and N is an arbitrary context with Q ∈ N .
If N , Q 6|= cM then N , Q |= cM → φ.
If N , Q |= cM, then N = M. Further M, P |= cP ∧ cM gives M, P |= K0φ, i.e. for each
S|0 ≡ S ∈ M we have M, S |= φ. Now, because N = M and Q ∈ M we obtain N , Q |= φ.
Hence, also in this case N , Q |= cM → φ. Thus |= cM → φ.

Hence we have a sound system and all the theorems that can be proved with it are sound
results with respect to process semantics.

37

4.6 Characteristic formulas

In this subsection we use the peculiarities of the dynamic and epistemic operators to prove that
the characteristic formulas for processes and for finite contexts introduced before can identify
the processes and the finite contexts respectively.

We begin by restating some relevant results, proved before, in order to offer to the reader a
full picture of the problem.

Theorem 4.35.M, P |= cP .

Proof. It has been proved as theorem 4.12.

Theorem 4.36.M, P |= cQ iff P ≡ Q.

Proof. It has been proved as theorem 4.13.

The next theorems show that cP could provide a syntactic characterization of the process P ,
stating that the conjunction of two such formulas, cP and cQ, is inconsistent if the indexes are
not structurally congruent, and respectively that two structurally congruent indexes generate
logical equivalent formulas.

Theorem 4.37. If P 6≡ Q then ` cP → ¬cQ.

Proof. We prove it by induction on P .

• the case P ≡ 0: as P 6≡ Q we obtain that Q ≡ α.R|S. So cQ = 〈α〉cR∧1|cS that implies,
using theorem 4.47, ` cQ → 〈α〉cR|cS , and applying axiom E7, ` cQ → 〈α〉(cR|cS).
But ` cR|cS → > and applying theorem 4.50, we obtain
` 〈α〉(cR|cS)→ 〈α〉>.
Hence, ` cQ → 〈α〉>. Then ` ¬〈α〉> → ¬cQ.
Axiom E9 gives ` 0→ ¬〈α〉> hence, in the end, ` 0→ ¬cQ, i.e. ` cP → ¬cQ.

• the case P ≡ P ′|P ′′: we have cP = cP ′ |cP ′′ . Because P 6≡ Q, we obtain that for any
decomposition Q ≡ Q′|Q′′ we have either P ′ 6≡ Q′ or P ′′ 6≡ Q′′. Using the inductive
hypothesis, we derive that either ` cQ′ → ¬cP ′ or ` cQ′′ → ¬cP ′′ . Because this is
happening for any decomposition of Q, we can apply theorem 4.49 and we obtain
` cQ → ¬(cP ′ |cP ′′), i.e. ` cQ → ¬cP . Hence ` cP → ¬cQ.

• the case P ≡ α.P ′: cP = 1 ∧ 〈α〉cP ′ , so ` cP → 1 ∧ 〈α〉>.
But axiom E10 gives ` 〈α〉> ∧ 1→ ¬〈β〉> for any β 6= α.
Hence, for any β 6= α we have ` cP → ¬〈β〉>.

– if Q ≡ 0 we already proved that ` cQ → ¬cP (because P 6≡ 0), so ` cP → ¬cQ
– if Q ≡ β.Q′|Q′′ for some β 6= α, then ` cQ → 〈β〉>, hence ` ¬〈β〉> → ¬cQ. But we

proved that ` cP → ¬〈β〉>. Hence ` cP → ¬cQ.
– if Q ≡ α.Q1|...|α.Qk for k > 1, then ` cQ → ¬0|¬0 (as ` 0 → ¬cα.Q1 and ` 0 →
¬cα.Q2|...|α.Qk

). Then ` cQ → ¬1, i.e.
` 1→ ¬cQ. But ` cP → 1. Hence ` cP → ¬cQ.

– if Q ≡ αQ′: then P 6≡ Q gives P ′ 6≡ Q′. For this case we can use the inductive
hypothesis and we obtain ` cQ′ → ¬cP ′ . Further, applying theorem 4.51, we obtain
` [α]cP ′ → [α]¬c′Q, i.e.
` [α]cP ′ → ¬〈α〉cQ′ that gives, because cQ = 1 ∧ 〈α〉cQ′ ,
` [α]cP ′ → ¬cQ.
Now, using axiom E11, ` 1 ∧ 〈α〉cP ′ → [α]cP ′ , so ` cP → [α]cP ′ , and, combining it
with the previous result, we derive ` cP → ¬cQ.

38

Theorem 4.38. If P ≡ Q then ` cP ↔ cQ.

Proof. We prove it verifying the congruence rules:

• if P = R|S and Q = S|R then ` cR|cS ↔ cS |cR from theorem 4.44, i.e. ` cP ↔ cQ

• if P = (R|S)|U and Q = R|(S|U) then theorem 4.45 we have
` (cR|cS)|cU ↔ cR|(cS |cU), i.e. ` cP ↔ cQ

• if P = Q|0 then axiom E2 gives ` cQ|0↔ cQ, i.e. ` cP ↔ cQ.

• if P = P ′|R and Q = Q′|R with P ′ ≡ Q′ and ` cP ′ ↔ cQ′ then rule ER1 gives ` cP ′ |cR ↔
cQ′ |cR. Hence ` cP ↔ cQ.

• if P = α.P ′ and Q = α.Q′ with P ′ ≡ Q′ and ` cP ′ ↔ cQ′ then theorem 4.50 gives
` 〈α〉cP ′ ↔ 〈α〉cQ′ , so ` (〈α〉cP ′ ∧ 1)↔ (〈α〉cQ′ ∧ 1). Hence ` cP ↔ cQ.

We prove now that the intuition behind the definition of characteristic formulas for contexts
is correct and, indeed, cM can be used to characterize M.

Theorem 4.39. IfM is a finite context and P ∈M thenM, P |= cM.

Proof. ObviouslyM, P |= cP , hence M, P |=
∨

Q∈M cQ.
Similarly, for any R ∈ M we have M, R |=

∨
Q∈M cQ, and because R ≡ R|0 and P ≡ P |0, we

derive M, P |= K0(
∨

Q∈M cQ).
As for any R ∈M there exists a process U ∈M (more exactly U = R) such that M, U |= cR,
we obtain that for each R ∈M we have
M, P |=

∼
K0cR, hence M, P |=

∧
Q∈M

∼
K0cQ.

Corollary 4.40. IfM is a finite context and P ∈M then

M, P |= cM ∧ cP

Theorem 4.41. IfM, P |= cN then N =M.

Proof. Suppose that M, P |= cN , then M, P |= K0(
∨

Q∈N cQ), i.e. for any R ∈ M we have
M, R |=

∨
Q∈N cQ. Hence, for any R ∈ M there exists a process Q ∈ N with M, R |= cQ, or

equivalently, R ≡ Q.

Now M, P |=
∧

Q∈N
∼
K0cQ gives that for any Q ∈ N we have

M, P |=
∼
K0cQ, i.e. there exists a process R ∈ M such that M, R |= cQ, or equivalently,

R ≡ Q.
Hence, we proved that for any R ∈ M there exists Q ∈ N such that R ≡ Q, and for any
Q ∈ N there exists R ∈ M such that R ≡ Q. Because we identify processes up to structural
congruence, we decide that M = N .

4.7 Theorems of LS
DES

In this section we will derive some theorems for LS
DES . As, by soundness, the theorems specify

“facts” about processes, we will try to interpret the nontrivial ones.

