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Abstract – In this paper, a novel context-sensitive classification technique based on 

Support Vector Machines (CS-SVM) is proposed. This technique aims at exploiting the 

promising SVM method for classification of 2-D (or n-D) scenes by considering the spatial-

context information of the pixel to be analyzed. In greater detail, the proposed architecture 

properly exploits the spatial-context information for: i) increasing the robustness of the 

learning procedure of SVMs to the noise present in the training set (mislabeled training 

samples); ii) regularizing the classification maps. The first property is achieved by 

introducing a context-sensitive term in the objective function to be minimized for defining the 

decision hyperplane in the SVM kernel space. The second property is obtained including in 

the classification procedure of a generic pattern the information of neighboring pixels. 

Experiments carried out on very high geometrical resolution images confirm the validity of 

the proposed technique. 

 

Keywords – Support Vector Machine, Supervised Classification, Image Classification, 

Context-Sensitive Classification, Remote Sensing. 
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I. INTRODUCTION 

Image classification is one of the most common applications of the automatic analysis of remote 

sensing data. Although often in real applications and commercial software packages image 

classification problems are addressed according to pixel-based (context-insensitive) classifiers, 

from a theoretical and practical point of view it is very important to develop classification 

techniques capable to exploit the spatial-context information present in the images. In this 

framework, it seems particularly relevant to develop context-sensitive classification methods 

capable to properly exploit the most promising pixel-based classification methodologies recently 

proposed in the literature. Among them, one of the most effective approaches based on machine 

learning consists in Support Vector Machines (SVMs). SVMs, originated from the statistical 

learning theory formulated by Vapnik [1], are a distribution-free classification approach, which 

proved very effective in many context-insensitive classification problems. SVM-based classifiers 

have four main advantages with respect to standard machine learning techniques based on neural 

networks: i) simple architecture design; ii) relatively low computational complexity; iii) learning 

phase associated with the optimization of a convex cost function; iv) excellent generalization 

capability [1]. In particular, advantage iv) is very relevant in image classification problems. In 

greater detail, designing a classifier characterized by good generalization properties requires 

assuming the statistical independence of training samples. In image classification problems this 

assumption is frequently violated due to high dependency between neighboring pixels; thus, the 

excellent generalization ability of SVMs and their robustness to the Hughes phenomenon seem very 

suitable to the solution of such kind of problems. However, at the present, only very few 

preliminary investigations on the exploitation of SVM in the framework of a context-sensitive 

architecture have been proposed [2], [3]. These investigations are based on the estimation of the 

statistical terms of classes from the output of SVMs and on their integration in a Markov Random 

Field (MRF) framework. However, they are not related to the definition of an intrinsically context-
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sensitive SVM technique. 

In this paper, a novel Context-Sensitive SVM (CS-SVM) technique is proposed. This technique 

aims at exploiting the promising SVM method for classification of 2-D (or n-D) scenes by 

considering the spatial-context information of the pixel to analyze. The proposed novel approach 

has two main properties: i) it exploits the spatial-context information for the definition of the 

hyperplane in the SVM kernel space, by properly defining a context-sensitive cost function; ii) it 

considers the spatial-context information in the classification phase, relating the classification 

output for a generic pixel to the behavior of other pixels in a predefined neighborhood system of it. 

The first property, which is very important, results in an increased robustness of the learning 

procedure to the noise present in the training set (mislabeled training samples). The second property 

involves regularized classification maps, in which the noise is sharply reduced. 

II.  PROPOSED CONTEXT-SENSITIVE SVM CLASSIFIER 

 
Let X  denote the d -dimensional remote-sensing image (of size ×I J  pixels) to be classified. 

