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1. Introduction

Consider the following model of heat conduction in a material with memory, as proposed in [11],
Section 5.3. Let θ(t, x) denote the temperature field at time t, for x in a bounded three dimensional
body G with smooth boundary ∂G. Let ε(t, x) the density of stored energy and let q(t, x) denote
the heat flux. Suppose that the flux obeys Fourier’s law (all physical constants will be normalized
to one in this introduction):

q(t, x) = ∇θ(t, x).

The stored energy, however, follows the temperature only with some delay

ε(t, x) =
∫ t

−∞
dm(t− s)θ(s)

where m is a creep function

m(t) = m0 +
∫ t

0

m1(s) ds
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with m0 ≥ 0 and m1 locally integrable, nonnegative and decreasing. In our example we let the
instantaneous heat capacity m0 = 0, and we choose

m1(t) =
tρ−1

Γ(ρ)
e−t

with some ρ ∈ (0, 1/2). Assume that there exists a distributed random heat source g(t, x) which
we model as a stochastic process. For this purpose we introduce a cylindrical process W defined on
a probability space (Ω,F, P) taking values in a separable Hilbert space U , mediated by a Hilbert
Schmidt operator Φ : U → H = L2(G), and we let g(t, x) = [ΦẆ ](t, x). Energy conservation implies
then

∂

∂t
ε(t, x) = div q(t, x) + [ΦẆ ](t, x).

Combining all these equations we arrive at

∂

∂t

∫ t

−∞
m1(t− s)θ(s, x) = ∆θ(x, s) + [ΦẆ ](t, x)

with suitable boundary conditions, e.g. Neumann conditions, if the boundary is heat insulated.

In this paper we shall consider the following abstract stochastic Volterra equation on a Hilbert
space H

(1.1)


d
dt

t∫
−∞

a(t− s)u(s) ds = Au(t) + Φ(t)Ẇ (t) t ≥ 0,

u(t) = u0(t) t ≤ 0.

Although more general assumptions may be given, compare Assumption 4.1, here we focus on
the previous example. The kernel a(t) = m1(t) is completely monotone with a ∈ L1(0,∞) and
a(0+) = +∞. Furthermore, A is selfadjoint negative definite, and for some real constants γ ≥ 0,
0 ≤ β < 1 the operator (−A)−γ−β/2 is Hilbert-Schmidt on H; we fix Φ(t) ≡ Φ = (−A)−γR, where
R : U → H is a bounded operator.

Under the assumption of complete monotonicity of the kernel, a semigroup approach to a type
of abstract integro-differential equations encountered in linear viscoelasticity was introduced in [5].
The idea to utilize this setting for stochastic equations is due to P. Clément, and a stochastic scalar
equation analogous to (1.1) was first investigated in [8]. We extend the relevant machinery to
the Hilbert space valued case and show that equation (1.1) is equivalent to an abstract stochastic
evolution equation in a (different) Hilbert space X

(1.2)

{
dv(t) = Bv(t) dt + (I −B)PΦ(t) dW (t), t > 0,

v(0) = v0 ∈ X.

To relate this system to Equation (1.1), v0 is given suitably in terms of u0, and the solution u(t) is
recovered from the state v(t) by an operator Jv(t) = u(t).

Under the special assumptions introduced above, the space operator B is the generator of an
analytic semigroup on X, and P is a linear operator from H into the interpolation space Xθ, for
arbitrary θ < 2−ρ

2 . It is now a consequence of the readily available theory of stochastic differential
equations with generators of analytic semigroups [4] that there exists a unique solution v(t) to (1.2),
and it is a mean square continuous process with values in the interpolation space Xη for any η < 1−ρ

2 .
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Although J is unbounded on the state space X, it is bounded on interpolation spaces J : Xη → Hµ

with 1−2η
1−2µ < 1−ρ. Therefore, we arrive at the following result concerning the existence of a solution

to problem (1.1), whose statement will be given in more generality in Theorem 3.7.

Theorem 1.1. Let us fix the above assumptions:
a(t) = tρ−1

Γ[ρ] e
−t with some ρ ∈ (0, 1/2), Φ(t) ≡ Φ = (−A)−γR, u0 ≡ 0.

If v(t) denotes the mild solution of (1.2), the process

(1.3) u(t) =

{
Jv(t), t ≥ 0,

u0(t), t ≤ 0.

is a weak solution to problem (1.1).

As a corollary to Lemma 2.29 and Theorem 3.3, we obtain the following result concerning reg-
ularity of the solution u(t). In the statement below, L2

F(0,∞;Xη; 1) denotes the space of adapted
processes on R+ with values in Xη that are mean square integrable with respect to the measure
e−tdt on [0,∞).

Corollary 1.2. Since v(t) ∈ L2
F(0,∞;Xη; 1) for η < 1−ρ

2 , the solution u(t) of (1.1) belongs to
L2

F(0,∞;Hµ; 1) for µ < 1−2ρ
2−2ρ .

Finally we analyze the longtime behaviour of the solution v(t) of (1.2). The following result is
proven, again in greater generality, in Theorem 4.5.

Theorem 1.3. Assume that the assumptions of Theorem 1.1 holds, and let 0 ≤ β < 1 be such
that (−A)−γ−β/2 is an Hilbert-Schmidt operator on H. Then there exists (at least) one invariant
measure for equation (1.2) which is concentrated on the space Xη for arbitrary η < (1− β) 1−ρ

2 .

It is natural that we read this result in terms of (1.1). Let v̄ be a stationary solution to problem
(1.2); then we want to apply the operator J to v̄ in order to get the corresponding solution ū of
(1.1). It happens that this is possible if v̄ is suitably regular, which in turn becomes an assumption
on β (but notice that we may control β – compare the assumptions in previous theorem – by means
of γ).

Corollary 1.4. With the notation of the theorem above, assume that β < 1−2ρ
1−ρ . Let v̄ be the

stationary solution of (1.2) and define the stationary solution u(t) ≡ ū = Jv̄ as in Theorem 1.1.
Then ū is a square integrable random variable in Hµ for some µ > 0.

With the highly developed theory on Volterra equations (e.g. [11], [12]) available, semigroup
methods are by no means the only approach to tackle this problem. However, the theory of stochastic
processes governed by analytic semigroups is rich and convenient ([4]), and it is interesting to note
that this tool can be applied to our problem with only a marginal loss of regularity. From a
philosophical viewpoint, it seems satisfactory that the system may be associated with an internal
state evolving as a Markov process. More important, we expect that the state space approach will be
useful for more detailed investigations on the dynamics of semilinear modifications of the problem.

This paper is organized as follows: Section 2 is purely deterministic and developes the semigroup
setting. In particular, all questions of regularity (in terms of interpolation spaces) are concentrated
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in this section. In Section 3 we prove the existence and uniqueness of solutions to the stochastic
equation, while Section 4 is devoted to the investigation of the asymptotic stationary process.

Acknowledgement: This work was begun during a visit of both authors to the Technical
University of Delft. Parts of this work were done during visits of S. Bonaccorsi to Graz, and of
W. Desch to Trento. It is our pleasure to thank the Technical University of Delft, the University
of Trento and the Country Government of Styria for their kind hospitality and generous support of
these visits. In particular we thank P. Clément for many stimulating discussions.

2. A semigroup setting for integral equations

2.1. A deterministic integral equation in Hilbert space. In this section we consider the fol-
lowing Volterra integro-differential equation in a Hilbert space:

(2.1)

{
d
dt

∫ t

−∞ a(t− s)u(s) ds = Au(t) + f(t), t ≥ 0
u(t) = u0(t) t < 0.

Here u takes values in a separable Hilbert space (H, | · |H). We make the following assumptions:

Assumption 2.1. A : D(A) ⊂ H → H is a linear operator such that there is a constant M > 0
and an angle τ ∈ (0, π

2 ) such that all s ∈ Σπ/2+τ are contained in the resolvent set of A with
‖R(s,A)‖ ≤ M

|s| . Here R(s,A) = (s−A)−1, and Σπ/2+τ is the closure of the sector

Σπ/2+τ =
{

z ∈ C \ {0} | | arg(z)| < π

2
+ τ
}

.

Thus A generates an analytic semigroup etA. Interpolation and extrapolation spaces of H will
always be constructed by interpolation or extrapolation with respect to A.

Assumption 2.2. The convolution kernel a : (0,∞) → R is completely monotone, with a(0+) = ∞
and

∫ 1

0
a(s) ds < ∞.

In particular, by Bernstein’s Theorem there exists a measure ν on [0,∞) such that

(2.2) a(t) =
∫

[0,∞)

e−κt ν(dκ).

¿From Assumption 2.2 we infer that ν([0,∞)) = a(0+) = ∞ while for s > 0

â(s) =
∫

[0,∞)

1
s + κ

ν(dκ) < ∞.

Here â denotes the Laplace transform of a.
We will also require assumptions on the singularity of a at 0+, which will be given in terms of

the following quantities:

Definition 2.3.

α(a) = sup
{

ρ ∈ (0, 1) |
∫ ∞

c

tρ−2 1
â(t)

dt < ∞
}

,

δ(a) = inf
{

ρ ∈ (0, 1) |
∫ c

0

tρ−1a(t) dt < ∞
}

.

Here c > 0. The definition is, in fact, independent of the choice of c.
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The definition of α(a) is equivalent to Definition 3.2.2. in Homan [8], c.f. Clément and Desch [2].
If a(t) = tρ−1, then α(a) = δ(a) = 1 − ρ. It is always true that α(a) ≤ δ(a). One can, however,
construct completely monotone kernels such that a strict inequality holds: α(a) < δ(a).

Assumption 2.4. α(a) > 1
2 .

Assumption 2.5. The forcing function f is in L∞(0,∞;H−σ) with some σ ∈ (0, 1
2 ).

(Further restrictions on σ will follow later. For the meaning of H−σ see the following subsection.)

Assumption 2.6. The initial function u0 : (−∞, 0] → H is measurable and satisfies one or several
of the following conditions:

(a) There exist some M,ω > 0 such that |u0(s)|H ≤ Meωs for all s ≤ 0.
(b) Moreover, for some (hence all) c > 0∫ c

0

a′′(t)|u0(−t)− u0(0)|2H dt < ∞,

and u0(0) ∈ Hγ for some γ ∈ (0, 1
2 ).

(c) Moreover, u0(0) ∈ D(A) and∫ ∞

0

(−a′(t))(u0(−t)− u0(0)) dt + Au0(0) = 0.

(Notice: Condition (c) includes Condition (b), which in turn includes Condition (a).)

(Notice that the positivity of ω in Assumption 2.6(a) means that u decays exponentially as
s → −∞. We remark also that the integral in (c) exists if (b) holds. Further restrictions on γ will
follow later. For the meaning of Hγ see the following subsection.)