39

Spatial results

We start with the results that can be proved on the basis of the spatial theorems and rules only.
They reflect the behavior of the parallel operator in relation to the operators of the classical
logic.

Theorem 4.42. ` >|> ↔ >

Proof. Obviously ` >|> → >. As ` 0→ >, using rule ER1, we obtain ` >|0→ >|>. Further
axiom E2 gives us ` > → >|>.

Theorem 4.43. If ` φ then ` θ|ρ→ φ|ρ

Proof. Because ` φ implies ` θ → φ, using rule ER1 we obtain the result.

Theorem 4.44. ` φ|ψ ↔ ψ|φ

Proof. We use axiom E3 in both directions.

Theorem 4.45. ` (φ|ψ)|ρ↔ φ|(ψ|ρ)

Proof. We use axiom E4 and theorem 4.44.

Theorem 4.46. ` φ|(ψ ∨ ρ)↔ (φ|ψ) ∨ (φ|ρ)

Proof. ` ψ → ψ∨ ρ so, using rule ER1, ` φ|ψ → φ|(ψ∨ ρ). Similarly, ` φ|ρ→ φ|(ψ∨ ρ). Hence
` (φ|ψ) ∨ (φ|ρ)→ φ|(ψ ∨ ρ). The other direction is stated by axiom E5.

Theorem 4.47. ` φ|(ψ ∧ ρ)→ (φ|ψ) ∧ (φ|ρ)

Proof. Because ` ψ ∧ ρ → ψ, by applying rule ER1, we have ` φ|(ψ ∧ ρ) → φ|ψ. Similarly
` φ|(ψ ∧ ρ)→ φ|ρ.

The next result proves a strong version of monotonicity of the parallel composition.

Theorem 4.48. If ` φ→ ρ and ` ψ → θ then ` φ|ψ → ρ|θ.

Proof. If ` φ → ρ then rule ER1 gives us ` φ|ψ → ρ|ψ. If ` ψ → θ, then the same rule gives
` ρ|ψ → ρ|θ. Hence ` φ|ψ → ρ|θ.

The next result speaks about the negative parallel decomposition of a specification. It states
that, given two specifications, φ and ψ, if considering any parallel decomposition of our system
(process) P ≡ Q|R, we obtain that either Q doesn’t satisfy φ or R doesn’t satisfy ψ, then our
system P does not satisfy the parallel composition of the two specifications, φ|ψ.

Theorem 4.49. If for any decomposition P ≡ Q|R we have ` cQ → ¬φ or ` cR → ¬ψ then
` cP → ¬(φ|ψ).

Proof. ` cQ → ¬φ is equivalent with ` cQ ∧ φ→ ⊥ and because ` cR ∧ ψ → >, we obtain, by
theorem 4.48 ` (cQ ∧ φ)|(cR ∧ ψ)→ ⊥|>. And using axiom E1, we derive

` (cQ ∧ φ)|(cR ∧ ψ)→ ⊥

40

Similarly, from ` cR → ¬ψ we can derive

` (cQ ∧ φ)|(cR ∧ ψ)→ ⊥

Hence, the hypothesis of the theorem says that for any decomposition P ≡ Q|R we have
` (cQ ∧ φ)|(cR ∧ ψ)→ ⊥, i.e.

`
∨

P≡Q|R

(cQ ∧ φ)|(cR ∧ ψ)→ ⊥

But axiom E6 gives
` (cP ∧ φ|ψ)→

∨
P≡Q|R

(cQ ∧ φ)|(cR ∧ ψ)

hence
` (cP ∧ φ|ψ)→ ⊥, i.e. ` cP → ¬(φ|ψ).

Remark 4.2. Related to the same topic of the relation between negation and the parallel oper-
ator, observe that the negation is not distributive with respect to parallel. This is the reason
why, in the previous theorem, we had to ask in the premises that the condition ` cQ → ¬φ or
` cR → ¬ψ be fulfilled by all the possible decompositions of P . If only a decomposition P ≡ Q|R
exists such that ` cQ → ¬φ or ` cR → ¬ψ, this is not enough to deriveM, P |= ¬(φ|ψ). Indeed
suppose that M, Q |= φ but M, Q 6|= ψ and M, R |= ψ but M, R 6|= φ. Then from M, Q |= φ
andM, R |= ψ we deriveM, P |= φ|ψ. It is not the case that, from the additional information
M, Q 6|= ψ and M, R 6|= φ, M, P |= ¬(φ|ψ) to be derived. All we can derive from the unused
information is that M, P |= ¬φ|¬ψ, which does not contradictM, P |= φ|ψ.

4.8 Dynamic results

Now we focus of the theorems that derive from the class of dynamic axioms and rules. Remark
the modal behaviors of the dynamic operators.

The next result states the monotonicity of the diamond operator.

Theorem 4.50 (Monotonicity). If ` φ→ ψ then ` 〈α〉φ→ 〈α〉ψ.

Proof. ` φ→ ψ implies ` ¬ψ → ¬φ. Using rule ER2 we obtain
` [α](¬ψ → ¬φ) and axiom E8 gives ` [α]¬ψ → [α]¬φ. This is equivalent with ` ¬〈α〉ψ →
¬〈α〉φ, i.e. ` 〈α〉φ→ 〈α〉ψ.

Theorem 4.51. If ` φ→ ψ then ` [α]¬ψ → [α]¬φ.

Proof. If ` φ→ ψ then, by theorem 4.50, ` 〈α〉φ→ 〈α〉ψ, hence
` ¬〈α〉ψ → ¬〈α〉φ, that gives ` [α]¬ψ → [α]¬φ.

The next theorems confirm the intuition that the formulas cP , in their interrelations, mimic
the transitions of the processes (the dynamic operators mimic the transition labeled by the
action it has as index).

Theorem 4.52. If P cannot do any transition by α then ` cP → [α]⊥.

41

Proof. We prove it by induction on the structure of P .
The case P ≡ 0: axiom E9 implies ` 0→ [α]⊥ which proves this case, because c0 = 0.
The case P ≡ α1.P1|...|αn.Pn: as P cannot perform α we have α 6= αi for i = 1..n. We have
cP = (〈α1〉cP1∧1)|...|(〈αn〉cPn

∧1). From ` cPi
→ > we derive, using theorem 4.50, ` (〈αi〉cPi

∧
1)→ (〈αi〉>∧1). Further, we apply theorem 4.48 and obtain ` cP → (〈α1〉>∧1)|...|(〈αn〉>∧1).
Axiom E10 gives that for α 6= αi, ` (〈α1〉>∧1)|...|(〈αn〉>∧1)→ [α]⊥. Hence ` cP → [α]⊥.