Let us assume that the available training set T  is made up of n  patterns, i.e. == 1{ }n
i iT x , i ∈x X . For 

the sake of simplicity, since SVMs are binary classifiers, we focus the attention on the two-class 

case. Let == 1{ }n
i iY y  denote the set of labels associated with training samples, where 

∈ − , +{ 1 1}iy . For the generalization to the multiclass case, many different architectures can be 

adopted (e.g., One-Against-One, One-Against-All [4]). We define with Δ ( )m x  a local neighborhood 

system (whose shape and size depend on the specific investigated image and application) of the 

generic pattern x , where m  represents the number of pixels considered in the neighborhood. 

In order to characterize the spatial-context information of a generic pattern x , we define the 

mean contextual value %x  as follows:  

 
( )

1

m

j
jm ∈Δ

= ∑%
x

x x  (1) 

The main idea at the basis of the proposed methodology is to include the spatial-context 
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information in two different phases of the SVM algorithm: i) the learning phase (i.e., definition of 

the separation hyperplane in the kernel space); ii) the testing phase (i.e., production of the 

classification map). In the following, these two phases are analyzed in detail. 

 

A. Context-Sensitive Learning Phase  

The rationale of defining a context-sensitive learning phase of the classifier consists in reducing 

the effects of possible mislabeled pixels (i.e., pixels with a wrong label) present in the training set 

in the estimation of the classifier parameters. This is a critical problem of supervised classification 

of remote sensing images, because often training sets, which are defined according to ground truth 

surveys (or photointerpretation), are affected by a non-negligible number of mislabeled samples. 

The proposed methodology properly weights the importance of each pattern in the training 

procedure according to the behavior of unlabeled pixels in its neighborhood system. This is 

achieved by defining a proper cost function, which is composed of three main terms: i) a standard 

term that expresses the concept of margin maximization; ii) a standard penalization term, which 

regularizes the cost function with respect to classification errors on training samples (considered 

without their contextual information); iii) a novel context term (composed of a number of 

contributions depending on the order of the considered neighborhood system) that regularizes the 

learning process with respect to the behavior of pixels in the neighborhood of the pixel under 

investigation. The resulting bound minimization problem is the following: 

 ( )( )
( )( )

ξ ϕ

φ ξ
φ ϕ

ξ ϕ

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪,

= =⎩ ⎭

⎧
+ +⎪

⎪⎪ + ≥ −⎨
⎪ + ≥ − ∀ =
⎪

≥⎪⎩

∑ ∑

% K

2
, , 1 1

1min
2

, 1
, 1 1, ,

, 0

n n

i ib i i

i i i

i i i

i i

C K

y b
y b i n

w
w

x w
x w

ξ ϕ

 (2) 

where w  is the vector normal to the separating hyperplane, b  is a constant such that b
w  

represents the distance of the hyperplane from the origin, φ ⋅( )  is a non-linear mapping function, 

ξ =1{ }n
i i  are slack variables that control the empirical risk (i.e., the number of training errors) and 
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+∈ � 0C  is a regularization parameter which tunes the trade-off between the empirical error and the 

complexity term (i.e., the generalization capability). With respect to standard context-insensitive 

SVMs, we also introduce the slack variables ϕ =1{ }n
i i , defined as: 

 ( )( ){ }ϕ ϕ φ= = − , +% %( , , , ) max 0,1i i i i i iy b y bx w x w  (3) 

which depend on % ix  and thus permit to consider the contextual information. The rationale of the use 

of this term in the learning phase is based on the assumption that pixels in the neighborhood of ix  

have a high probability to have the same label iy . This is modeled according to the use of the mean 

contextual value, which imposes a constraint in the learning of the classifier. The term +∈� 0K  

tunes the penalty for the contextual information. In particular, for a small value of the ratio C K  the 

spatial context has the highest relevance in defining the separation hyperplane; otherwise, the 

greatest importance is given to the error on the training patterns. 