With these assumptions we can prove existence and uniqueness of a solution to (2.1) in the
following sense:

Definition 2.7. By a weak solution to (2.1) we mean a function u : (−∞,∞) → H such that
(a) u(t) = u0(t) for t ≤ 0.
(b) u is continuous on [0,∞).
(c) For all ζ ∈ D(A∗) and all t > 0, the following equation holds∫ t

−∞
〈a(t− s)u(s) ds, ζ〉H = 〈ū, ζ〉H +

∫ t

0

〈u(s), A∗ζ〉H ds +
∫ t

0

〈f(s), ζ〉H ds,(2.3)

where ū =
∫ 0

−∞
a(−s)u(s) ds.

With suitable regularity conditions we can establish existence and uniqueness of weak solutions:

Theorem 2.8. Suppose that Assumptions 2.1, 2.2 hold. Let α(a) and δ(a) be defined by Definition
2.3. Let γ, σ, µ ∈ (0, 1

2 ) and suppose that Assumption 2.5 holds with σ, and Assumption 2.6(b) holds
with γ. Moreover, suppose that δ(a)(1− 2γ) < α(a)(1− 2µ).
Then there exists a unique weak solution u : R → Hµ of (2.1).

Finally we state a theorem about regularity of the solution, dependent of the regularity of the
forcing term. For simplicity we state the result with initial function u0 = 0.
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Theorem 2.9. Suppose that Assumptions 2.1, 2.2 hold. Let u0 = 0. Let α(a) and δ(a) be defined by
Definition 2.3. Let σ, µ ∈ (0, 1

2 ) and suppose that f ∈ Lp(0,∞, X−σ) with some p ∈ [1,∞). Choose
any τ < α(a)(1− σ − µ). Let
Then a mild solution u of (2.1) can be defined by approximation: Let fn ∈ L∞(0,∞, X−σ) and
fn → f in Lp(0,∞,H−σ). Let un be the weak solution of (2.1) with fn instead of f . Then un

converges to some u in the following function spaces:
(a) If p ∈ [1, 1

τ ), then u ∈ Lq(0, T, Hµ) for all q ∈ [1, p
1−τp ).

(b) If p = 1
τ , then u ∈ Lq(0, T, Hµ) for all q ∈ [1,∞).

(c) If p ∈ ( 1
τ ,∞), then u ∈ Cτ−1/p([0, T ],Hµ).

These remainder of this section will be devoted to the technical details for proving the two
theorems.

2.2. Intermediate spaces. Much of our work relies on the machinery of analytic semigroups and
interpolation spaces, therefore we introduce the basic notations:

Let (X, ‖·‖) be a Hilbert space and B be an operator, such that for some ω > 0 the operator B−ω
is a sectorial operator on X of negative type. Therefore, B−ω is invertible with (B−ω)−1 ∈ L(X).
On the domains D(Bn) we define the n-norm

‖x‖n := ‖(B − ω)nx‖,
and call Xn := (D(Bn), ‖ · ‖n) the Sobolev space of order n associated to B. We also define the
extrapolation space X−1 as the completion of X under the norm ‖x‖−1 = ‖(B − ω)−1x‖. The
operator B−1 : X → X−1 is the unique extension of B : X1 → X such that B−1 − ω is an isometry
from X onto X−1.

Definition 2.10. Let θ ∈ (0, 1).
(a) By Xθ we denote the real interpolation space (X, X1)(θ,2) between X and X1 = D(B).
(b) By Xθ−1 we denote the real interpolation space (X−1, X)(θ,2) between the extrapolation space

X−1 and X.
By Bθ we denote the restriction of B as an operator from D(Bθ) = (X1, X2)(θ,2) into Xθ.

Remark 2.11. Let x ∈ X and θ ∈ (0, 1). Then x ∈ Xθ if either one of the following equivalent
norms is finite:

[[x]]2θ =
∫ ∞

0

t1−2θ‖(B − ω)e−ωtetBx‖2 dt,

‖x‖2
θ =

∫ ∞

c

t2θ−1‖(B − ω)R(t, B)x‖2 dt.

(The constant c > ω in the second integral can be taken arbitrary.)

Remark 2.12. Let θ ∈ (0, 1). The operator Bθ is the generator of an analytic semigroup etBθ on
Xθ. In fact, etBθ is the restriction of etB to the invariant subspace Xθ.

(These results, and more information on interpolation spaces and analytic semigroups, can be
found in Lunardi [9], Chapter 2.2.)

Lemma 2.13. Let θ ∈ (0, 1). Then

Xθ = (X−1, X1)((θ+1)/2,2),

Xθ−1 = (X−1, X1)(θ/2,2).
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Proof. Let x ∈ D(B). Then

(2.4) x = (t− ω)[1 + (ω − t)(t−B)−1](ω −B)−1x + (t−B)−1(ω −B)x,

therefore with a suitable constant M ,

‖x‖ ≤ M

[
(t− ω)‖(ω −B)−1x‖+

1
t− ω

‖(ω −B)x‖
]

= M

[
(t− ω)‖x‖−1 +

1
t− ω

‖x‖1

]
.

Taking t − ω =
√
‖x‖1/‖x‖−1 we obtain ‖x‖ ≤ 2M

√
‖x‖−1‖x‖1. This is condition J from the

reiteration theorem, and we obtain

(X, X1)(θ,2) ⊂ (X−1, X1)( 1
2 (1−θ)+1θ,2) = (X−1, X1)( 1+θ

2 ,2),

(X−1, X)(θ,2) ⊂ (X−1, X1)(0(1−θ)+ 1
2 θ,2) = (X−1, X1)( θ

2 ,2).

On the other hand, decompose any x ∈ X according to (2.4) (replacing B by B−1 wherever neces-
sary). Then

‖(t− ω)[1 + (ω − t)(t−B)−1](ω −B)−1x‖1 ≤ Mt‖(ω −B)−1x‖1 = Mt‖x‖,

‖(t−B)−1(ω −B−1)x‖−1 ≤
M

t− ω
‖(ω −B−1)x‖−1 =

M

t− ω
‖x‖.

Now let s > (ω + 1)2 and put t =
√

s to see that

s−1/2‖(t− ω)[1 + (ω − t)(t−B)−1](ω −B)−1x‖1 + ‖(t−B)−1(ω −B−1)x‖−1 ≤ Ms1/2.

Consequently, condition K from the reiteration theorem is satisfied and

(X, X1)(θ,2) ⊃ (X−1, X1)( 1
2 (1−θ)+1θ,2) = (X−1, X1)( 1+θ

2 ,2),

(X−1, X)(θ,2) ⊃ (X−1, X1)(0(1−θ)+ 1
2 θ,2) = (X−1, X1)( θ

2 ,2).

Lemma 2.14. Let −1 ≤ θ < µ < η ≤ 1 with θ, η, µ 6= 0. Then

Xµ = (Xθ, Xη)(γ,2) with γ =
µ− θ

η − θ
.

Proof. Using Lemma 2.13 we see that this is just a straightforward application of the reiteration
theorem of interpolation.

Lemma 2.15. Let J0 : D(B) → H be an operator, relatively bounded with respect to B. (Notice
that then J0R(s,B) is a bounded linear operator from X to H.) Suppose that for some c > ω and
some η ∈ (0, 1) ∫ ∞

c

s1−2η‖J0R(s,B)‖2
X→H ds < ∞.

Then J0 admits a continuous extension as an operator J : Xη → H. Moreover, for x ∈ Xη we have
Jx = limt→∞ tJ0R(t, B)x.
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Proof. We show that tJ0R(t, B) is uniformly bounded for t > 2ω as an operator from Xη into H.
The remainder follows from standard arguments. Thus, let x ∈ Xη. Notice that

d

dt
(t− ω)R(t, B)x = R(t, B)x− (t− ω)R(t, B)2x = (ω −B)R(t, B)2x.

Thus, for t > 2ω

1
2
|tJ0R(t, B)x|H ≤ |(t− ω)J0R(t, B)x|H

=|(c− ω)J0R(c,B)x +
∫ t

c

J0R(s,B)(ω −B)R(s,B)x ds|H

≤(c− ω)‖J0R(s,B)‖ ‖x‖X

+
∫ ∞

c

s1/2−η‖J0R(s,B)‖X→H sη−1/2‖(ω −B)R(s,B)x‖X ds

≤(c− ω)‖J0R(s,B)‖X→H ‖x‖X

+
[∫ ∞

c

s1−2η‖J0R(s,B)‖2
X→H ds

]1/2 [∫ ∞

c

s2η−1‖(ω −B)R(s,B)x‖2
X ds

]1/2

≤M(‖x‖X +
[∫ ∞

c

s2η−1‖(ω −B)R(s,B)x‖2
X ds

]1/2

) ≤ M1‖x‖η

with suitable constants M,M1.

2.3. Setting up the infinitesimal generator. We return now to Equation (2.1). Using Bern-
stein’s Theorem (2.2) we rewrite formally∫ t

−∞
a(t− s)u(s) ds =

∫ t

−∞

∫
[0,∞)

e−κ(t−s) ν(dκ) u(s)ds =
∫

[0,∞)

v(t, κ) ν(dκ)

with

(2.5) v(t, κ) =
∫ t

−∞
e−κ(t−s)u(s) ds.

Formal differentiation yields

(2.6)
∂

∂t
v(t, κ) = −κv(t, κ) + u(t),

while the integral equation (2.1) can be rewritten

(2.7)
∫

[0,∞)

(−κv(t, κ) + u(t)) ν(dκ) = Au(t) + f(t).

As an initial condition we obtain

(2.8) v(0, κ) =
∫ 0

−∞
eκsu0(s) ds.

In our setting, the function v(t, ·) will be considered the state of the system, contained in a suitable
function space. Equation (2.6) is a differential equation for the state, so it will be used to set up
an infinitesimal generator of a semigroup. For the homogeneous case (f = 0), the rewritten integral
equation (2.7) will contribute to the definition of the domain of the generator.
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Definition 2.16. For a Borel measurable function x̃ : [0,∞) → H we consider the seminorm (finite
or infinite):

‖x̃‖2
X :=

∫
[0,∞)

(κ + 1)|x̃(κ)|2H ν(dκ)

and the function space

X̃ := {x̃ : [0,∞) → H,measurable | ‖x̃‖X < ∞} .

The state space X consists of all equivalence classes in X̃ with respect to equality almost everywhere
in ν.

Remark 2.17.
(a) In the sequel, as usual, we will not distinguish between functions and their equivalence classes.
(b) For all x ∈ X, the integral

∫
[0,∞)

|x(κ)|H ν(dκ) is finite.

Proof. We use the Cauchy Schwarz Inequality:∫
[0,∞)

|x(κ)|H ν(dκ) =
∫

[0,∞)

(κ + 1)−1/2(κ + 1)1/2|x(κ)|H ν(dκ)

≤

[∫
[0,∞)

(κ + 1)−1 ν(dκ)

]1/2 [∫
[0,∞)

(κ + 1)|x(κ)|2H ν(dκ)

]1/2

.

Definition 2.18. We define a linear operator J0 : D(J0) ⊂ X → X by

D(J0) = {x ∈ X | (∃u ∈ H) : −κx(κ) + u ∈ X} ,

J0x = u as above.

Remark 2.19. J0 is well-defined as a single valued operator.