Theorem 4.53. ` cP → [α]
∨
{cQ | P

α−→ Q}

Proof. We prove it by induction on P .
The case P 6≡ α.P ′|P ′′ for some P ′, P ′′: then P cannot preform a transition by α, hence,

by theorem 4.52, ` cP → [α]⊥. But
` ¬

∨
{cQ | P

α−→ Q} → >, and using theorem 4.51, we derive

` [α]⊥ → [α]
∨
{cQ | P

α−→ Q}

Combining this with ` cP → [α]⊥, we derive

` cP → [α]
∨
{cQ | P

α−→ Q}

The case P ≡ α.P ′: then {cQ | P
α−→ Q} = {cP ′} and cP = 〈α〉cP ′ ∧ 1. Applying axiom

E11 we obtain ` cP → [α]cP ′ . Hence

` cP → [α]
∨
{cQ | P

α−→ Q}

The case P ≡ α.P ′|P ′′ with P ′′ 6≡ 0: we apply the inductive hypothesis to α.P ′ and P ′′

respectively, and we obtain

` cα.P ′ → [α]
∨
{cQ′ | α.P ′ α−→ Q′}

and
` cP ′′ → [α]

∨
{cQ′′ | P ′′ α−→ Q′′}

We apply rule ER3 and obtain

` cP → [α](cα.P ′ |
∨
{cQ′′ | P ′′ α−→ Q′′} ∨

∨
{cQ′ | α.P ′ α−→ Q′}|cP ′′)

Using theorem 4.46, we obtain this result equivalent with

` cP → [α]
∨
{cQ | P

α−→ Q}

Theorem 4.54. If `
∨
{cQ | P

α−→ Q} → φ then ` cP → [α]φ

Proof. If `
∨
{cQ | P

α−→ Q} → φ then rule ER2 gives

` [α](
∨
{cQ | P

α−→ Q} → φ)

and further axiom E8 gives ` [α]
∨
{cQ | P

α−→ Q} → [α]φ. But theorem 4.53 gives ` cP →
[α]

∨
{cQ | P

α−→ Q}, hence ` cP → [α]φ.

42

Epistemic results

We begin by stating that 0 is always an active agent: it always performs its “inactivity” ex-
pressed by 0.

Theorem 4.55. ` K0>.

Proof. Trivial consequence of axiom E12 and axiom E2.

The next result states that an agent knows something only if it is active. Hence to know implies
to be.

Theorem 4.56. ` KPφ→ KP>.

Proof. Trivial consequence of axiom E17.

Further we prove another obvious property of knowledge: if Q knows φ and Q knows ψ, this is
equivalent with Q knows φ ∧ ψ.

Theorem 4.57. ` KQφ ∧KQψ ↔ KQ(φ ∧ ψ)

Proof. ` φ→ (ψ → (φ ∧ ψ)). Using rule ER5, we obtain

` KQ> → KQ[φ→ (ψ → (φ ∧ ψ))]

We apply axiom E13 twice, and obtain

` KQ> → [KQφ→ (KQψ → KQ(φ ∧ ψ))]

i.e.
` KQ> ∧KQφ→ [KQψ → KQ(φ ∧ ψ)]

But ` KQφ→ KQ>, hence ` KQφ→ [KQψ → KQ(φ ∧ ψ)], i.e.

` KQφ ∧KQψ → KQ(φ ∧ ψ)

Reverse, we apply rule ER5 to ` φ ∧ ψ → ψ and then axiom E13, and obtain ` KQ> →
(KQ(φ ∧ ψ)→ KQφ). But ` KQ(φ ∧ ψ)→ KQ>, hence ` KQ(φ ∧ ψ)→ KQφ.
Similarly ` KQ(φ ∧ ψ)→ KQψ.

The knowledge is redundant and introspective: if Q knows φ this is equivalent with the fact
that Q knows that Q knows φ.

Theorem 4.58. ` KQKQφ↔ KQφ.

Proof. Axiom E15 gives ` KQφ→ KQKQφ, and axiom E14 gives ` KQKQφ→ KQφ.

Theorem 4.59 (Monotonicity of knowledge).

If ` φ→ ψ then ` KPφ→ KPψ

Proof. Because ` φ→ ψ, we can use rule ER5 and obtain
` KP> → KP (φ→ ψ). But theorem 4.56 gives ` KPφ→ KP>, hence ` KPφ→ KP (φ→ ψ)
where from we derive

` KPφ→ (KPφ ∧KP (φ→ ψ))

This entails, using axiom E13, ` KPφ→ KPψ.

43

The existence of an agent entails the existence of its active sub-agents, as proved further.
This is a knowledge-like description of the ontological topology of agents. It relies on to be is
to know.

Theorem 4.60. ` KP |Q> → KP>.

Proof. Axiom E12 gives ` KP |Q> ↔ cP |cQ|> and ` KP> ↔ cP |>. But ` cQ → > and
applying rule ER1, we obtain ` cP |cQ|> → cP |>. Hence ` KP |Q> → KP>.

The knowledge of an agent is consistent: if it knows ¬φ (it knows that φ is false) then it
cannot know φ as well. This is proved in the next two theorems.

Theorem 4.61. ` KQ¬φ→ ¬KQφ.

Proof. Axiom E14 gives ` KQ¬φ → ¬φ and ` KQφ → φ. The last is equivalent with ` ¬φ →
¬KQφ, and combined with the first entails ` KQ¬φ→ ¬KQφ.

Theorem 4.62 (Consistency theorem). ` KQφ→ ¬KQ¬φ.

Proof. By using the negative form of theorem 4.61

In the next four theorems we will focus on the knowledge of the agent 0. It represents “the
most ignorant” agent inM in the sense that if it knows something then everybody else knows
it as well. This property might be exploited in the sense that what 0 knows is a validity inM.
And the dual of knowledge operator applied to 0 gives the satisfiability inM.

Theorem 4.63. ` K0φ→ (KQ> → KQφ)

Proof. Axioms E14 gives ` K0φ→ φ and applying the monotonicity of knowledge, ` KQK0φ→
KQφ.
Now axiom E20 provides ` K0φ ∧ KQ> → KQK0φ. Thus ` K0φ ∧ KQ> → KQφ, that is
equivalent with ` K0φ→ (KQ> → KQφ).

Theorem 4.64. `
∼
K0φ↔ K0

∼
K0φ

Proof. By definition, we have `
∼
K0φ ↔ ¬K0¬φ, and because ` K0>, we derive `

∼
K0φ →

(¬K0¬φ ∧K0>).
But axiom E16 entails ` (¬K0¬φ ∧K0>)→ K0¬K0¬φ, i.e.

` (¬K0¬φ ∧K0>)→ K0

∼
K0φ

Hence `
∼
K0φ→ K0

∼
K0φ.

We have also ` K0

∼
K0φ→

∼
K0φ, by applying axiom E14.

Theorem 4.65. `
∼
K0φ ∧ ψ|ρ→ (

∼
K0φ ∧ ψ)|(

∼
K0φ ∧ ρ)

Proof. Axiom E18 instantiated with φ =
∼
K0φ gives

` K0

∼
K0φ ∧ ψ|ρ→ (K0

∼
K0φ ∧ ψ)|(K0

∼
K0φ ∧ ρ)

Further, using theorem 4.64, we obtain the wanted result.

Theorem 4.66. `
∼
K0φ→ [α]

∼
K0φ

44

Proof. Axiom E19 instantiated with φ =
∼
K0φ gives

` K0

∼
K0φ→ [α]K0

∼
K0φ

Further, using theorem 4.64, we obtain the wanted result.

Theorem 4.67. `
∼
K0φ→ (KQ> → KQ

∼
K0φ)

Proof. Axiom E20 instantiated with φ =
∼
K0φ gives

` K0

∼
K0φ→ (KQ> → KQK0

∼
K0φ)

Further, using theorem 4.64, we obtain the wanted result.

Theorems referring to contexts

In this section we focus on results that involve the characteristic formulas of finite contexts. We
try to show, in this way, how sensitive our system is with respect to contexts. Further, these
results will be used in proving the completeness for LS

DES .

Theorem 4.68. IfM is a finite context and R 6∈ M then ` cM → ¬cR.