By exploiting the Lagrange theory, we define the Lagrange function for the primal problem as 

follows: 

 ( )( )
( )( )

ξ ϕ

α φ ξ ξ

β φ ϕ ϕ

= =

= =

= =

=

⎛ ⎞+ + +⎜ ⎟
⎜ ⎟

⎡ ⎤⎜ ⎟= = − + − + − +⎣ ⎦⎜ ⎟
⎜ ⎟⎡ ⎤− + − + −⎜ ⎟⎣ ⎦⎝ ⎠

∑ ∑

∑ ∑

∑ ∑%

2

1 1

1 1

1 1

( , , , , , , , )
1
2

, 1

, 1

n n

i i
i in n

i i i i i i
i in n

i i i i i i
i i

L b

C K

L y b r

y b s

w

w

x w

x w

ξ ϕ α β r s

 (4) 

 
where α =1

n
i , β =1

n
i , =1

n
ir , =1

n
is are multipliers associated with training patterns, mean contextual values, 

non-contextual slack variables ξ =1{ }n
i i  and contextual slack variables ϕ =1{ }n

i i , respectively. 

Accordingly, it is possible to reformulate (2) as: 

 
ξ ϕ α β

⎧⎪
⎨
⎪⎩ ≥ ∀ = K

, , , , ,
max { ( , , , , , , , )}

, , , , , 0 1, ,
b

i i i i i i

L b

r s i n
w

w
ξ ϕ α β

ξ ϕ α β r s
 (5) 

 
 On the basis of the proposed cost function, we adjust the Karush-Kuhn-Tucker conditions, 
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which are necessary and sufficient conditions for solving (5): 

 

( )( )
( )( )
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      ∀ = K1, ,i n  (6) 

 
Finally, we can formulate the dual problem as follows: 

 

α α
α β β β

α β

α β

α
β

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
= = =⎪ ⎪

⎪ ⎪
⎩ ⎭

=

⎧ +⎡ ⎤⎪ ⎢ ⎥+ − ⋅ +⎪ ⎢ ⎥⎪ ⎢ ⎥⎣ ⎦⎪
⎨

+ =⎪
⎪ ≤ ≤ ∀ =⎪

≤ ≤⎪⎩

∑ ∑∑

∑

% %

%

K

, 1 1 1

1

( , )
1max ( ) ( , )
2 2 ( , )

( ) 0

0 1, ,
0

i j i jn n n

i i i j i j i j
i i j

i j i j
n

i i i
i

i

i

k
y y k

k

y

C i n
K

x x
x x
x x

α β

 (7) 

 
where, according to the Mercer’s theorem, ⋅ ⋅( , )k  is a kernel function such that φ φ⋅ ⋅ = ⋅ ⋅( , ) ( ), ( )k . 

One can note that, whether α =1
n
i  are superiorly bounded by C , the upper bound for β =1

n
i  becomes 

K . It is possible to prove that the cost function maintains the important convexity property (which 

is typical of SVMs). This is a fundamental aspect, because it results in the possibility of using 

quadratic programming methods for solving the dual optimization problem. In particular, in the 

proposed technique, a properly modified version of the Sequential Minimal Optimization (SMO) 

algorithm [5] has been used. After the Lagrange multipliers α =1
n
i  and β =1

n
i  are fixed, for the generic 

pixel x  the output of the discriminant function is given by: 

 [ ]α β
=

= ⋅ + = + +∑ %
1

( ) ( , ) ( , )
n

i i i i i i
i

f b y k y k bx w x x x x x  (8) 

B. Context-Sensitive Classification Phase 

The rationale of the context-sensitive classification phase consists in producing regularized 
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classification maps, in which the prior information on the spatial autocorrelation of images in the 

scene is properly considered. To this end, two different strategies can be used: i) to extract the 

probabilistic terms of classes from the output of SVMs according to a logistic regression procedure 

and integrate these probabilities in a Markov Random Field (MRF) framework [2], [3]; ii) to 

include directly in the definition of the output of SVM a regularization term. In the approach 

presented in this paper, we considered the latter strategy. 

