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Abstract--A significant improvement of block-based motion estimation strategies is presented, which provides fast computation 
and very low bitrate coding. For each block, a spatio-temporal context is defined based on nearest neighbors in the current and 
previous frames, and a prediction list is built. Then, the best matching vector within the list is chosen as an estimation of the block 
motion. Since coder and decoder are synchronous, only the index of the selected vector is needed at the decoder to reconstruct the 
motion field. To avoid the propagation of the error, an additional correction vector can be sent when prediction error exceeds a 
threshold. Furthermore, bitrate saving is achieved through an adaptive sorting of the prediction list of each block, which allows to 
reduce the entropy of the motion indexes. Tests demonstrate that the proposed method ensures a speed up over 1:200 as compared 
to full search, and a coding gain above 2, with a negligible loss of accuracy. This allows real-time implementation of VLBR 
software video coders on conventional PC platforms. 
 
Index Terms—Video coding, Motion estimation 
 

I. INTRODUCTION 

 
Block-based motion estimation (BME) is widely used in video coders due to the good trade-off between reconstruction 
quality and bitrate reduction. It defines a sparse array of motion vectors (motion field) associated to a regular block 
partitioning of the frame. Each vector is estimated by minimizing a local distance measure called Displaced Frame 
Difference (DFD), which is usually computed as the pixel-by-pixel difference (absolute, square, …) between the target 
block and the displaced blocks in a reference frame. In full-search (FS) approaches, all possible displacement vectors 
are considered within a predefined search window: this procedure provides the best possible match, but implies a huge 
computational load, inappropriate for real-time implementations. 
Several methods have been proposed in the literature to achieve an estimation performance close to full-search BME 
with a lower computation. A first class of techniques limits the number of DFD measures by choosing a reduced subset 
of positions within the search window: these methods are referred to as fast search methods [1, 2], and are usually based 
on descent algorithms applied to the DFD function. A second class of approaches is based on the reduction of the 
operations to be performed for each DFD: in [3, 4] the use of decimation strategies is proposed, combined with either 
full- or fast-search methods; in [5, 6] the use of less expensive error measures is suggested. 
Finally, adaptive methods represent a third class. In hierarchical methods, an initial estimation is performed at a coarse 
scale and progressively refined towards the higher resolution: at each stage only small corrections are introduced [7]. 
Hierarchical approaches are also used to achieve variable-size BBME [8], where higher computation/bitrate gains can 
be obtained by computing a non-uniform motion field. Another interesting approach is presented in [9], where motion 
estimation is performed through a two steps algorithm: first, a rough estimation of the motion vector is provided by 
considering a reduced subset of the spatial and temporal neighbors, then the search is refined by using a pixel-recursive 
approach. In [10], a fast motion estimation algorithm employs adaptive search patterns, taking into account matching 
criteria as well as statistical properties of object displacement. The selection of the appropriate search pattern is 
performed by exploiting the relationship between the motion vector and the DFD of each block. A reduction of the 
search time can also be achieved by estimating, for each block, the best starting point for motion estimation through a 
compensation of the search area based on the temporal and spatial correlation of the motion field [11]. 
A new class of techniques that is gaining interest is based on the exploitation of motion field redundancy to achieve 
effortless vector prediction. Two interesting proposals in this sense are provided in [12], where local correlation is 
introduced in a multiresolution BME, and in [13], where the spatio-temporal redundancy among motion vectors is used 
to achieve a more compact description of the field for VLBR video coding. 
In the present work we extend and improve the concept of vector prediction in order to attain a real-time BME, which 
efficiently exploits the local spatio-temporal correlation of the motion field. For each block of the frame to be 
compensated, the algorithm generates a prediction list containing the candidate motion vectors. A properly defined 
spatio-temporal context (the list of candidate vectors) is used for this purpose. A reduced number of DFD measures is 
then required to select the vector within the prediction list that provides the better compensation (target vector). To 
avoid error propagation, it is possible to refine the estimated motion vector when the compensation error exceeds a pre-
defined value. In this case, a reduced search window is used to ensure a low computational effort. Furthermore, in order 
to decrease the number of bits required to address the prediction list, a sorting strategy was developed that ensures a 
sharp reduction of the code entropy. 
The structure of the paper is as follows: in Section 2 the proposed method is explained in more detail, while in Section 3 
the experimental results are described and in Section 4 the conclusions are drawn. 
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II. CONTEXT -BASED BLOCK MOTION ESTIMATION AND CODING 

In Fig. 1, a complete scheme of the proposed technique (CB-BME) is shown. 
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Figure 1. Complete scheme of CB-BME technique 

The core of the system is the prediction module. It applies spatio-temporal prediction rules to generate a prediction list, 
which contains a set of candidate vectors for the estimation of the motion field at time k  (starting from a reference field 
at time k-h). The prediction list for each frame block is then sent to the block matching engine, which selects the 
displacement vector that minimizes the DFD. The selected vector is sent to the prediction correction module in order to 
correct errors above a given threshold. 
The information to be transmitted includes two items: the index associated to the selected vector within the prediction 
list, and the correction vector (if necessary). In order to efficiently encode the vector indexes, a further module is 
introduced in the scheme (called Index Sorter) that enhances the performance of the following entropy coder. 
The following paragraphs describe the different modules in detail, introducing also a brief analysis of the computational 
complexity of the technique. 