Proof. Because cM = K0(
∨

P∈M cP) ∧ (
∧

P∈M
∼
K0cP) we derive that

` cM → K0(
∨

P∈M
cP)

But from axiom E14 ` K0(
∨

P∈M cP) →
∨

P∈M cP , so ` cM →
∨

P∈M cP . Further theorem
4.37 gives ` cP → ¬cR (as R 6∈ M and P ∈ M implies R 6≡ P) which implies `

∨
P∈M cP →

¬cR. But we proved that ` cM →
∨

P∈M cP . Hence ` cM → ¬cR.

Theorem 4.69. IfM is a finite context then

` (cM ∧ φ|ψ)→ (cM ∧ φ)|(cM ∧ ψ)

Proof. Observe that, by applying axiom E18, we obtain

` (K0θ1 ∧
∼
K0θ2 ∧

∼
K0θ3) ∧ φ|ψ → (

∼
K0θ2 ∧

∼
K0θ3) ∧ (K0θ1 ∧ φ)|(K0θ1 ∧ ψ) (4.2)

If, further, we apply theorem 4.65 once, we obtain

` (
∼
K0θ3 ∧

∼
K0θ2) ∧ (K0θ1 ∧ φ)|(K0θ1 ∧ ψ)→

∼
K0θ3 ∧ (

∼
K0θ2 ∧K0θ1 ∧ φ)|(

∼
K0θ2 ∧K0θ1 ∧ ψ)

Hence

` (K0θ1 ∧
∼
K0θ2 ∧

∼
K0θ3) ∧ φ|ψ →

∼
K0θ3 ∧ (

∼
K0θ2 ∧K0θ1 ∧ φ)|(

∼
K0θ2 ∧K0θ1 ∧ ψ)

If we apply again theorem 4.65 we obtain

`
∼
K0θ3 ∧ (

∼
K0θ2 ∧K0θ1 ∧ φ)|(

∼
K0θ2 ∧K0θ1 ∧ ψ)→

(
∼
K0θ3 ∧

∼
K0θ2 ∧K0θ1 ∧ φ)|(

∼
K0θ3 ∧

∼
K0θ2 ∧K0θ1 ∧ ψ)

hence

45

` (K0θ1 ∧
∼
K0θ2 ∧

∼
K0θ3) ∧ φ|ψ →

(
∼
K0θ3 ∧

∼
K0θ2 ∧K0θ1 ∧ φ)|(

∼
K0θ3 ∧

∼
K0θ2 ∧K0θ1 ∧ ψ)

Because cM = K0(
∨

Q∈M cQ)∧ (
∧

Q∈M
∼
K0cQ), we can use the same idea, applying theorem

4.65 once for each process inM (being finite) and we obtain

` (cM ∧ φ|ψ)→ (cM ∧ φ)|(cM ∧ ψ)

Theorem 4.70. IfM is a finite context then ` (cM ∧ φ|ψ)→ (cM ∧ φ)|ψ

Proof. From the previous theorem, 4.69, we have

` (cM ∧ φ|ψ)→ (cM ∧ φ)|(cM ∧ ψ)

Theorem 4.47 gives

(cM ∧ φ)|(cM ∧ ψ)→ ((cM ∧ φ)|cM) ∧ ((cM ∧ φ)|ψ))

Hence ` (cM ∧ φ|ψ)→ (cM ∧ φ)|ψ.

Theorem 4.71. IfM is a finite context then ` cM → [α]cM

Proof. Observe that, by applying axiom E19, we obtain

` K0θ1 ∧
∼
K0θ2 ∧

∼
K0θ3 → (

∼
K0θ2 ∧

∼
K0θ3) ∧ [α]K0θ1

If, further, we apply theorem 4.66 once, we obtain

` (
∼
K0θ3 ∧

∼
K0θ2) ∧ [α]K0θ1 →

∼
K0θ3 ∧ [α]

∼
K0θ2 ∧ [α]K0θ1, i.e.

` (
∼
K0θ3 ∧

∼
K0θ2) ∧ [α]K0θ1 →

∼
K0θ3 ∧ [α](

∼
K0θ2 ∧K0θ1)

Hence
` (K0θ1 ∧

∼
K0θ2 ∧

∼
K0θ3)→

∼
K0θ3 ∧ [α](

∼
K0θ2 ∧K0θ1)

If we apply again theorem 4.66 we obtain

`
∼
K0θ3 ∧ [a](

∼
K0θ2 ∧K0θ1)→ [α](

∼
K0θ3 ∧

∼
K0θ2 ∧K0θ1)

hence
` (K0θ1 ∧

∼
K0θ2 ∧

∼
K0θ3)→ [α](

∼
K0θ3 ∧

∼
K0θ2 ∧K0θ1)

As cM = K0(
∨

Q∈M cQ)∧ (
∧

Q∈M
∼
K0cQ), we can use the same idea, applying theorem 4.66

once for each process inM (being finite) and we obtain

` cM → [α]cM

Theorem 4.72. IfM is a finite context then ` cM → (KQ> → KQcM)

Proof. Observe that, by applying axiom E20, we obtain

` K0θ1 ∧
∼
K0θ2 ∧

∼
K0θ3 → (

∼
K0θ2 ∧

∼
K0θ3) ∧ (KQ> → KQK0θ1)

If, further, we apply theorem 4.67 once, we obtain

46

` (
∼
K0θ3 ∧

∼
K0θ2) ∧ (KQ> → KQK0θ1)→

∼
K0θ3 ∧ (KQ> → KQ

∼
K0θ2) ∧ (KQ> → KQK0θ1), i.e.

` (
∼
K0θ3 ∧

∼
K0θ2) ∧ (KQ> → KQK0θ1)→

∼
K0θ3 ∧ (KQ> → (KQ

∼
K0θ2 ∧KQK0θ1))

i.e., using 4.57,

` (
∼
K0θ3 ∧

∼
K0θ2) ∧ (KQ> → KQK0θ1)→

∼
K0θ3 ∧ (KQ> → KQ(

∼
K0θ2 ∧K0θ1))

Hence
` (K0θ1 ∧

∼
K0θ2 ∧

∼
K0θ3)→

∼
K0θ3 ∧ (KQ> → KQ(

∼
K0θ2 ∧K0θ1))

If we apply again the theorems 4.67 and 4.57 we obtain

` [
∼
K0θ3 ∧ (KQ> → KQ(

∼
K0θ2 ∧K0θ1))]→ [KQ> → KQ(

∼
K0θ3 ∧

∼
K0θ2 ∧K0θ1)]

hence
` (K0θ1 ∧

∼
K0θ2 ∧

∼
K0θ3)→ [KQ> → KQ(

∼
K0θ3 ∧

∼
K0θ2 ∧K0θ1)]

Because cM = K0(
∨

Q∈M cQ)∧ (
∧

Q∈M
∼
K0cQ), we can use the same idea, applying theorem

4.67 once for each process inM (being finite) and we obtain

` cM → (KQ> → KQcM)

Now we prove a context sensitive version of rule ER1.

Theorem 4.73. IfM is a finite context and ` cM → (φ→ ψ) then ` cM → (φ|ρ→ ψ|ρ).

Proof. ` cM → (φ → ψ) implies ` (cM ∧ φ) → ψ where we apply rule ER1 and obtain
` (cM ∧ φ)|ρ→ ψ|ρ. But theorem 4.70 gives ` (cM ∧ φ|ρ)→ (cM ∧ φ)|ρ. Combining these two
results we obtain
` (cM ∧ φ|ρ)→ ψ|ρ, i.e. ` cM → (φ|ρ→ ψ|ρ).