For a given pixel x , the final predicted label of the proposed CS-SVM, ŷ , is obtained according 

to: 

 
∈Δ

⎡ ⎤
⎡ ⎤= = +⎢ ⎥⎣ ⎦

⎣ ⎦
∑

( )

ˆˆ sgn ( ) sgn ( ) ( )
m

j
j

Qy f f f
m x

x x x  (9) 

where the decision function depends on two terms: 

a term related to the position of the considered pixel with respect to the discriminant function 

(i.e., the hyperplane in the kernel space derived according to the context-sensitive learning 

procedure described in the previous paragraph); 

a term that properly considers the positions (with respect to the discriminant function) of the 

pixels in the neighborhood system of the analyzed pattern. 

The second term plays the role of a regularization term driven from the spatial-context 

information included in the neighborhood system of the analyzed pixel x . In particular, it depends 

on the average of the outputs of the discriminant function for the pixels in the neighborhood (see 

Fig. 1). 

The above-mentioned terms are related by the spatial-regularization parameter +∈� 0Q , which 

tunes the effects of the contextual information on the classification map (i.e., it tunes the trade-off 

between the regularization of the map and the preservation of geometrical details). For high values 

of Q  the final classification map may exhibit a loss of precision in representing the details of the 

image; accordingly, a proper tuning phase of Q  is necessary. 
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(a)                  (b) 

 

Figure 1   Example of classification outputs obtained by: (a) a standard context-insensitive 

SVM; (b) the proposed CS-SVM. A first order neighborhood system (i.e., = 4m ) is 

considered. The investigated pixel is represented as a square, whereas its 4 neighboring pixels 

are represented as circles. Class “+1” is associated with the blue color; class “-1” is associated 

with yellow color. 

III. EXPERIMENTAL RESULTS 

To assess the effectiveness of the proposed approach, several experiments were carried out on a 

data set made up of a very high-resolution multispectral image acquired by the Ikonos satellite over 

the city of Ypenburg (Netherlands) (Fig. 1 (a)). The 4 [m] spatial resolution spectral bands have 

been reported to a 1 [m] spatial resolution according to a Pansharpening procedure. The available 

ground truth was used to derive a training set and a test set for the considered image (see Table. I). 

 

TABLE I.  NUMBER OF PATTERNS IN THE TRAINING AND TEST SETS 
Class Training Set Test set 
Grass 920 1073 
Roads 925 752 

Small-
aligned  489 399 

White-roof 919 819 
Gray-roofs 800 671 B

ui
ld

in
gs

 

Red-roof 253 184 
Shadow 500 461 

 

The experiments were conducted in two different conditions: i) considering the available original 
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training set; ii) simulating the inclusion of samples with wrong labels in the training set (different 

training sets with increasing percentage of wrong samples were defined). The results provided by 

the proposed CS-SVM were compared with those achieved by a standard context-insensitive SVM 

classifier. A One-Against-All strategy has been adopted for defining a multiclass classifier from 

binary SVMs. 

In the first experiment, both the proposed CS-SVM and the standard SVM were trained on the 

original training set. We used in both cases Gaussian kernels and optimized the regularization 

parameters and the spread of the kernels according to a grid search model-selection strategy. The 

same parameters were considered for all the binary SVMs included in each multiclass architecture. 

Different trials varying the weight of the contextual term Q  (see (9)) in the CS-SVM were 

performed. For space constraint here only the results for =2Q  are reported. As one can see from 

Table II, the use of the contextual information allowed to increase of 2% the overall accuracy of the 

classification process. Furthermore, by a qualitative analysis of the classification maps (compare 

Fig. 1 (b) and (c)) it is possible to conclude that, as expected, the map obtained with the proposed 

CS-SVM is more regularized than the one obtained with the standard context-insensitive SVM. 