Proof. Suppose there are u1, u2 ∈ H such that both, −κx + u1 and −κx + u2 are contained in X.
Then the constant function u1 − u2 is contained in X. However, if u1 6= u2, then

‖u1 − u2‖2
X =

∫
[0,∞)

(κ + 1)|u1 − u2|2H ν(dκ) = ∞

since the measure ν is infinite on [0,∞).

Definition 2.20. We define a linear operator B : D(B) ⊂ X → X by

D(B) =

{
x ∈ D(J0) | J0x ∈ D(A),

∫
[0,∞)

(−κx(κ) + J0x) ν(dκ) = AJ0x

}
,

(Bx)(κ) = −κx(κ) + J0x.

By this definition, the problem (2.6), (2.7) for the homogeneous case f = 0 is rewritten as

d

dt
v(t, ·) = Bv(t, ·).

In fact, we will see in the next subsection, that B is the generator of an analytic semigroup, so that
a weak solution of the homogeneous problem can be obtained by semigroup methods.
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To take care of the inhomogeneous problem, compare the rewritten integral equation (2.7) with
the definition of D(B):∫

[0,∞)

(−κv(t, κ) + u(t)) ν(dκ) = Au(t) + f(t),∫
[0,∞)

(−κv(t, κ) + J0v(t)) ν(dκ) = Au(t) if v(t) ∈ D(B).

We see that the forcing function does not enter simply as an additive perturbation, but it acts by
shifting the domain of the generator. To deal with this situation, we use a standard procedure from
control theory. Our aim is to rewrite (2.7) in the form

(2.9)
d

dt
v(t, ·) = B(v(t, ·)− Pf(t)) + Pf(t).

This works out formally with the following

Definition 2.21. We define an operator P : H−1 → X by

(Pf)(κ) =
1

1 + κ
R(â(1), A)f.

The following lemma guarantees that P is suitable to rewrite (2.7) in the form (2.9):

Lemma 2.22. Let f ∈ H−1, x ∈ X. Then

(a) Pf ∈ D(J0) with J0Pf = R(â(1), A)f .
(b) −κ(Pf)(κ) + J0Pf − (Pf)(κ) = 0.
(c)

∫
[0,∞)

(−κ(Pf)(κ) + J0Pf) ν(dκ) = AJ0Pf + f .
(d) x − Pf ∈ D(B) iff x ∈ D(J0) and

∫
[0,∞)

(−κx(κ) + J0(x)) ν(dκ) = AJ0x + f . In this case
−κx + J0x = [B(x− Pf) + Pf ](κ).

Proof. It is easily seen that ‖Pf‖X < ∞. Moreover

− κ(Pf)(κ) + R(â(1), A)f = − κ

1 + κ
R(â(1), A)f + R(â(1), A)f

=
1

1 + κ
R(â(1), A)f = (Pf)(κ).

Therefore, J0Pf = R(â(1), A)f , which implies (a), and (b) holds. To prove (c) we compute (using
(a) and (b)) ∫

[0,∞)

(−κ(Pf)(κ) + J0Pf) ν(dκ)−AJ0Pf

=
∫

[0,∞)

Pf(κ) ν(dκ)−AJ0Pf

=
∫

[0,∞)

1
κ + 1

R(â(1), A)f ν(dκ)−AR(â(1), A)f

=â(1)R(â(1), A)f −AR(â(1), A)f = f.

Finally, (d) is a straightforward application of (a), (b), (c).
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2.4. Generation of a semigroup and estimates on the resolvent. The state space and the
generator B look very large and complicated. However, the resolvent (s − B)−1 can be computed
explicitely in terms of the resolvent of A. This will finally allow to prove that B generates a semigroup
and to characterize the interpolation spaces Xθ with respect to B.

Lemma 2.23. Let s ∈ Σπ/2+τ . Then sâ(s) ∈ Σπ/2+τ . Moreover, s lies in the resolvent set of B.
The resolvent R(s,B) = (s−B)−1 is given by

[R(s,B)x](κ) =
1

κ + s
[x(κ) + u] , with(2.10)

u = J0R(s,B)x = R(sâ(s), A)
∫

[0,∞)

κ

κ + s
x(κ) ν(dκ).(2.11)

Proof. Let s ∈ Σπ/2+τ . Without loss of generality let arg(s) ≥ 0. Since â(s) =
∫
[0,∞)

1
s+κ ν(dκ), we

have that − arg(s) < arg(â(s)) < 0. Consequently, sâ(s) ∈ Σπ/2+τ and R(sâ(s), A) = (sâ(s)−A)−1

exists as a bounded operator on H. We have to solve y = R(s,B)x, i.e., (s − B)y = x and find
u = J0y. The former is equivalent to

sy(κ) + κy(κ)− u = x(κ),(2.12) ∫
[0,∞)

(−κy(κ) + u) ν(dκ) = Au.(2.13)

¿From (2.12) we obtain immediately (2.10). Inserting this expression into (2.13) we obtain

Au =
∫

[0,∞)

[
−κ

(
1

s + κ
(x(κ) + u)

)
+ u

]
ν(dκ)

=
∫

[0,∞)

−κ

s + κ
x(κ) ν(dκ) +

∫
[0,∞)

s

s + κ
ν(dκ)u

=
∫

[0,∞)

−κ

s + κ
x(κ) ν(dκ) + sâ(s)u.

¿From this we infer (2.11).

Our next aim is to get estimates on the resolvent.

Lemma 2.24. For each ε > 0 there exists M1 > 0, such that for all s ∈ Σπ/2+τ with |s| ≥ ε we
have the estimate

(2.14)
∫

[0,∞)

κ + 1
|κ + s|2

ν(dκ) ≤ M1|â(s)|.

Proof. Without loss of generality we assume ε < 1. Let s = ρ + iσ. First let σ = 0, then s = ρ ≥ ε.
This implies that

κ + 1
|κ + s|2

≤ 1
ε

κ + s

|κ + s|2
=

1
ε

1
κ + s

.

Taking integrals we obtain (2.14). Now let (without loss of generality) σ > 0. Notice that

â(s) =
∫

[0,∞)

κ + ρ

|κ + s|2
ν(dκ)− i

∫
[0,∞)

σ

|κ + s|2
ν(dκ).
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Thus

<â(s) =
∫

[0,∞)

ρ− ε/2
|κ + s|2

ν(dκ) +
∫

[0,∞)

κ + ε/2
|κ + s|2

ν(dκ)

=
ρ− ε/2

σ
|=â(s)|+ ε

2

∫
[0,∞)

2κ/ε + 1
|κ + s|2

ν(dκ).

Thus

(2.15) <â(s) ≥ ρ− ε/2
σ

|=â(s)|+ ε

2

∫
[0,∞)

κ + 1
|κ + s|2

ν(dκ).

We distinguish three cases: If ρ ≥ ε/2, (2.15) yields immediately

ε

2

∫
[0,∞)

κ + 1
|κ + s|2

ν(dκ) ≤ <â(s) ≤ |â(s)|.

If |ρ| ≤ ε/2, then |σ| ≥ ε/2 since |s| ≥ ε. Thus σ−1|ρ− ε/2| ≤ 2 and (2.15) yields

ε

2

∫
[0,∞)

κ + 1
|κ + s|2

ν(dκ) ≤ <â(s) + 2|=â(s)|.

Finally, if ρ < −ε/2, then |ρ− ε/2| ≤ 2|ρ|. We use the fact that s ∈ Σπ/2+τ , so that σ > |ρ| cot(τ).
Thus σ−1|ρ− ε/2| ≤ 2 tan(τ). (2.15) yields

ε

2

∫
[0,∞)

κ + 1
|κ + s|2

ν(dκ) ≤ <â(s) + 2 tan(τ)|=â(s)|.

Lemma 2.25. For each ε > 0 there exists M2 > 0, such that for all s ∈ Σπ/2+τ with |s| ≥ ε we
have the estimate

‖R(s,B)x‖X ≤ M2

|s|
‖x‖X .

In particular, B is the generator of a holomorphic semigroup {etB | t ∈ Στ}. For all ε > 0, we have
that limt→∞ e−εt‖etB‖ = 0.

Proof. R(s,B)x is given explicitely in Lemma 2.23. Since τ < π/2, there exists a constant M3 such
that |s + κ| ≥ M3|s| for all κ > 0 and all s ∈ Σπ/2+τ . We infer immediately that

‖ 1
κ + s

x(κ)‖X ≤ 1
M3|s|

‖x‖X .

To estimate ‖(κ + s)−1u‖X , we start with estimating

|
∫

[0,∞)

κ

κ + s
x(κ) ν(dκ)|H ≤

∫
0,∞)

κ

|κ + s|
√

κ + 1

√
κ + 1|x(κ)|H ν(dκ)

≤

[∫
[0,∞)

κ2

|κ + s|2(κ + 1)
ν(dκ)

]1/2 [∫
[0,∞)

(κ + 1)|x(κ)|2H ν(dκ)

]1/2

≤

[∫
[0,∞)

κ + 1
|κ + s|2

ν(dκ)

]1/2

‖x‖X ≤ M1|â(s)|1/2‖x‖X .
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For the last inequality we have used Lemma 2.24. Using the fact that sâ(s) ∈ Σπ/2+τ and assump-
tion 2.1 we have

|u|H = |R(sâ(s), A)
∫

[0,∞)

κ

κ + s
x(κ) ν(dκ)|H

≤ M

|sâ(s)|
M1|â(s)|1/2‖x‖X =

M4

|s||â(s)|1/2
‖x‖X .

We use again Lemma 2.24 to estimate

‖ 1
κ + s

u‖2
X =

∫
[0,∞)

κ + 1
|κ + s|2

|u|2H ν(dκ)

≤ M1|â(s)||u|2H ≤ M5
1
|s|2

‖x‖2
X .

Remark 2.26. For convenience we will use ε = 1 as a growth bound for etB, although Lemma 2.25
above show that arbitrarily small ε > 0 could be taken.

2.5. Handling the forcing term: Properties of P and interpolation spaces. We begin with
some identities concerning the operator P defined in Definition 2.21.

Lemma 2.27. Let s ∈ Σπ/2+τ , s 6= 1, u ∈ H. We have

[(1−B)R(s,B)Pu](κ) =
1

s + κ
R(sâ(s), A)u,(2.16)

J0(1−B)R(s,B)Pu = R(sâ(s), A)u,(2.17)

Moreover, for each ε > 0 there exists M1, such that

(2.18) ‖(1−B)R(s,B)Pu‖2
X ≤ M1|â(s)| |R(sâ(s), A)u|2H .

whenever s ∈ Σπ/2+τ , s 6= 1, |s| ≥ ε.

Proof. By definition

[(s−B)R(s,B)Pu](κ) = [Pu](κ) =
1

1 + κ
R(â(1), A)u.