A context-sensitive version of theorem 4.49 is also available.

Theorem 4.74. If for a finite context M3 P and any decomposition P ≡ Q|R we have

` cM → (cQ → ¬φ) or ` cM → (cR → ¬ψ) then ` cM → (cP → ¬(φ|ψ)).

Proof. If ` cM → (cQ → ¬φ) then we have, equivalently, ` cM ∧ cQ → ¬φ, i.e. ` cQ → (cM →
¬φ), hence ` cQ → ¬(cM ∧ φ).
Similarly ` cM → (cR → ¬ψ) gives ` cR → ¬(cM ∧ ψ).

Hence the hypothesis of the theorem can be rewritten as: for any decomposition P ≡ Q|R
we have

` cQ → ¬(cM ∧ φ) or ` cR → ¬(cM ∧ ψ).

Then we can apply theorem 4.49 and we obtain

` cP → ¬((cM ∧ φ)|(cM ∧ ψ)) (4.3)

But theorem 4.69 entails ` cM ∧ φ|ψ → (cM ∧ φ)|(cM ∧ ψ), hence ` ¬((cM ∧ φ)|(cM ∧ ψ))→
¬(cM ∧ φ|ψ), and applying this result to (4.3), we obtain

` cP → ¬(cM ∧ φ|ψ) that is equivalent with ` cM → (cP → ¬(φ|ψ))

47

Further we prove a context-sensitive version of rule ER2.

Theorem 4.75. If ` cM → φ then ` cM → [α]φ.

Proof. If we apply rule ER2 to ` cM → φ we obtain ` [α](cM → φ). But axiom E8 gives
` [α](cM → φ)→ ([α]cM → [α]φ), hence ` [α]cM → [α]φ. Theorem 4.71 proves that ` cM →
[α]cM which gives further ` cM → [α]φ.

The next result is a context-sensitive variant of rule ER5.

Theorem 4.76. If ` cM → φ then ` cM → (KQ> → KQφ).

Proof. If we apply rule ER5 to ` cM → φ, we obtain

` KQ> → KQ(cM → φ)

But axiom E13 gives further ` KQ(cM → φ) → (KQcM → KQφ). Hence ` KQ> ∧KQcM →
KQφ that is equivalent with

` KQcM → (KQ> → KQφ)

Now, theorem 4.72 ensures that ` cM → (KQ> → KQcM).
Hence ` cM → (KQ> → KQφ).

Theorem 4.77. If ` cM → (KQψ → φ) then ` cM → (KQψ → KQφ).

Proof. We apply theorem 4.76 to ` cM → (KQψ → φ) and we obtain
` cM → (KQ> → KQ(KQψ → φ)), i.e. ` (cM ∧KQ>)→ KQ(KQψ → φ).
But axiom E13 gives ` KQ(KQψ → φ)→ (KQKQψ → KQφ). Now if we use theorem 4.58 we
obtain further

` KQ(KQψ → φ)→ (KQψ → KQφ)

All these proved that ` (cM ∧KQ>)→ (KQψ → KQφ), i.e.

` cM → (KQ> → (KQψ → KQφ))

which is equivalent with ` cM → (KQ> ∧KQψ → KQφ).
Theorem 4.56 proved that ` KQψ → KQ>, result which, combined with the previous one, gives
further ` cM → (KQψ → KQφ).

Theorem 4.78. If Q|R ∈M then ` cM → (cQ|cR → ¬φ) implies ` cM → ¬KQφ.

Proof. Because ` cR → >, rule ER1 gives ` cQ|cR → cQ|> that gives further ` cM → (cQ|cR →
cQ|>). Combining this result with the hypothesis of the theorem, ` cM → (cQ|cR → ¬φ), we
obtain

` (cM ∧ cQ|cR)→ (cQ|> ∧ ¬φ), i.e. ` cM → (cQ|cR → (cQ|> ∧ ¬φ))

But ` (cQ|> ∧ ¬φ)↔ ¬(cQ|> → φ), hence

` cM → (cQ|cR → ¬(cQ|> → φ)) (4.4)

Axiom E14 ensure that ` K0(cQ|> → φ) → (cQ|> → φ) or, equivalently, ` ¬(cQ|> → φ) →
¬K0(cQ|> → φ), that, used in (4.4) gives

` cM → (cQ|cR → ¬K0(cQ|> → φ)) (4.5)

48

But theorem 4.55 gives ` K0>, that can be used in (4.5) providing

` cM → (cQ|cR → (K0> ∧ ¬K0(cQ|> → φ))) (4.6)

The negative introspection, axiom E16, infers

` (K0> ∧ ¬K0(cQ|> → φ))→ K0¬K0(cQ|> → φ) (4.7)

Combining (4.6) and (4.7) we obtain

` cM → (cQ|cR → K0¬K0(cQ|> → φ)) (4.8)

But (4.8) is equivalent with ` (cM ∧ cQ|cR)→ K0¬K0(cQ|> → φ), and because Q|R ∈M, we
can apply rule ER6 and obtain

` cM → ¬K0(KQ> → φ) (4.9)

But from axiom E17 we derive ` KQφ→ K0(KQ> → φ), hence

` ¬K0(KQ> → φ)→ ¬KQφ (4.10)

Combining (4.9) with (4.10) we obtain ` cM → ¬KQφ, q.e.d.

The next result is a context-sensitive version of theorem 4.48.

Theorem 4.79. If ` cM → (φ→ ψ) and ` cM → (ρ→ θ) then ` cM → (φ|ρ→ ψ|θ).

Proof. To ` cM → (φ → ψ) we can apply theorem 4.73 and we obtain ` cM → (φ|ρ → ψ|ρ),
i.e. ` (cM ∧ φ|ρ)→ ψ|ρ which implies

` (cM ∧ φ|ρ)→ (cM ∧ ψ|ρ) (4.11)

The same theorem 4.73 can be applied to ` cM → (ρ→ θ) giving ` cM → (ψ|ρ→ ψ|θ), i.e.

` (cM ∧ ψ|ρ)→ ψ|θ (4.12)

Further, combining (4.11) and (4.12) we derive ` (cM ∧ φ|ψ) → ψ|θ, hence ` cM → (φ|ψ →
ψ|θ).

We prove further a contextual version of theorem 4.50.

Theorem 4.80. If ` cM → (φ→ ψ) then ` cM → (〈α〉φ→ 〈α〉ψ).

Proof. ` cM → (φ→ ψ) implies ` cM → (¬ψ → ¬φ) where, applying theorem 4.75, we obtain
` cM → [α](¬ψ → ¬φ). But axiom E8 gives ` [α](¬ψ → ¬φ) → ([α]¬ψ → [α]¬φ). Hence
` cM → ([α]¬ψ → [α]¬φ), i.e. ` cM → (¬〈α〉ψ → ¬〈α〉φ). Concluding, ` cM → (〈α〉φ →
〈α〉ψ).

The next result is a variant of theorem 4.54, but sensitive to the context.

Theorem 4.81.

If ` cM → (
∨
{cQ | P

α−→ Q} → φ) then ` cM → (cP → [α]φ)

49

Proof. If ` cM → (
∨
{cQ | P

α−→ Q} → φ) then theorem 4.75 gives ` cM → [α](
∨
{cQ | P

α−→
Q} → φ) and further axiom E8 gives

` cM → ([α]
∨
{cQ | P

α−→ Q} → [α]φ)

But theorem 4.53 gives
` cP → [α]

∨
{cQ | P

α−→ Q}

hence ` cM ∧ cP → [α]φ, i.e. ` cM → (cP → [α]φ).