In the second experiment, we compared the effectiveness of the proposed CS-SVM with that of 

the standard SVM, introducing in the training set different percentages of wrong samples. In order 

to better understand the properties of the proposed CS-SVM, in this experiment we also analyzed 

separately the effect of the context-sensitive learning of SVM and that of the use of the contextual 

information both in the learning and in the classification phases. By analyzing Table III one can see 

that the higher is the percentage of wrong patterns in the training set, the higher is the accuracy 

improvement obtained using the spatial context information in the training and classification 

phases. For example, with 20% wrong patterns in the training set, the use if the context-sensitive 

learning procedure increased the Kappa coefficient of 0.03, while the use of the context information 

in both the learning and the classification phases sharply increased the Kappa coefficient of more 

than 0.06. 
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IV. DISCUSSION AND CONCLUSION 

 
In this paper, a novel context-sensitive image-classification approach based on SVMs has been 

proposed. The proposed architecture properly exploits the spatial-context information in both the 

learning and the classification phases of the SVM. This involves: i) an increase of the robustness of 

the learning procedure of SVMs to the noise present in the training set (mislabeled training 

samples); and ii) proper regularization of the classification map, in which isolated errors are 

eliminated. In order to obtain these properties we defined in the proposed CS-SVM: i) a modified 

cost function for identifying the decision hyperplane in the SVM kernel space 

 

TABLE II.  KAPPA COEFFICIENT AND OVERALL ACCURACY PROVIDED BY THE PROPOSED CS-SVM AND THE STANDARD  
SVM  

Classifier Kappa coefficient Overall accuracy (%) 
Standard SVM 0.9147 92.92 

CS-SVM 
( 2Q = ) 0.9376 94.83 

 
 

TABLE III.  KAPPA COEFFICIENT OF ACCURACY PROVIDED BY THE STANDARD SVM AND THE PROPOSED CS-SVM  

Wrong Pattern (%) Standard 
SVM 

Proposed CS-SVM 
(only training) 

Proposed CS-
SVM 

5% 0.8954 0.9077 0.9350 
13% 0.9010 0.9078 0.9307 
20% 0.8766 0.9070 0.9418 

 
 
 
during the learning phase, which contains a proper spatial-context cost term; ii) a decision strategy 

that considers the information of patterns in the neighborhood of the analyzed pixels. Experimental 

results carried out on high spatial resolution remote sensing images confirmed the effectiveness of 

the proposed context-sensitive approach, which significantly outperformed the standard context-

insensitive SVM classifier on different data sets (for space constraints in this paper we reported 

results obtained only on one of them). 
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(a) 
 

         
(b) (c) 

 

 
 

 

Figure 2 (a) Pansharpened Ikonos color composite image. (b) Classification map obtained 

with the standard SVM. (c) Classification map obtained with the proposed CS-SVM. 

 
 

V. REFERENCES 

[1] V. N. Vapnik, Statistical Learning Theory. New York: John Wiley & Sons, Inc., 1998. 

[2] F. Bovolo, L. Bruzzone, “A Context-Sensitive Technique Based on Support Vector Machines 

for Image Classification,” Proc. IEEE Pattern Recognition and Machine Intelligence 

Conference (PReMI 2005), Lecture Notes in Computer Science, Vol: 3776, Kolkata-India, 

18-22 December, 2005. 

[3] A.A. Farag, R.M.  Mohamed, A. El-Baz, “A unified framework for MAP estimation in remote 

       Shadow  Roads 

   White-Roof buildings 

    Gray-Roof buildings 

 Red-Roof buildings 

   Grass 

 Small-aligned buildings 



  

14 

sensing image segmentation,” IEEE Trans. Geosci. Rem. Sens., Vol. 43, No. 7, July 2005, pp. 

1617-1634. 

[4] N. Cristianini and J. Shawe-Taylor. An introduction to support vector machines and other 

kernel-based learning methods. Cambridge University press, U.K., 1995. 

[5] J. Platt, “Fast training of support vector machines using sequential minimal optimization,” in 

Advances in Kernel Methods: Support Vector Learning. MIT Press, pp. 185-208, 1998. 

 