To compute R(s,B)Pu using Lemma 2.23 we start with

v :=R(sâ(s), A)
∫

[0,∞)

κ

s + κ
Pu(κ) ν(dκ)

=
∫

[0,∞)

κ

(s + κ)(1 + κ)
ν(dκ)R(sâ(s), A)R(â(1), A)u

=
∫

[0,∞)

1
1− s

[
1

1 + κ
− s

s + κ

]
ν(dκ)R(sâ(s), A)R(â(1), A)u

=
â(1)− sâ(s)

1− s

1
â(1)− sâ(s)

[R(sâ(s), A)u−R(â(1), A)u)]

=
1

1− s
[R(sâ(s), A)u−R(â(1), A)u)] .
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Therefore,

[R(s,B)Pu](κ) =
1

κ + s

[
1

1 + κ
R(â(1), A)u +

1
1− s

(R(sâ(s), A)u−R(â(1), A)u)
]

=
1

(1 + κ)(s− 1)
R(â(1), A)u− 1

(s + κ)(s− 1)
R(sâ(s), A)u.

Now we take a linear combination

[(1−B)R(s,B)Pu](κ) = [(s−B)R(s,B)Pu− (s− 1)R(s,B)Pu](κ)

=
1

1 + κ
R(â(1), A)u− 1

1 + κ
R(â(1), A)u +

1
s + κ

R(sâ(s), A)u

=
1

s + κ
R(sâ(s), Au).

This shows (2.16). To prove (2.17), notice that

−κ[(1−B)R(s,B)Pu](κ) + R(sâ(s), A)u =
s

s + κ
R(sâ(s), A)u

which determines a function in X. Finally, (2.18) follows from

‖(1−B)R(s,B)Pu‖2
X =

∫
[0,∞)

κ + 1
|κ + s|2

ν(dκ)|R(sâ(s), A)u|2H

≤|â(s)| |R(sâ(s), A)u|2H
by Lemma 2.24.

Lemma 2.28. Consider α(a) given by Definition 2.3.

(a) If θ ∈ (1/2, 1) and α(a) > 2θ − 1, then P is a continuous linear operator from H into Xθ.
(b) If θ ∈ (1/2, 1), σ ∈ (0, 1/2), and α(a) > 2θ−1

1−2σ , then P is a continuous linear operator from
the extrapolation space H−σ into the interpolation space Xθ.

(c) If θ ∈ (0, 1/2), σ ∈ (1/2, 1), and δ(a) < 1−2θ
2σ−1 , then P is a continuous linear operator from

the extrapolation space H−σ into the interpolation space Xθ.

Proof. To prove (a), we pick c > 1 and estimate∫ ∞

c

s2θ−1‖(1−B)R(s,B)Pu‖2
X ds ≤ M

∫ ∞

c

s2θ−1â(s)|R(sâ(s), A)u|2H ds

≤M

∫ ∞

c

s2θ−1â(s)
(

M

sâ(s)

)2

|u|2H = M

∫ ∞

c

s2θ−3 1
â(s)

ds |u|2H .

The latter integral is finite if 2θ − 1 > α(a).
To prove (b) let u ∈ H−σ. Then (by standard theory of analytic semigroups)

|R(sâ(s), A)u|H ≤ M(sâ(s))σ−1|u|−σ.

Repeating the same estimates as above we obtain

(2.19)
∫ ∞

c

s2θ−1‖(1−B)R(s,B)Pu‖2
X ds ≤ M

∫ ∞

c

s2θ−3+2σâ(s)2σ−1 ds |u|2−σ.
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Now choose some ρ ∈ ((2θ−1)/(1−2σ), α(a)), put p = 1/(1−2σ) and q = 1/(2σ), so p−1 +q−1 = 1.
The integral in (2.19) can be rewritten and estimated by Hölder’s inequality:∫ ∞

c

s2θ−3+2σâ(s)2σ−1 ds

=
∫ ∞

c

s2θ−3+2σ+(2−ρ)(1−2σ)

(
sρ−2

â(s)

)1−2σ

ds

≤
[∫ ∞

c

s[2θ−3+2σ+(2−ρ)(1−2σ)]q ds

]1/q
[∫ ∞

c

(
sρ−2

â(s)

)(1−2σ)p

ds

]1/p

.

The second integral in this estimate is just∫ ∞

c

sρ−2 1
â(s)

ds

which is finite since ρ < α(a). The first integral is finite iff

[2θ − 3 + 2σ + (2− ρ)(1− 2σ)]q < −1,

i.e. 2θ − 3 + 2σ + (2− ρ)(1− 2σ) < −2σ,

i.e. 2θ − 1 < ρ(1− 2σ),

which holds by the choice of ρ.
To prove (c) choose ρ ∈ (δ(a), (1 − 2θ)/(2σ − 1)) and let p = 1/(2 − 2σ), q = 1/(2σ − 1). We refer
again to (2.19) and estimate∫ ∞

c

s2θ−3+2σâ(s)2σ−1 ds

≤
∫ ∞

c

s2θ−3+2σ+ρ(2σ−1)(s−ρâ(s))2σ−1 ds

≤
(∫ ∞

c

s[2θ−3+2σ+ρ(2σ−1)]/[2−2σ]

)2−2σ (∫ ∞

c

s−ρâ(s) ds

)2σ−1

.

Now, ∫ ∞

c

s[2θ−3+2σ+ρ(2σ−1)]/[2−2σ] < ∞

iff 2θ − 3 + 2σ + ρ(2σ − 1) < −(2− 2σ)

iff ρ(2σ − 1) < 1− 2θ,

which holds by the choice of ρ. The other integral is estimated by∫ ∞

c

s−ρâ(s) ds =
∫ ∞

c

∫ ∞

0

s−ρe−sta(t) dt ds =
∫ ∞

0

tρ−1a(t)
∫ ∞

ct

σ−ρe−σ dσ dt.
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We split the integral into two parts:∫ ∞

1

tρ−1a(t)
∫ ∞

ct

σ−ρe−σ dσ dt

≤
∫ ∞

1

tρ−1e−ct/2a(t)
∫ ∞

ct

σ−ρe−σ/2 dσ dt

≤
(

a(1)
∫ ∞

1

tρ−1e−ct/2 dt

) (∫ ∞

0

σ−ρe−σ/2 dσ

)
.

On the other hand∫ 1

0

tρ−1a(t)
∫ ∞

ct

σ−ρe−σ dσ dt ≤
(∫ 1

0

tρ−1a(t) dt

) (∫ ∞

0

σ−ρe−σ dσ

)
.

This is finite since ρ > δ(a).

2.6. Recovering u from the abstract solution: Extending J0. The solution of the original
Volterra equation (2.1) is obtained from the semigroup solution v by an unbounded operator u = J0v.
In order to gain a weak solution from the semigroup setting, we have to extend the domain of J0.

Lemma 2.29. Let η ∈ (0, 1/2), µ ∈ (0, 1/2) and α(a) as in Definition 2.3.

(a) If 1− 2η < α(a), then J0 admits a continuous extension as an operator J : Xη → H.
(b) If (1− 2η)/(1− 2µ) < α(a), then J0 admits a continuous extension as an operator J : Xη →

Hµ.

Proof. We resort to Lemma 2.15. Notice that

J0R(s,B)x = R(sâ(s))
∫

[0,∞)

κ

κ + s
x(κ) ν(dκ)

=R(sâ(s), A)
∫

[0,∞)

κ

(κ + s)
√

κ + 1

√
κ + 1 x(κ) ν(dκ).

Thus J0R(s,B), as an operator from X into a subspace Y ⊂ H, is bounded by

‖J0R(s,B)‖2
X→Y ≤ ‖R(sâ(s), A)‖2

H→Y

∫
[0,∞)

κ2

|κ + s|2(κ + 1)
ν(dκ)

≤M‖R(sâ(s), A)‖2
H→Y |â(s)|

with a suitable constant M by Lemma 2.24.
To prove (a), let Y = H, and notice that ‖R(sâ(s), A)‖ ≤ M(sâ(s))−1 for s > 0. Then∫ ∞

c

s1−2η‖J0R(s,B)‖2
X→H ds ≤ M

∫ ∞

c

s1−2η

(
1

sâ(s)

)2

â(s) ds

≤M

∫ ∞

c

s1−2η−2 1
â(s)

ds,

which is finite if 1− 2η < α(a).
To prove (b), let Y = Hµ. We have

‖R(sâ(s), A)‖H→Hµ
≤ M(sâ(s))µ−1.
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Choose ρ such that (1−2η)/(1−2µ) < ρ < α(a), let p = (1−2µ)−1, q = (2µ)−1 so that p−1+q−1 = 1.∫ ∞

c

s1−2η‖J0R(s,B)‖2
X→Hµ

ds ≤ M

∫ ∞

c

s1−2η

(
1

sâ(s)

)2−2µ

â(s) ds

≤M

∫ ∞

c

s−1−2η+2µ−(1−2µ)(ρ−2)

(
sρ−2

â(s)

)1−2µ

ds

≤M

[∫ ∞

c

s[1−2η−2µ−(1−2µ)ρ]q ds

]1/q
[∫ ∞

c

(
sρ−2

â(s)

)(1−2µ)p

ds

]1/p

.

The latter integral is just ∫ ∞

c

sρ−2 1
â(s)

ds

which is finite since ρ < α(a). The former integral is finite iff

(1− 2η − 2µ− (1− 2µ)ρ)q < −1

i.e. 1− 2η − 2µ− (1− 2µ)ρ < −2µ

i.e. 1− 2η < ρ(1− 2µ).

This holds by the choice of ρ.
We have shown that J0 can be extended continuously from D(B) to Xη. We have to ascertain that
the extension J in fact coincides with J0 on D(J0). For this purpose we prove that for x ∈ D(J0)
we have limt→∞ tJ0R(t, B)x = J0x. Let u = J0x. Then

tJ0R(t, B)x = tR(tâ(t), A)
∫

[0,∞)

κ

κ + t
x(κ) ν(dκ)

=tR(tâ(t), A)

[∫
[0,∞)

1
κ + t

(κx(κ)− u) ν(dκ) +
∫

[0,∞)

1
κ + t

ν(dκ)u

]

=tR(tâ(t), A)
∫

[0,∞)

1
κ + t

(κx(κ)− u) ν(dκ) + tâ(t)R(tâ(t), A)u.

The second term converges to u as t →∞, since tâ(t) →∞. The first term can be estimated

|tR(tâ(t), A)
∫

[0,∞)

1
κ + t

(κx(κ)− u) ν(dκ)|H

≤t‖R(tâ(t), A)‖
∫

[0,∞)

1
(κ + t)

√
κ + 1

√
κ + 1 |κx(κ)− u|H ν(dκ)

≤t
M

tâ(t)

[∫
[0,∞)

1
(κ + t)2(κ + 1)

ν(dκ)

]1/2 [∫
[0,∞)

(κ + 1)|κx(κ)− u|2H ν(dκ)

]1/2

≤M

t

1
â(t)

[∫
[0,∞)

1
(κ + 1)

ν(dκ)

]1/2

‖κx− u‖X

=
Mâ(1)1/2

tâ(t)
‖κx− u‖x,

which converges to 0 as t →∞.
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Lemma 2.30. Suppose η ∈ (0, 1) is such that J0 admits a continuous extension J : Xη → H. We
consider the restriction of B : X1 → X to an operator Bη : Xη+1 → Xη. Let ζ ∈ D(A∗) ⊂ H. We
define the vector ξ ∈ X by

ξ(κ) =
1

κ + 1
ζ.