4.9 Completeness of LS
DES against process semantics

Now we will prove the completeness of LS
DES with respect to process semantics. We recall that

completeness ensures that everything that can be derived in the semantics can be proved in the
syntax. In this way we have the possibility to syntactically verify properties.

In the context of a decidable system, as ours is, the completeness provides a powerful tool for
making predictions on the evolution of the system we analyze. Indeed, knowing the state of our
system, we can characterize it syntactically. And because any other state can be characterized,
we can project our problem into the syntax and verify its satisfiability. Hence if our system can
reach that state, we will obtain that the formula is satisfiable and the method will provide also
a minimal model that satisfies it. Thus we made a prediction without investigating (simulating)
the full evolution of the system that might cause, sometimes, unsolvable computational problems
(usually the time is branching generating exponential complexity).

We start by proving a lemma that provides a syntactic characterization of the satisfiability.
The intuition is that, because cP and cM are characteristic formulas, we should have an equiv-
alence between M, P |= φ and ` cM ∧ cP → φ (of course for finite contexts) as both can be
read as the process P in the context M has the property φ.

Lemma 4.82. IfM is a finite context thenM, P |= φ iff ` cM ∧ cP → φ.

Proof. (=⇒) We prove it by induction on the syntactical structure of φ.

• The case φ = 0: M, P |= 0 implies P ≡ 0. But c0 = 0 and ` 0→ 0, hence ` 0∧cM → 0.
This gives ` cM ∧ cP → φ.

• The case φ = >: we have alwaysM, P |= > and ` cP ∧ cM → >, hence ` cP ∧ cM → φ.

• The case φ = φ1 ∧ φ2: M, P |= φ iff M, P |= φ1 andM, P |= φ2.
Further, using the inductive hypothesis, we obtain ` cM ∧ cP → φ1 and ` cM ∧ cP → φ2.
Hence ` cM ∧ cP → (φ1 ∧ φ2), i.e. ` cM ∧ cP → φ.

• The case φ = φ1|φ2: M, P |= φ iff P ≡ Q|R,M, Q |= φ1 andM, R |= φ2.
Using the inductive hypothesis,
` cM ∧ cQ → φ1 and ` cM ∧ cR → φ2, i.e.
` cM → (cQ → φ1) and ` cM → (cR → φ2).
Hence, using theorem 4.79 we obtain ` cM → (cQ|cR → φ1|φ2), i.e. ` cM ∧ cP → φ.

• The case φ = KQ>: M, P |= KQ> iff P ≡ Q|R, iff cP = cQ|cR.
Using rule ER1 we obtain ` cQ|cR → cQ|>, further using axiom E12 ` cQ|cR → KQ>,
i.e. ` cP → KQ>. Hence ` cM ∧ cP → φ.

• The case φ = KQψ: M, P |= KQψ, and because ` KQψ → KQ> (by theorem 4.56),
using the soundness, we obtain thatM, P |= KQ>. Now, we apply the previous case that
gives

` cM ∧ cP → KQ> (4.13)

50

M, P |= KQψ is equivalent with P ≡ Q|R and for any Q|S ∈ M we have M, Q|S |= ψ.
Then the inductive hypothesis gives

for any Q|S ∈M we have ` (cM ∧ cQ|cS)→ ψ (4.14)

Consider now a process Q|S 6∈ M. BecauseM is finite, we apply theorem 4.68 and obtain
` cM → ¬(cQ|cS) or equivalent,
` cM ∧ (cQ|cS)→ ⊥. But ` ⊥ → ψ, hence

for any Q|S 6∈ M we have ` (cM ∧ cQ|cS)→ ψ (4.15)

Now (4.14) and (4.15) together give

for any S ∈M we have ` (cM ∧ cQ|cS)→ ψ (4.16)

i.e., using theorem 4.46,
` (cM ∧ cQ|

∨
S∈M

cS)→ ψ (4.17)

But
` K0(

∨
S∈M

cS)→
∨

S∈M
cS , hence ` cM →

∨
S∈M

cS

Now, we can apply rule ER1 and obtain

` cQ|cM → cQ|
∨

S∈M
cS , hence ` (cQ|cM ∧ cM)→ (cQ|

∨
S∈M

cS ∧ cM)

In this point, using (4.17) we obtain

` (cQ|cM ∧ cM)→ ψ (4.18)

We have ` cM → (> → cM) and ` cM → (cQ → cQ) where from, applying theorem 4.73,
we can derive ` cM → (cQ|> → cQ|cM), i.e. ` cM ∧ cQ|> → cQ|cM and further

` (cM ∧ cQ|>)→ (cM ∧ cQ|cM)

Using this result together with (4.18), we obtain further

` (cM ∧ cQ|>)→ ψ, i.e. ` cM → (cQ|> → ψ)

where we can apply axiom E12 that gives

` cM → (KQ> → ψ)

applying theorem 4.77, we obtain

` cM → (KQ> → KQψ), i.e. ` (cM ∧KQ>)→ KQψ (4.19)

But (4.13) gives

` cM ∧ cP → KQ> where from ` (cM ∧ cP)→ (cM ∧KQ>)

and using this in (4.19),

` (cM ∧ cP)→ KQψ i.e. ` (cM ∧ cP)→ φ.

51

• The case φ = 〈α〉ψ: M, P |= 〈α〉ψ means that exists P ′ ∈ M such that P α−→ P ′ and
M, P ′ |= ψ. Then the inductive hypothesis gives

` cM ∧ cP ′ → ψ

P
α−→ P ′ means that P ≡ α.R|S and P ′ ≡ R|S, so cP = (〈α〉cR ∧ 1)|cS and cP ′ = cR|cS .

So ` cM ∧ cR|cS → ψ, i.e. ` cM → (cR|cS → ψ) and using theorem 4.80

` cM → (〈α〉(cR|cS)→ 〈α〉ψ) (4.20)

theorem 4.47 gives ` cP → 〈α〉cR|cS ∧ 1|cS , hence

` cP → 〈α〉cR|cS (4.21)

Axiom E7 gives
` 〈α〉cR|cS → 〈α〉(cR|cS) (4.22)

Hence, from (4.20), (4.21) and (4.22) we derive

` cM → (cP → 〈α〉ψ), i.e. ` (cM ∧ cP)→ 〈α〉ψ

• The case φ = ¬ψ: we argue by induction on the syntactical structure of ψ.

– the subcase ψ = 0: M, P |= ¬0 means that P 6≡ 0. Then we can apply theorem
4.37 and obtain ` cP → ¬0.
So ` cM ∧ cP → ¬0.

– the subcase ψ = >: is an impossible one as we cannot have M, P |= ⊥.

– the subcase ψ = ψ1∧ψ2: M, P |= ¬(ψ1∧ψ2) is equivalent withM, P |= ¬ψ1∨¬ψ2,
i.e. M, P |= ¬ψ1 or M, P |= ¬ψ2. By the inductive hypothesis, ` cM ∧ cP → ¬ψ1

or ` cM ∧ cP → ¬ψ2, where from we obtain ` cM ∧ cP → ψ

– the subcase ψ = ¬ψ1: M, P |= ¬ψ is equivalent withM, P |= ¬¬ψ1, i.e. M, P |=
ψ1 where we can use the inductive hypothesis ` cM ∧ cP → ψ1 which is equivalent
with ` cM ∧ cP → φ.

– the subcase ψ = ψ1|ψ2: M, P |= ¬(ψ1|ψ2) means that for any parallel decompo-
sition of P ≡ Q|R, M, Q |= ¬ψ1 or M, R |= ¬ψ2. These imply, using the inductive
hypothesis, that for any decomposition P ≡ Q|R we have

` cM → (cQ → ¬ψ1) or ` cM → (cR → ¬ψ2)

then we can apply theorem 4.74 that gives

` cM ∧ cP → ¬ψ.

– the subcase ψ = K0ψ1: M, P |= ¬K0ψ1 means ∃R ∈ M such that M, R |= ¬ψ1.
Using the inductive hypothesis,
` cM ∧ cR → ¬ψ1, i.e. ` cM → (cR|c0 → ¬ψ1). Now theorem 4.78 gives ` cM →
¬K0ψ1, hence ` cM ∧ cP → ¬K0ψ1.

– the subcase ψ = KQψ1, Q 6≡ 0: we distinguish two cases

∗ the sub-subcase ψ1 = >: M, P |= ¬KQ> implies that Q is not a subprocess
of P . Then for any R ∈ M we have P 6≡ Q|R. Then theorem 4.37 gives us
` cQ|R → ¬cP , i.e. ` cQ|cR → ¬cP . From here we can infer

` cQ|
∨

S∈M
cS → ¬cP (4.23)

52

But
` K0(

∨
S∈M

cS)→
∨

S∈M
cS , hence ` cM →

∨
S∈M

cS

Now, we can apply rule ER1 and obtain

` cQ|cM → cQ|
∨

S∈M
cS

In this point, using (4.23) we obtain

` cQ|cM → ¬cP (4.24)

We have ` cM → (> → cM) and ` cM → (cQ → cQ) where from, applying
theorem 4.73, we can derive ` cM → (cQ|> → cQ|cM), i.e. ` cM ∧ cQ|> →
cQ|cM Using this result together with (4.24), we obtain further

` (cM ∧ cQ|>)→ ¬cP , i.e. ` cM ∧ cP → ¬(cQ|>)

and axiom E12 gives
` cM ∧ cP → ¬KQ>.

∗ the sub-subcase ψ1 6= >: we distinguish two more cases M, P |= ¬KQ> and
M, P |= KQ>.
· if M, P |= ¬KQψ1 andM, P |= ¬KQ>, we have
` cM ∧ cP → ¬KQ> (proved before). Moreover, because ` KQψ1 → KQ>
(theorem 4.56) we have
` ¬KQ> → ¬KQψ1 which gives ` cM ∧ cP → ¬KQψ1.
· if M, P |= ¬KQψ1 and M, P |= KQ>, ∃Q|S ∈ M with M, S|Q |= ¬ψ1.

Using the inductive hypothesis we obtain ` cM → (cS |cQ → ¬ψ1) and from
theorem 4.78 that ` cM → ¬KQψ1. Hence ` cM ∧ cP → ¬KQψ1.

– the subcase ψ = 〈α〉ψ1: M, P |= ¬〈α〉ψ1 is equivalent withM, P |= [α]¬ψ1.
If there is a process Q ∈ M such that P α−→ Q, then for any Q ∈ M such that
P

α−→ Q we have M, Q |= ¬ψ1. Using the inductive hypothesis we obtain that for
any Q ∈M such that P α−→ Q we have ` cM ∧ cQ → ¬ψ1, i.e.

` cM ∧
∨
{cQ | P

α−→ Q} → ¬ψ1

or equivalently
` cM → (

∨
{cQ | P

α−→ Q} → ¬ψ1)

Using theorem 4.81, we obtain ` cM ∧ cP → [α]¬ψ1.
If there is no process Q ∈ M such that P α−→ Q then theorem 4.52 gives ` cP →
[α]⊥. But ` ψ1 → >, hence ` [α]⊥ → [α]¬ψ1. So, also in this case we have
` cM ∧ cP → [α]¬ψ1.

(⇐=) Let ` cM ∧ cP → φ. Suppose that M, P 6|= φ. Then M, P |= ¬φ. Using the reversed
implication we obtain ` cM ∧ cP → ¬φ, thus
` cM ∧ cP → ⊥. But from corollary 4.40 we haveM, P |= cM ∧ cP which, using the soundness,
gives M, P |= ⊥ impossible!
Hence M, P |= φ.

We recall the definitions of provability, consistency, satisfiability and validity.

53

Definition 4.11 (Provability and consistency). We say that a formula φ ∈ FS
DES is

provable in LS
DES (or LS

DES-provable for short), if φ can be derived, as a theorem, using the
axioms and the rules of LS

DES . We denote this by ` φ.
We say that a formula φ ∈ FS

DES is consistent in LS
DES (or LS

DES-consistent for short) if ¬φ is
not LS

DES-provable.

Definition 4.12 (Satisfiability and validity). We call a formula φ ∈ FS
DES satisfiable if

there exists a contextM and a process P ∈M such thatM, P |= φ.
We call a formula φ ∈ FS

DES validity if for any context M and any process P ∈ M we have
M, P |= φ. In such a situation we write |= φ.
Given a contextM, we denote byM |= φ the situation when for any P ∈M we haveM, P |= φ.

Remark 4.3. φ is satisfiable iff ¬φ is not a validity, and vice versa, φ is a validity iff ¬φ is not
satisfiable.

Lemma 4.83. If φ is LS
DES-consistent then exists a context M and a process P ∈ M such

that M, P |= φ.

Proof. Suppose that for any context M and any process P ∈ M we do not have M, P |= φ,
i.e. we have M, P |= ¬φ. Hence, for any finite context M and any process P ∈ M we have
M, P |= ¬φ. Using lemma 4.82, we obtain ` cM ∧ cP → ¬φ. Hence ` cM ∧

∨
P∈M cP → ¬φ.

But ` cM →
∨

P∈M cP which, combined with the previous result, implies ` cM → ¬φ.
Thus for each finite contextM we have ` cM → ¬φ. But then for each contextM∈M

act(¬φ)+
L¬φM

we have ` cM → ¬φ. As M
act(¬φ)+
L¬φM is finite, we can infer further `

∨
M∈M

act(¬φ)+
L¬φM

cM → ¬φ.

Now, applying rule ER4, we obtain ` ¬φ. This contradicts with the hypothesis of consistency
of φ. Hence, it exists a contextM and a process P ∈M such thatM, P |= φ.

Theorem 4.84 (Completeness). The LS
DES system is complete with respect to process se-

mantics.

Proof. Suppose that φ is a valid formula with respect to our semantics, but φ is not provable
in the system LS

DES . Then neither is ¬¬φ, so, by definition, ¬φ is LS
DES-consistent. It follows,

from lemma 4.83, that ¬φ is satisfiable with respect to process semantics, contradicting the
validity of φ.

5 Concluding remarks

In this paper we developed Dynamic Epistemic Spatial Logic, LS
DES , which extends Hennessy-

Milner logic with the parallel operator and with epistemic operators. The lasts are meant to
express global properties over contexts. We propose these operators as alternative to the guar-
antee operator of the classical spatial logics, in order to obtaining a logic adequately expressive
and decidable.