Then ξ (considered as an element of X∗ = X) is contained in the domain of B∗
η with

[B∗
ηξ](x) = 〈A∗ζ, Jx〉H

for all x ∈ Xη.

Proof. Let x ∈ Xη+1. Using the definition of D(B), we have

〈ξ,Bηx〉X =
∫

[0,∞)

(κ + 1)〈 1
κ + 1

ζ, (−κx(κ) + J0x)〉H ν(dκ)

=〈ζ,

∫
[0,∞)

(−κx(κ) + J0x) ν(dκ)〉H = 〈ζ, AJ0x〉H = 〈A∗ζ, J0x〉H .

This extends continuously to x ∈ Xη.

2.7. Handling the initial conditions. In order to treat the Volterra equation (2.1) by the state
space approach (2.9), we need to make sure that the initial vector derived from u0 will be in the
state space.

We will need the following auxiliary result:

Lemma 2.31. Let a be completely monotone with a(0+) = ∞ and
∫ 1

0
a(s) ds < ∞. Then

lim
t→0+

a′′(t)
−a′(t)

= ∞.

Proof. We show that for any M > 0 we have

lim
t→0+

[a′′(t) + Ma′(t)] = ∞.

Notice that

a′′(t) + Ma′(t) =
∫

[0,∞)

(κ2 −Mκ)e−κt ν(dκ)

=
∫

[0,2M)

(κ2 −Mκ)e−κt ν(dκ) +
∫

[2M,∞)

(κ2 −Mκ)e−κt ν(dκ).

The first integral is bounded from below by −2M2ν([0,M)). The second integral is positive and
bounded from below by ∫

[2M,∞)

2M2e−κt ν(dκ)

which converges to 2M2ν([2M,∞) = ∞ by the monotone convergence principle.

Lemma 2.32. For u0 : (−∞, 0] → H define

v0(κ) =
∫ 0

−∞
eκsu0(s) ds.

(a) If u0 satisfies Assumption 2.6(a), then v0 ∈ X.
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(b) Let u0 satisfy Assumptions 2.6(a) and (b) with some γ ∈ (0, 1/2). Let η ∈ (0, 1/2) be such
that

δ(a) <
1− 2η

1− 2γ
.

(Here δ(a) is given by Definition 2.3.) Then v0 ∈ Xη.
(c) If u0 satisfies Assumption 2.6(a), (b) and (c), then v0 ∈ D(B)

Proof. To prove (a) we estimate

‖v0‖2
X =

∫
[0,∞)

∣∣∣∣∫ 0

−∞
eκsu0(s) ds

∣∣∣∣2
H

(1 + κ)ν(dκ) ≤
∫

[0,∞)

∣∣∣∣∫ 0

−∞
Mes(κ+ω) ds

∣∣∣∣2 (1 + κ)ν(dκ)

≤ M2

∫
[0,∞)

1 + κ

(ω + κ)2
ν(dκ) <

M2

ω

∫
[0,∞)

1
ω + κ

ν(dκ) =
M2

ω
â(ω) < ∞.

Next we show:

(2.20) Assumptions 2.6(a) and (b) imply: (−κv0 + u0(0)) ∈ X.

This says that v0 ∈ D(J0) with J0v0 = u0(0). Notice that

−κv0(κ) + u0(0) = κ

∫ ∞

0

e−κt(u0(0)− u0(−t)) dt.

Therefore ∫
[0,∞)

(κ + 1) |u0(0)− κv0(κ)|2H ν(dκ)

=
∫

[0,∞)

(κ + 1) |κ
∫ ∞

0

e−κt(u0(0)− u0(−t)) dt|2H ν(dκ)

≤
∫

[0,∞)

(κ + 1)
(

κ

∫ ∞

0

e−κt dt

) (
κ

∫ ∞

0

e−κt|u0(0)− u0(−t)|2H dt

)
ν(dκ)

=
∫ ∞

0

|u(0)− u(−t)|2H
∫

[0,∞)

(κ + 1)κe−κt ν(dκ) dt

=
∫ ∞

0

|u0(0)− u0(−t)|2H(a′′(t)− a′(t)) dt.

Because of Assumption 2.6(a) we can estimate∫ ∞

1

|u0(0)− u0(−t)|2H(a′′(t)− a′(t)) dt ≤ 2(−a′(1) + a(1)) sup
t∈(−∞,0]

|u0(t)|H < ∞.

By Lemma 2.31, we can estimate∫ 1

0

|u0(0)− u0(−t)|2H(a′′(t)− a′(t)) dt ≤ M

∫ 1

0

|u0(0)− u0(−t)|2Ha′′(t) dt.

We show now that Assumptions 2.6(a) and (b) imply

(2.21)
∫

[0,∞)

(−κv0(κ) + u0(0)) ν(dκ) =
∫ ∞

0

(−a′(t))(u0(0)− u0(−t)) dt.
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We have ∫
[0,∞)

(−κv0(κ) + u0(0)) ν(dκ) =
∫

[0,∞)

−κ

∫ ∞

0

e−κt(u0(0)− u0(−t)) dt ν(dκ)

=
∫ ∞

0

(u0(0)− u0(−t))
∫

[0,∞)

κe−κt ν(dκ) dt =
∫ ∞

0

(u0(0)− u0(−t))(−a′(t)) dt.

We are now in the position to prove Part (c) of the lemma: If Assumptions 2.6(a) and (b) are
satisfied, then v0 ∈ D(J0) with J0v0 = u0(0). Assumption 2.6(c) and (2.21) yield∫

[0,∞)

(−κv0 + J0v0) = AJ0v0

which implies that v0 ∈ D(A).
Finally we prove Part (b) of the Lemma. From (2.20) we know that v0 ∈ D(J0) with J0v0 = u0(0).
We construct now a function u1 : (−∞, 0] → H and the corresponding v1(κ) :=

∫∞
0

e−κtu1(−t) dt
such that v1 − v0 ∈ D(A):

u1(t) = u1(0)et,

v1(κ) =
1

κ + 1
u1(0).

It is easily seen (e.g. by Remark 2.33 below) that u1 satisfies Assumptions 2.6(a) and (b). In order
to have v1 − v0 ∈ D(A) we need therefore to choose u1(0) such that∫

[0,∞)

(−κv1(κ) + κv0(κ) + u1(0)− u0(0)) ν(dκ) = A(u1(0)− u0(0)).

This can be rewritten∫
[0,∞)

[−κv1(κ) + κv0(κ) + u1(0)− u0(0)] ν(dκ)−A(u1(0)− u0(0))

=
∫

[0,∞)

(− κ

κ + 1
+ 1)(u1(0)− u0(0)) ν(dκ)

+
∫

[0,∞)

[
κv0(κ)− u0(0) +

1
1 + κ

u0(0)
]

ν(dκ)−A(u1(0)− u0(0))

=(â(1)−A)(u1(0)− u0(0))− g

with
g =

∫
[0,∞)

(−κv0(κ) + u0(0)) ν(dκ) + â(1)u0(0).

Therefore we put
u1(0) = u0(0) + R(â(1), A)g ∈ Hγ .

Since v1 − v0 ∈ D(A), it is sufficient to show that v1 ∈ Hη. Now, by definition,

v1(κ) =
1

κ + 1
R(â(1), A)(â(1)−A)u1(0),

thus v1 = P (â(1) − A)u1(0). Now (â(1) − A)u1(0) ∈ H−σ with σ = 1 − γ. Lemma 2.28(c) implies
that v1 ∈ Xη if

δ(a) <
1− 2η

2σ − 1
=

1− 2η

1− 2γ
.
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Remark 2.33. If u0 : (−∞, 0] → H satisfies Assumption 2.6(a) and there is some δ > 0 and M > 0
such that for t ∈ (0, δ) the following Lipschitz estimate holds:

|u0(−t)− u0(0)| ≤ Mt,

then u0 satisfies Assumption 2.6(b).

Proof. ∫ 1

0

a′′(t)t2 dt =
∫ 1

0

∫
[0,∞)

κ2t2e−κt ν(dκ) dt =
∫

[0,∞)

1
κ

∫ κ

0

σ2e−σ dσ ν(dκ).

We split the integral:∫
[0,1)

1
κ

∫ κ

0

σ2e−σ dσ ν(dκ) ≤ ν([0, 1)) sup
σ∈[0,1)

(σ2e−σ) < ∞,

∫
[1,∞)

1
κ

∫ κ

0

σ2e−σ dσ ν(dκ) ≤ 2

(∫
[0,∞)

1
κ + 1

ν(dκ)

) (∫ ∞

0

σ2e−σ dσ

)
< ∞.

2.8. Proofs of the deterministic existence and regularity theorems. We are now in the
position to restate Theorems 2.8 in the language of the semigroup and complete its proof.

Theorem 2.34. Suppose that Assumptions 2.1, 2.2 hold. Let X, J0, B, P be defined as in Defini-
tions 2.16, 2.18, 2.20, 2.21. Let v0(κ) =

∫∞
0

e−sκu0(−s) ds.
Let α(a) and δ(a) be defined by Definition 2.3. Let γ, σ, µ ∈ (0, 1

2 ) and suppose that Assump-
tion 2.5 holds with σ, and Assumption 2.6(b) holds with γ. Moreover, suppose that δ(a)(1 − 2γ) <
α(a)(1− 2µ).

a) We choose η and θ such that

1 < 2θ < 1 + α(a)(1− 2σ),
1− α(a)(1− 2µ) < 2η < 1− δ(a)(1− 2γ).

Then P is a bounded operator P : H−σ → Xθ, and J0 admits a bounded extension J : Xη →
Hµ. Moreover, v0 ∈ Xη.

b) If v is the mild solution to v′(t) = B(v(t)− Pf(t)) + Pf(t) given by

v(t) = etBv0 + (1−B)
∫ t

0

e(t−s)BPf(s) ds

then v is continuous from [0,∞) → Xη.
c) u(t) = Jv(t) is the unique weak solution of (2.1).
d) u(t) is continuous from [0,∞) into Hµ.

Proof. ¿From Lemma 2.28 we infer that P maps H−σ continuously into Xθ. On the other hand,
from Lemma 2.29 we know that J is continuous from Xη into Hµ. By Lemma 2.32, v0 is contained
in Xη. Now, the function Pf is in L2(0,∞, Xθ), and η < θ, so that v(t) is a continuous function
with values in Xη. Therefore u(t) = Jv(t) is a continuous function with values in Hµ.

We have to prove that u is a weak solution. Let us first look at the solution v(t) of the abstract
problem under the additional assumption that v0 ∈ DB and f is continuously differentiable with
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f(0) = 0. In this case, by standard semigroup theory, v(t) is a strong solution of v′(t) = B(v(t) −
Pf(t)) + Pf(t), which implies

d

dt
v(t, κ) = −κv(t, κ) + J0v(t)

for almost all κ and almost all t. We infer

v(t, κ) = e−κtv0(κ) +
∫ t

0

e−κ(t−s)J0v(s) ds.

Integrating by the measure ν we obtain

(2.22)
∫

[0,∞)

v(t, κ) ν(dκ) =
∫

[0,∞)

e−κtv0(κ) ν(dκ) +
∫ t

0

a(t− s)Jv(s) ds.

By continuous extension, Equation (2.22) holds also if the additional requirements that v0 ∈ DB
and f is smooth are removed.

¿From semigroup theory it is known that v(t) is the unique weak solution of v′(t) = Bη(v(t) −
Pf(t)) + Pf(t) on Xη in the sense that for all ξ ∈ DB∗

η

(2.23) 〈ξ, v(t)〉X∗
η ,Xη

= 〈ξ, v0〉X∗
η ,Xη

+
∫ t

0

〈B∗
ηξ, v(s)− Pf(s)〉X∗

η ,Xη
ds +

∫ t

0

〈ξ, Pf(s)〉X∗
η ,Xη

ds.

Here, by an usual convention, we consider X∗
η as an extension of X so that the inner product is

reduced to 〈ξ, x〉X∗
η ,Xη = 〈ξ, x〉X if ξ ∈ X. Now let ζ ∈ DA∗. We define ξ by ξ(κ) = 1

κ+1ζ. From
Lemma 2.30 we know that ξ ∈ DB∗

η with

(2.24) 〈B∗
ηξ, x〉X∗

η ,Xη
= 〈A∗ζ, Jx〉H

for all x ∈ Xη. We insert this vector ξ into (2.23) and utilize (2.24), (2.22), and the Definition 2.21
of P :

0 = 〈ξ, v(t)〉X∗
η ,Xη

− 〈ξ, v0〉X∗
η ,Xη

−
∫ t

0

〈B∗
ηξ, v(s)− Pf(s)〉X∗

η ,Xη
ds +

∫ t

0

〈ξ, Pf(s)〉X∗
η ,Xη

ds

=
∫

[0,∞)

〈ζ, v(t, κ)〉H ν(dκ)−
∫

[0,∞)

〈ζ, v0(κ)〉H ν(dκ)

−
∫ t

0

〈A∗ζ, J(v(s)− Pf(s))〉H ds−
∫ t

0

∫
[0,∞)

〈ζ,
1

κ + 1
R(â(1), A)f(s)〉H ν(dκ) ds

=
∫ t

0

〈ζ, a(t− s)Jv(s)〉H ds +
∫

[0,∞)

〈ζ, e−κtv0(κ)〉H ν(dκ)−
∫

[0,∞)

〈ζ, v0(κ)〉H ν(dκ)

−
∫ t

0

〈A∗ζ, Jv(s)〉H ds−
∫ t

0

〈ζ, (â(1)−A)R(â(1), A)f(s)〉H ds

=
∫ t

0

〈ζ, a(t− s)u(s)〉H ds +
∫

[0,∞)

〈ζ, (e−κt − 1)
∫ 0

−∞
eκsu0(s)〉H ds ν(dκ)

−
∫ t

0

〈A∗ζ, u(s)〉H ds−
∫ t

0

〈ζ, f(s)〉H ds
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=
∫ t

0

〈ζ, a(t− s)u(s)〉H ds +
∫ 0

−∞
〈ζ, (a(t− s)− a(−s))u0(s)〉H

−
∫ t

0

〈A∗ζ, u(s)〉H ds−
∫ t

0

〈ζ, f(s)〉H ds

=
∫ t

−∞
〈ζ, a(t− s)u(s)〉H ds−

∫ 0

−∞
〈ζ, a(−s)u0(s)〉H

−
∫ t

0

〈A∗ζ, u(s)〉H ds−
∫ t

0

〈ζ, f(s)〉H ds.

Therefore, u is a weak solution of (2.1).
In order to show uniqueness, let u be a nontrivial solution of (2.1) with initial function u0 = 0

and forcing term f = 0. By integrating as many times as we need, and multiplying with R(1, A) if
necessary, we may assume without loss of generality that u is continuously differentiable with values
in H and continuous with values in DA, so that (2.3) is reduced to

d

dt

∫ t

0

a(t− s)u(s) ds = Au(t).

Now we define

v(t, κ) =
∫ t

0

e−κ(t−s)u(s) ds

and obtain by straightforward computation: v′(t) = Bv(t), v(0) = 0. Since B generates a semigroup,
we infer v(t) = 0 for all t. Since u(t) = v′(t, κ) + κv(t, κ), we infer u = 0.

Proof of Theorem 2.9:
With the notation of Theorem 2.34, we put gn = Pfn and

vn(t) = etBv0 + (1−B)
∫ t

0

e(t−s)Bgn(s) ds.

We choose η < θ such that τ < θ− η. Then un = Jvn. Since J is a continuous linear operator from
Xη into Hµ (Lemma 2.29) and gn ∈ Lp(0,∞, Xθ) (Lemma 2.28), we may utilize the corresponding,
well-known regularity results for analytic semigroups (for a summary see Proposition A.2 in Clément,
Desch and Homan [3]):

(a) If p ∈ [1, 1
τ ), then vn ∈ Lq(0, T, Xη) for all q ∈ [1, p

1−τp ).
(b) If p = 1

τ , then vn ∈ Lq(0, T, Xη) for all q ∈ [1,∞).
(c) If p ∈ ( 1

τ ,∞), then vn ∈ Cτ−1/p([0, T ], Xη).
Here, vn in the corresponding function space depends continuously on gn ∈ Lq(0,∞, Xθ).

3. Stochastic Volterra equation

In this section we fix a complete probability space (Ω,F, P) and a filtration {Ft} on it. All
Brownian motions in the sequel will be defined on this space.

Let U be a real separable (infinite dimensional) Hilbert space, endowed with a complete orthonor-
mal basis {gk}. We define a cylindrical Wiener process {W (t)} by the formula

(3.1) W (t) =
∞∑

j=1

gj βj(t), t ≥ 0.
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Here, {βj} is a family of real standard independent Brownian motions; it is known that the series
(3.1) does not converge in U , but we can give a sense to it in a larger space, compare [4]; let us
choose a trace class operator Q: then the series Q1/2W (t) converges in U to a centered Gaussian
random variable with covariance operator Q. Let U1 be the Hilbert space defined as the completion
of U with respect to the norm ‖x‖1 = ‖Q1/2x‖U : we can consider then W (t) = Q−1/2(Q1/2W (t))
as a Gaussian random variable with values in U1 and covariance operator identity.

A central rôle in the construction of the stochastic integral is provided by the space L2 = L2(U,H)
of Hilbert-Schmidt operators from U into H. This is a separable Hilbert space, endowed with the
norm ‖Φ‖2

L2
= Tr[ΦQΦ∗]. It is possible to define the Itô integral for all processes Φ = {Φ(t)} in the

space L2
F(0, T ;L2) of predictable, square integrable processes such that E

∫ T

0
‖Φ(t)‖2

L2
dt < ∞. In

order to handle the convergence at infinity, we introduce the following weighted spaces of processes.
Let K be a real separable Hilbert space; for any ω > 0, we denote L2

F(0,+∞;K;ω) the space of
square integrable predictable processes {z(t)} such that

‖z‖2
L2

F(0,+∞;K;ω) = E
∫ +∞

0

|e−ωtz(t)|2K dt < +∞.

In addition to Assumptions 2.1, 2.2, 2.4, and 2.6 we impose

Assumption 3.1. The process {Φ(t)}t≥0 belongs to the space L2
F(0,+∞;L2(U,H−σ; 1)) for some

0 ≤ σ < 1− 1
2α(a) , where H−σ is the extrapolation space with respect to the operator A and we use

the convention H0 = H.

With no loss of generality, we assume that the stochastic term can always be rewritten in the
form

Φ(t)W (t) =
∞∑

j=1

Φj(t)βj(t)

where Φj(t) = Φ(t)gj are processes with values in H−σ.
We are concerned with the abstract stochastic Volterra equation

(3.2)

{
d
dt

∫ t

−∞ a(t− s)u(s) ds = Au(t) + Φ(t)Ẇ (t) t ≥ 0,

u(t) = u0(t) t ≤ 0,

In order to give a meaning to (3.2) we introduce the concept of weak solution.

Definition 3.2. A process {u(t)}t≥0 in L2
F(0,+∞;H;ω) is a weak solution of problem (3.2) if for

any ζ ∈ D(A∗) and PT -almost surely it holds

(3.3)
∫ t

−∞
〈a(t− s)u(s), ζ〉H ds = 〈ū, ζ〉H +

∫ t

0

〈A∗ζ, u(s)〉H ds +
∫ t

0

〈ζ, Φ(s) dW (s)〉H ,

where

ū =
∫ 0

−∞
a(−s)u0(s) ds.

In this paper, we follow the semigroup approach in order to solve (3.2). In the next subsection,
we introduce and solve the relevant stochastic differential equation; the last part of the section is
then devoted to study (3.2).



Volterra equations perturbed by noise 25

3.1. The stochastic differential equation. In this section we extend the semigroup setting of
Section 2 to the stochastic case. In this framework, we can appeal to the well known theory of
stochastic evolution equations and we are lead to study the stochastic convolution process associated
to the equation.

With the notation of Section 2 we rewrite (3.2) as a stochastic equation

(3.4)

{
dv(t) = Bv(t) dt + (I −B)PΦ(t) dW (t), t > 0,

v(0) = v0 ∈ X,

where the initial condition is given by

(3.5) v(0, κ) =
∫

[0,∞)

e−κsu0(−s) ds.

In the following we write Ψ = (I −B)PΦ the (operator valued) process which corresponds to Φ on
the spaces Xη, where η ≥ −1.

Theorem 3.3. For every v0 ∈ X, problem (3.4) admits a unique weak solution given by the formula

(3.6) v(t) = etBv0 +
∫ t

0

e(t−s)BΨ(s) dW (s).

Moreover, if η ∈ (0, θ − 1
2 ) and v0 ∈ Xη, there exists a version of v(t) with continuous trajectories

as a process with values in Xη.

The proof of the above theorem is standard and relies essentially on the following result; notice
that (3.8) is given for the seminorms of the interpolation spaces (rather than for the norms on the
relevant spaces).

Theorem 3.4. Let B − ω be a sectorial operator of negative type and assume that Ψ(t) belongs to
L2

F(0,∞;L2(U0, Xθ−1);ω) for some 1
2 < θ < 1. Then the stochastic convolution process

(3.7) Z(t) =
∫ t

0

e(t−s)BΨ(s) dW (s), t ≥ 0,

belongs to L2
F(0,∞;Xθ− 1

2
;ω) and

(3.8) [[Z]]2L2
F(0,∞;X

θ− 1
2
;ω) ≤

1
3− 2θ

[[Ψ]]2L2
F(0,∞;L2(U0,Xθ−1);ω).