Obviously Dynamic Epistemic Spatial Logic is more expressive than guarantee-free Dynamic
Spatial Logic as the first can express global properties. Still our logic is less expressive than
the classic spatial logic. Indeed, using the guarantee operator and the characteristic formulas,
we can express our epistemic operators in classic spatial logic, while guarantee operator cannot
be expressed by using our logic:

KQφ
def
= cQ|> ∧ (¬(cQ|> → φ) .⊥)

54

Still, as remarked in section 4.2, validity and satisfiability in a model can be expressed in
our syntax. Combining this feature with the possibility to characterize processes and finite
contexts, we may argue on utility of our logic in most of the CCS-like applications for which
classic spatial logic was proposed.

In the context of decidability, our sound and complete Hilbert-style axiomatic system pro-
vides a powerful tool for making predictions on the evolution of the concurrent distributed
systems. Knowing the current state or a sub-state of a system, we can characterize it syntac-
tically. And because any other state can be characterized, we can project any prediction-like
problem into the syntax and verify its satisfiability. Hence if the system we considered can reach
the state we check, we will obtain that the formula is satisfiable and this method will provide
also a minimal model. Thus we can make predictions without investigating (simulating) the
full evolution of the system that might cause, sometimes, unsolvable computational problems
(usually the time is branching generating exponential complexity).

The axioms and rules considered are very similar to the classical axioms and rules in epis-
temic logic, and some derivable theorems state meaningful properties of epistemic agents. All
these relates our logic with the classical epistemic/doxastic logics and focus the specifications
on external observers as epistemic agents. This interpretation is consistent with the spirit of
process algebras.

Further researches are to be considered such as adding a Gabbay-Pitts operator [20] for
specify new names and adding location operators. Challenging will be also the perspective of
adding recursion in semantics.

Acknowledgements. We thank to Alexandru Baltag for contributing with valuable comments,
since the beginning, on the construction of this logic. Thanks also to Luca Cardelli for comments
and related discussions. The name structural bisimulation was suggested to us by Gordon
Plotkin.

References

[1] A. Baltag and L.S. Moss. Logics for epistemic programs. Synthese (: Special Section:
Knowledge, Rationality and Action).Editors: J. Symons, J. Hintikka. Special Section Ed-
itor: W. van der Hoek. Springer Science+Business Media B.V. ISSN: 0039-7857, 139
(2):165–224, 2004.

[2] A. Baltag, L.S. Moss, and S. Solecki. The logic of public announcements. common knowl-
edge and private suspicions. CWI Technical Report SEN-R9922, 1999.

[3] J. A. Bergstra. Handbook of Process Algebra. Elsevier Science Inc., New York, NY, USA,
2001.

[4] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal logic. Cambridge University
Press, New York, NY, USA, 2001.

[5] Luis Caires. Behavioral and spatial properties in a logic for the pi-calculus. In Igor Waluki-
wicz, editor, Proc. of Foundations of Software Science and Computation Structures2004,
Lecture Notes in Computer Science, Springer-Verlag, vol:2987, 2004.

[6] Luis Caires and Luca Cardelli. A spatial logic for concurrency (part ii). In Proceedings of
CONCUR’2002, Lecture Notes in Computer Science, Springer-Verlag, vol:2421, 2002.

[7] Luis Caires and Luca Cardelli. A spatial logic for concurrency (part i). Information and
Computation, Vol: 186/2:194–235, November 2003.

55

[8] Luis Caires and Etienne Lozes. Elimination of quantifiers and decidability in spatial logics
for concurrency. In Proceedings of CONCUR’2004, Lecture Notes in Computer Science,
Springer-Verlag, vol:3170, 2004.

[9] Cristiano Calcagno, Luca Cardelli, and Andrew D. Gordon. Deciding validity in a spatial
logic for trees. In Proceedings of the ACM Workshop on Types in Language Design and
Implementation, pages 62–73, 2003.

[10] Luca Cardelli. Bioware languages. In: Andrew Herbert, Karen Sprck Jones (Eds.): Com-
puter Systems: Theory, Technology, and Applications - A Tribute to Roger Needham,
Monographs in Computer Science. Springer, ISBN 0-387-20170-X.:59–65., 2004.

[11] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Foundations of Software
Science and Computation Structures: First International Conference, FOSSACS ’98.
Springer-Verlag, Berlin Germany, 1998.

[12] Luca Cardelli and Andrew D. Gordon. Ambient logic. To appear in Mathematical Struc-
tures in Computer Science, 2003.

[13] Witold Charatonik, Andrew D. Gordon, and Jean-Marc Talbot. Finite-control mobile
ambients. In ESOP ’02: Proceedings of the 11th European Symposium on Programming
Languages and Systems, pages 295–313. Springer-Verlag, 2002.

[14] Witold Charatonik and Jean-Marc Talbot. The decidability of model checking mobile
ambients. Proceedings of the 15th Annual Conference of the European Association for
Computer Science Logic, Springer-Verlag, 2142 of Lecture Notes in Computer Science:339–
354, 2001.

[15] B. Chellas. Modal logic. An introduction, volume Cambridge UP, Cambridge. 1980.

[16] M. Dam. Proof systems for π-calculus. In de Queiroz, editor, Logic for Concurrency and
Synchronisation, Studies in Logic and Computation. Oxford University Press. To appear.

[17] M. Dam. Relevance logic and concurrent composition. In Proceedings of Third Annual
Symposium on Logic in Computer Science, Edinburgh, Scotland, July 1988. IEEE Com-
puter Society., pages 178–185.

[18] M. Dam. Model checking mobile processes. Information and Computation, vol:129(1):35–
51, 1996.

[19] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning about
Knowledge. MIT Press, 1995.

[20] M. Gabbay and A. Pitts. A new approach to abstract syntax involving binders. To appear
in Formal Aspects of Computing.

[21] R. Goldblatt. Logics of time and computation, volume CSLI, Stanford. 1987.

[22] J. Y. Halpern and Y. Moses. A guide to completeness and complexity for modal logics of
knowledge and belief. Artificial Intelligence, 54:319–379, 1992.

[23] D Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.

[24] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. JACM,
vol: 32(1):137–161, 1985.

[25] G. E. Hughes and M. J. Cresswell. A new introduction to modal logic, volume Routledge,
London. 1996.

56

[26] W. Groeneveld J. Gerbrandy. Reasoning about information change. Journal of Logic,
Language and Information, 6:146–169, 1997.

[27] R. Mardare and C. Priami. A logical approach to security in the context of ambient
calculus. ENTCS, vol. 99, 2004.

[28] R. Mardare, C. Priami, P. Quaglia, and A. Vagin. Model checking biological systems de-
scribed using ambient calculus. Proceedings of CMSB04, Lecture Notes in BioInformatics.
Berlin: Springer-Verlag, 3082: 3:85– 10, 2005.

[29] R. Milner, J. Parrow, and D. Walker. Modal logics for mobile processes. Theoretical
Computer Science, vol:114:149–171, 1993.

[30] Gordon D. Plotkin. A structural approach to operational semantics. Technical Report FN-
19, DAIMI, Department of Computer Science, University of Aarhus, Aarhus, Denmark,
43, September 1981.

[31] Colin Stirling. Modal and temporal properties of processes. Springer-Verlag New York, Inc.,
New York, NY, USA, 2001.

[32] J. F. A. K. van Benthem. Games in dynamic epistemic logic. Bulletin of Economic
Research, Los Altos, 53(4):219–248, 2001.

[33] J. F. A. K. van Benthem. Logic for information update. In Proceedings of TARK01, Los
Altos, 2001.

[34] H. van Ditmarsch. Knowledge games. Bulletin of Economic Research, 53(4):249–273, 2001.

57