26 S. Bonaccorsi, W. Desch

Proof. We argue as in Da Prato & Zabczyk [4], Theorem 6.12. We consider θ ∈
(

1
2 , α(a)+1

2

)
; then

we have

E
∫ ∞

0

[[e−tZ(t)]]2θ− 1
2

dt

≤
∑

j

E
∫ ∞

0

∫ t

0

∫ ∞

0

ξ1−2(θ− 1
2 )‖e−ξ(1−B)eξBe−te(t−s)BΨj(s)‖2

X dξ dsdt

=
∑

j

E
∫ ∞

0

∫ ∞

0

∫ ∞

s

ξ2−2θ‖e−ξ−t(1−B)e(t−s+ξ)BΨj(s)‖2
X dt dξ ds

=
∑

j

E
∫ ∞

0

∫ ∞

0

∫ ∞

ξ

ξ2−2θ‖e−s−t(1−B)etBΨj(s)‖2
X dt dξ ds

=
∑

j

E
∫ ∞

0

∫ ∞

0

∫ t

0

ξ2−2θ‖e−s−t(1−B)etBΨj(s)‖2
X dξ dt ds

=
∑

j

E
∫ ∞

0

∫ ∞

0

t3−2θ

3− 2θ
‖e−t(1−B)etBe−sΨj(s)‖2

X dt ds

=
∑

j

E
∫ ∞

0

1
3− 2θ

[[e−sΨj(s)]]
2
θ−1 ds.

3.2. Laplace transform for the stochastic process. In this section we search for a different
representation of the solution v(t), as a necessary tool in order to get back to the integral equation.
To prepare the result, we state and prove a preliminary lemma.

Before we proceed further, we introduce the following notation. We are given a cylindrical Wiener
process {W (t)}t≥0 on U . Let K be a real Hilbert space and assume that Ψ ∈ L2

F(0,∞;L2(U,K);ω).
We define the process

L[Ψ dW ](s) =
∫ ∞

0

e−stΨ(t) dW (t), s ≥ ω.

Remark 3.5. Let z(t) denote the process defined above. z(t) is not adapted to {Ft}, and for every
t ≥ ω it is z(t) ∈ L2(Ω,F;K). We may wonder if this process is continuous. It holds that

z(t)− z(s) =
∫ ∞

0

[e−tx − e−sx]Ψ(x) dW (x)

therefore

E[z(t)− z(s)]2 ≤ E
∣∣∣∣∫ ∞

0

[e−tx − e−sx]Ψ(x) dW (x)
∣∣∣∣2

= E
∫ ∞

0

∣∣∣∣∫ t

s

e−zx dz xΨ(x)
∣∣∣∣2 dx

≤ E
∫ ∞

0

x2e−2sx(t− s)2Ψ2(x) dx ≤ C(t− s)2,
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which implies, by Kolmogorov’s continuity criterium, the existence of a continuous modification of
z(t).

Lemma 3.6. Let Φ satisfiy Assumption 3.1 and take v0 ∈ Xη for some 1−α(a)
2 < η < 1−2σ

2 α(a).
Consider the processes

(3.9) v(t) = etBv0 + (I −B)
∫ t

0

e(t−s)BPΦ(s) dW (s)

and

(3.10) ṽ(t, κ) = e−κtv0(κ) +
∫ t

0

e−κ(t−s)Jv(s) ds.

Then ṽ(t) is a modification of v(t).

Proof. Notice that by assumption 1−α(a)
2 < η, we get from Lemma 2.29 that J0 admits a continuous

extension J : Xη → H. We take Laplace transform of our processes:

(3.11) L[ṽ(·, κ)](s) =
1

κ + s
v0(κ) +

1
κ + s

JL[v](s),

and

(3.12) L[v](s) = R(s,B)v0 + (I −B)R(s,B)PL[Φ dW ](s).

Notice further that

R(s,B)v0(κ) =
1

s + κ
(v0(κ) + JR(s,B)v0);

therefore, using Lemma 2.27, (2.16) and (2.17), we obtain

L[v](s) =
1

κ + s
(v0(κ) + JR(s,B)v0) +

1
κ + s

J(I −B)R(s,B)PL[Φ dW ](s)

=
1

κ + s

(
v0(κ) + JL[v](s)

)
= L[ṽ(·, κ)](s).

3.3. The solution to the stochastic Volterra equation. In this section, we shall combine the
results in Theorem 3.3 and Lemma 3.6 in order to prove the existence of the solution to problem
(3.2).

Theorem 3.7. Let Φ satisfy Assumption 3.1 and take v0 ∈ Xη for some 1−α(a)
2 < η < 1−2σ

2 α(a).
Given the process

(3.13) v(t) = etBv0 +
∫ t

0

e(t−s)BΨ(s) dW (s)

we define the process

(3.14) u(t) =

{
Jv(t), t ≥ 0,

u0(t), t ≤ 0.

Then u(t) is a weak solution to problem (3.2).



28 S. Bonaccorsi, W. Desch

Proof. Again, in our assumption we have by Lemma 2.29 that the operator J0 can be extended to
a bounded operator J : Xη → H. For fixed ζ ∈ D(A∗), we define the vector ξ ∈ X by ξ(κ) = 1

1+κζ.
By Lemma 2.30 we have ξ ∈ D(B∗

η). Moreover, by Lemma 2.28

(3.15) Ψ(t) = (I −B)PΦ(t) ∈ L2
F(0,∞;L2(U0, Xθ−1); 1) for any θ <

(1− 2σ)α(a) + 1
2

.

Therefore

(3.16) 〈v(t), ξ〉X = 〈v0, ξ〉X +
∫ t

0

〈B∗
ηξ, v(s)〉ds +

∫ t

0

〈ξ, ΨdW (s)〉X .

Let us consider separately the four terms. The initial condition yields

〈v0, ξ〉X =
∫

[0,∞)

〈v(0, κ), ζ〉H ν(dκ)

= 〈
∫

[0,∞)

∫
[0,∞)

e−κsu0(−s) ds ν(dκ), ζ〉H = 〈ū, ζ〉H ;

next, the deterministic integral can be evaluated using Lemma 2.30∫ t

0

〈B∗
ηξ, v(s)〉X ds =

∫ t

0

〈A∗ζ, Jv(s)〉H ds

=
∫ t

0

〈A∗ζ, u(s)〉H ds;

we then consider the stochastic integral∫ t

0

〈ξ, Ψ(s) dW (s)〉X =
∑

j

∫ t

0

〈ξ, Ψj(s)〉X dβj(s)

=
∑

j

∫ t

0

〈ξ, (I −B)PΦj(s)〉X dβj(s)

=
∑

j

∫ t

0

〈ξ, PΦj(s)〉X dβj(s)−
∫ t

0

〈B∗ξ, PΦj(s)〉X dβj(s).

The first integrand on the right hand side of the above identity may be written as follows:

〈ξ, PΦj(s)〉X =
∫

[0,∞)

〈 1
κ + 1

ζ,
1

κ + 1
R(â(1), A)Φj(s)〉H(κ + 1) ν(dκ)

=
∫

[0,∞)

1
κ + 1

ν(dκ)〈ζ, R(â(1), A)Φj(s)〉H

= 〈ζ, â(1)R(â(1), A)Φj(s)〉H ;

while the second gives

〈B∗ξ, PΦj(s)〉X = 〈ζ, AJ0PΦj(s)〉H
= 〈ζ, AR(â(1), A)Φj(s)〉H .
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Therefore, ∫ t

0

〈ξ, Ψ(s) dW (s)〉X =
∑

j

∫ t

0

〈ζ, (â(1)−A)R(â(1), A)Φj(s)〉H dβj(s)

=
∑

j

∫ t

0

〈ζ, Φj(s)〉H dβj(s) =
∫ t

0

〈ζ, Φ(s) dW (s)〉H .

We have proved so far that

(3.17) 〈v(t), ξ〉X = 〈ū, ζ〉H +
∫ t

0

〈A∗ζ, u(s)〉H ds +
∫ t

0

〈ζ, Φ(s) dW (s)〉H .

It only remains to prove∫
[0,∞)

〈v(t, κ), ζ〉H ν(dκ) =
∫ t

−∞
〈a(t− s)u(s), ζ〉H ds.

If we recall the definition of u(t) =

{
Jv(t), t > 0
u0(t), t ≤ 0,

we obtain

∫ t

−∞
〈a(t− s)u(s), ζ〉H ds =

∫ 0

−∞
〈a(t− s)u0(s), ζ〉H ds +

∫ t

0

〈a(t− s)Jv(s), ζ〉H ds.

We then exploit the definition of a(t); the first term becomes∫ 0

−∞
〈a(t− s)u0(s), ζ〉H ds = 〈

∫ 0

−∞

∫
[0,∞)

e−κ(t−s) ν(dκ)u0(s) ds, ζ〉H

= 〈
∫

[0,∞)

e−κt

∫ 0

−∞
e−κ(−s)u0(s) ds ν(dκ), ζ〉H

= 〈
∫

[0,∞)

e−κtv(0, κ) ν(dκ), ζ〉H ,

the second term becomes∫ t

0

〈a(t− s)Jv(s), ζ〉H ds = 〈
∫ t

0

∫
[0,∞)

e−κ(t−s) ν(dκ)Jv(s) ds, ζ〉H

= 〈
∫

[0,∞)

∫ t

0

e−κ(t−s)Jv(s) ds ν(dκ), ζ〉H ,

and the thesis follows from the representation (3.10).

4. Long time behavior of the solution

We introduce the dynamical system Pt(·) determined by the stochastic problem (3.4) on the
state space X. Let v = v(t, x) be the process solution to (3.4) with initial condition x. Then, for
φ ∈ Bb(X), t ≥ 0 and x ∈ X, we define

Ptφ(x) = E[v(t, x)].

It is interesting to note that this system is closely related to a stochastic Volterra equation; despite
of this, it is a Markov process.
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Our aim is to show that, under some additional assumptions, the stochastic problem (3.4) shows
some asymptotic properties and, in particular, it admits an invariant measure.

Assumption 4.1. The operator function Φ(t) is identical to an operator Φ in L2(U,H) and there
exists γ ≥ 0 such that (AγΦ)∗ is a bounded operator H → U .

There exists a β < 1 such that A−(γ+ β
2 ) (where γ is the constant from the previous assumption)

is an Hilbert-Schmidt operator on H.
As far as the kernel a(t), we require an integrability condition a(t) ∈ L1(0,∞). Notice that this

is equivalent to require α̂(0) < ∞.

Theorem 4.2. There exists (at least) an invariant measure for equation (3.4).

Proof. It is known, cf. Da Prato & Zabczyk [4], that in order to get the thesis it suffices to prove
that

(4.1) sup
t≥0

Tr
∫ t

0

esBΨΨ∗esB∗
ds < ∞.

Let {fj} be an orthonormal basis in X; we have

Tr
∫ ∞

0

esBΨΨ∗esB∗
ds =

∞∑
j=1

∫ ∞

0

〈esBΨΨ∗esB∗
fj , fj〉X ds

=
∞∑

j=1

∫ ∞

0

〈Ψ∗esB∗
fj ,Ψ∗esB∗

fj〉U ds

=
∞∑

j=1

∫ ∞

0

‖Φ∗P ∗(1−B)∗esB∗
fj‖2

U ds

by Plancherel’s theorem

Tr
∫ ∞

0

esBΨΨ∗esB∗
ds =

∞∑
j=1

∫
R
‖F(Φ∗P ∗(1−B)∗e·B

∗
fj)(s)‖2

U ds

=
∞∑

j=1

∫
R
‖Φ∗P ∗(1−B)∗(is−B∗)−1fj‖2

U ds

=
∞∑

j=1

∫
R
‖Φ∗[(−is−B)(1−B)P ]∗fj‖2

U ds

which is equal to

(4.2)
∫

R
‖[(−is−B)−1(1−B)P ]Φ‖2

HS ds

where ‖ · ‖HS is the Hilbert-Schmidt norm of operators from U to X. In order to prove convergence
of the integral, we need to consider the singularity in zero and the convergence at infinity. By the
symmetry of the estimates, we may consider the integrals in (0, 1) and in (1,∞), respectively; as for
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the first, we have, from Lemma 2.27,∫ 1

0

‖[(−is−B)−1(1−B)P ]Φ‖2
HS ds =

∞∑
j=1

∫ 1

0

‖[(−is−B)−1(1−B)P ]Φgj‖2
X ds

=
∞∑

j=1

∫ 1

0

∫
[0,∞)

(κ + 1)
∥∥∥∥ 1

κ + is
R(isâ(is), A)Aβ/2A−(γ+β/2)AγΦgj

∥∥∥∥2

H

ν(dκ) ds

≤
∫ 1

0

∫
[0,∞)

κ + 1
κ2 + s2

‖R(isâ(is), A)Aβ/2‖2
L(H,H)

‖A−(γ+β/2)‖2
HS‖AγΦ‖2

L(U,H) ν(dκ) ds

≤ C

∫ 1

0

∫
[0,∞)

κ + 1
κ2 + s2

ν(dκ) ds

using Fubini’s theorem, after a rescaling we get

≤ C

∫
[0,∞)

(1 +
1
κ

)
∫ 1/κ

0

1
1 + s2

ds ν(dκ)

≤ C

∫
[0,∞)

(1 +
1
κ

) min(1,
1
κ

) ν(dκ)

≤ C

∫
[0,1)

ν(dκ) + C

∫
[0,∞)

1
κ

ν(dκ) + C

∫
[1,∞)

1
κ2

ν(dκ)

which is finite due to the properties of ν and the assumption on the finiteness of

â(0) =
∫

[0,∞)

1
κ

ν(dκ) < ∞.

We now turn to consider the behavior at infinity. We start again from Lemma 2.24, Lemma 2.27
and the assumptions on A and Φ∫ ∞

1

‖[(−is−B)−1(1−B)P ]Φ‖2
HS ds =

∞∑
j=1

∫ ∞

1

‖[(−is−B)−1(1−B)P ]Φgj‖2
X ds

=
∫ ∞

1

|â(is)|‖R(isâ(is), A)Aβ/2‖2
L(H,H)‖A

−(γ+β/2)‖2
HS‖AγΦ‖2

L(U,H) ds

≤ C

∫ ∞

1

sβ−2 1
|â(s)|1−β

ds

≤ C

(∫ ∞

1

s−1−ε/β ds

)β (∫ ∞

1

s(2β+ε−2)/(1−β) 1
|â(s)|

ds

)1−β

and the last term is bounded provided we choose ε such that 0 < ε
(1−β) < α(a), which is possible

since β < 1 and α(a) is positive due to Assumption 2.4.

We further search for an estimate like (4.1) in interpolation spaces Xη, η > 0. Let us recall some
tools that we shall use in the following.
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The norm in the space Xη is given by the following integral, where c > 1 is arbitrary

‖x‖2
η =

∫ ∞

c

t2η−1‖(1−B)R(t, B)x‖2
X dt;

the identity in Lemma 2.27 reads

[R(s,B)(1−B)P ]u(κ) =
1

s + κ
R(sâ(s), A)u;

Starting from (4.2), assume that gj is an orthonormal basis in U ; hence we are concerned with
the quantity

∞∑
j=1

∫
R
‖[R(−is, B)(1−B)P ]Φgj‖2

η ds

=
∞∑

j=1

∫
R

∫ ∞

c

t2η−1‖(1−B)R(t, B)[R(−is, B)(1−B)P ]Φgj‖2
X dt ds

In the above expression, we can compute

(1−B)R(t, B)R(−is, B)(1−B)P

=(1− t)R(t, B)R(−is, B)(1−B)P + R(−is, B)(1−B)P

=
1− t

t + is
[R(−is, B)−R(t, B)](1−B)P + R(−is, B)(1−B)P

=
[

t− 1
t + is

R(t, B) +
1 + is

t + is
R(−is, B)

]
(1−B)P.

Now we use Lemma 2.27 to obtain

[(1−B)R(t, B)R(−is, B)(1−B)PΦgj ](κ)

=
1 + is

t + is

1
κ− is

R(−isâ(−is), A)Φgj +
t− 1
t + is

1
κ + t

R(tâ(t), A)Φgj .

We use this formula in the previous computation to get

(4.3)
∞∑

j=1

∫
R
‖[R(−is, B)(1−B)P ]Φgj‖2

η ds

=
∞∑

j=1

∫
R

∫ ∞

c

∫
[0,∞)

t2η−1
∥∥∥( 1 + is

(κ− is)(t + is)

)
R(−isâ(−is), A)Φgj

+
1

κ + t

t− 1
t + is

R(tâ(t), A)Φgj

∥∥∥2

H
ν(dκ) dt ds

We shall consider the two terms separately. The second term is handled by Lemma 4.4; the first
term is studied below.

Lemma 4.3. The first term in the estimate (4.3) is bounded, provided that the following condition
holds:

(4.4)
∫ ∞

c

t2η+β−2 1
|â(t)|1−β

dt < ∞.
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Proof. We have to estimate

∞∑
j=1

∫ ∞

−∞

∫ ∞

c

t2η−1

∥∥∥∥1 + is

t + is

1
κ− is

R(−isâ(−is), A)Φgj

∥∥∥∥2

dsdt

=
∞∑

j=0

∫ ∞

−∞

∫
[0,∞)

∫ ∞

c

t2η−1 1 + s2

t2 + s2

κ + 1
κ2 + s2

‖R(−isâ(−is)A)Aβ/2‖2 ‖A−β/2Φgj‖2 ν(dκ) dt ds

≤ C

∫ ∞

−∞

[∫ ∞

c

t2η−1

t2 + s2
dt

] [∫
[0,∞)

κ + 1
κ2 + s2

ν(dκ)

]
(1 + s2)‖R(−isâ(−is), A)Aβ/2‖2 ds.

We split the integral with respect to s in the intervals [0, 1] and [1,∞); of course, the negative part
is estimated the same way.

Since 0 is in the resolvent set of A, we infer that for s ∈ [0, 1], the term

(1 + s2)‖R(−isâ(−is), A)Aβ/2‖2

is bounded. We estimate the integral with respect to t:

∫ ∞

c

t2η−1

t2 + s2
dt = s2η−1−2+1

∫ ∞

c/s

τ2η−1

1 + τ2
dτ ≤ s2η−2

∫ ∞

c/s

τ2η−3 dτ = s2η−2 1
2− 2η

( c

s

)2η−2

= C.

We know already from the proof of Theorem 4.2 that∫ t

0

∫
[0,∞)

κ + 1
κ2 + s2

ν(dκ) ≤ C.

Combining all these estimates we find that

∫ 1

0

[∫ ∞

c

t2η−1

t2 + s2
dt

] [∫
[0,∞)

κ + 1
κ2 + s2

ν(dκ)

]
(1 + s2)‖R(−isâ(−is), A)Aβ/2‖2 ds ≤ C < ∞.

For the interval s ∈ [1,∞) we estimate

‖R(−isâ(is), A)Aβ/2‖2 ≤ C(s|â(is)|)β−2.

The integral with respect to t is estimated by∫ ∞

c

t2η−1

t2 + s2
dt = s2η−2

∫ ∞

0

τ2η−1

1 + τ2
dτ ≤ Cs2η−2.

The integral with respect to κ is estimated by∫
[0,∞)

κ + 1
κ2 + s2

ν(dκ) = <(â(is))− 1
s
=(â(is)) ≤ C|â(is)|.
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Combining these estimates we obtain∫ ∞

1

[∫ ∞

c

t2η−1

t2 + s2
dt

] [∫
[0,∞)

κ + 1
κ2 + s2

ν(dκ)

]
(1 + s2)‖R(−isâ(−is), A)Aβ/2‖2 ds

≤ C

∫ ∞

1

s2η−2|â(is)|s2sβ−2|â(is)|β−2 ds

= C

∫ ∞

1

s2η+β−2|â(is)|β−1 ds

≤ C

∫ ∞

1

s2η+β−2|â(s)|β−1 ds

and the latter integral is bounded by assumption (4.4).

Lemma 4.4. The second term in the estimate (4.3) is bounded, provided that condition (4.4) is
satisfied.

Proof. We are concerned with the quantity

I :=
∞∑

j=1

∫
R

∫ ∞

c

∫
[0,∞)

t2η−1(κ + 1)
∥∥∥ 1

κ + t

1− t

t + is
R(tâ(t), A)Φgj

∥∥∥2

H
ν(dκ) dt ds

With the usual assumptions on A and Φ we obtain

I ≤
∫

R

∫ ∞

c

t2η−1

(∫
[0,∞)

(κ + 1)
(κ + t)2

ν(dκ)

)∣∣∣∣ 1− t

t + is

∣∣∣∣2 ‖R(tâ(t), A)Aβ/2‖2 dt ds

≤ C

∫
R

∫ ∞

c

t2η−1â(t)
t2

t2 + s2
|tâ(t)|β−2 dt ds

≤ C

∫ ∞

c

t2η−1â(t)t|tâ(t)|β−2 dt = C

∫ ∞

c

t2η+β−2 1
|â(t)|1−β

dt

which is bounded provided that (4.4) holds.

We first remark that it is possible to give a sufficient condition on η and β, in terms of α(a),
which replace (4.4):

(4.5) 2η < (1− β)α(a).

Notice moreover that a solution to (3.4) exists in the space Xη for arbitrary η < 1
2α(a), provided

the initial condition is suitably regular.

Theorem 4.5. Assume that Assumption 4.1 holds, and further choose η such that (4.4) holds
(compare also (4.5)). Then there exists (at least) one invariant measure for equation (3.4) which is
concentrated on the space Xη.

The above theorem implies the existence of a stationary solution v̄ of (3.4); we may wonder if this
result implies the existence of a stationary solution also of (3.2). This is the case if the solution v̄ is
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suitably regular; actually, in order to apply Lemma 2.29, it must be η > 1−α(a)
2 , hence we write the

following condition on β

(4.6) β <
2α(a)− 1

α(a)
.

Corollary 4.6. Assume that Assumption 4.1 holds, with a constant β that satisfies (4.6). Define
the solution u(t) as in Theorem 1.1 in terms of the solution v(t) ≡ v̄ of (1.2), so that u(t) is a
stationary solution, in the sense that u(t) ≡ ū for every t > 0, is a square integrable random variable
in Hµ for µ < 1− 1

2α −
β
2 .
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