A. Spatio-temporal prediction 

The idea of using temporal correlation among successive frames to predict the motion field was proposed in the past in 
the framework of autocompensation  techniques [14, 15]. These methods hypothesize a motion invariance (a sort of 
inertia) between consecutive frames, which allows to extrapolate the motion field at time k  from a previous reference 
motion field estimated at time (k -h). Each vector is estimated by summing the adjacent vectors of the previous frame 
with appropriate weights. This prediction can be considered reliable if the sequence is characterized by slow and 
continuous motion. On the contrary, in the presence of strong temporal discontinuities it turns out to be very noisy and 
subject to error propagation. In [14], a generalization of the autocompensation technique is proposed, aimed at 
improving the prediction by adding some spatio-temporal information (called autocompensation-with-parameter). The 
BME algorithm presented in this paper (Context -Based BME, or CB-BME) is a significant evolution of the above 
technique, targeted to the efficient and low-cost spatio-temporal prediction of the motion field. 
Figure 2 presents a conceptual scheme of the prediction scheme. 
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Figure 2. Conceptual scheme of CB-BME 

For each B×B block )k,r(b  of the frame to be compensated (r = block spatial position, (k) = discrete temporal 
instant), a prediction list )k,r(Lp  of dimension )k,r(n p  is built, containing a set of motion vectors belonging to the 



spatio-temporal context of )k,r(b . A prediction vector )k,r(l*p  is then selected among the candidate vectors contained 
in the list: to this purpose, the compensation error )k,r(ei

p  is computed for each displaced block according to the 
prediction list, and the displacement that provides the minimum error )k,r(emin

p  is chosen. A particular attention is 
paid to the construction of the prediction list )k,r(Lp ; the following elements are always included: 
• the null element l1 0 0= ( , )  
• the motion vector h)k,r(vl2 −=  of the corresponding block in the reference frame; 
• the motion vectors of the blocks adjacent to )k,r(b  in the current frame, already calculated in the raster scan 

processing of the frame, i.e., )k),,(r(vl 113 −= , )k),,(r(vl 104 −=  and )),0,1((5 krvl −= ; 
• the motion vectors ( ) )k,r(,,1, Ξ=ξ− Lwithhk,W,rv a

* , belonging to the reference frame and falling, after 
autocompensation, within a window of dimension W Wa a× , W Ba = +2 1 , centered on the current block 
position. 

The terms l3 , l4  and l5  take into account the spatial correlation of the motion field, while the terms 1l , l2  and those 
generated by autocompensation exploit the temporal redundancy, thus achieving a quite accurate prediction model. 
To ensure that the best among candidate motion vectors is selected for )k,r(b , an exhaustive computation is performed 
on )k,r(Lp . This process requires )k,r(n p  DFD measures, where the number of vectors in the list is generally not 
fixed, as it strongly depends on the local motion activity in the sequence. Only average values can be estimated for a 
given class of video data. Furthermore, before performing blockmatching, )k,r(Lp  is scanned in order to delete 
repeated vectors and reduce in this way the length of the list. 
The spatio-temporal prediction employed in CB-BME is significantly more accurate than that presented by Kauff et al. 
in [9], where for each block only three candidate vectors are considered: the two vectors of the spatial neighbors and the 
vector of the block in the previous frame. An evidence of the advantages of CB-BME is provided in figure 3, where the 
average peak signal-to-noise ratio of the motion compensated frames is compared between the two prediction 
approaches (without encoding the compensation error). 
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Figure 3. Comparison between CB-BME and Kauff approach in terms of PSNR of the reconstructed frames (Claire video sequence, 

QCIF format). 

Clearly, the spatio-temporal prediction needs to be initialized with a starting motion field, which can be estimated using 
FS or one of the low-complexity methods presented in the introduction. 
In addition, figure 3 shows that the reconstruction quality drops down when the prediction is propagated for a large 
number of successive frames without error correction. For this reason, the next paragraph introduces a simple approach 
to avoid error propagation among successive motion compensated frames. 

B. Correction of spatio-temporal prediction 

The proposed spatio-temporal prediction provides an estimation of the motion field that is usually  quite close to the one 
produced by the full-search approach (in terms of DFD and visual perception). Nevertheless, some corrections are 
sometimes required, especially in the presence of fast or chaotic motion, to improve the compensation and limit possible 
error propagation problems. 
Furthermore, the statistical distribution of the difference vectors between CB-BME and FS-BME shows a peak on the 
null vector, and approximately display a central symmetry with respect to that point, with exponential-like behaviour 
(see fig. 4). This suggested to implement the correction of the spatio-temporal prediction using a BME module using a 
reduced search window. 
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Figure 4. Average distribution of the difference vectors between motion field estimated with FS-BME and spatio-temporal 

prediction (Flower Garden video sequence, CIF format). 

The refinement is activated on the basis of a threshold TH  applied to the DFD measure of the compensated block. For 
each estimated motion vector )k,r(l*p  that produces an error )k,r(e min

p > TH , a correction vector ( )k,rci  is 
calculated by inspecting a search window of dimensions 3x3 pixels centered on the prediction vector. 
The threshold TH  represents  the maximum tolerated error for a block and it is set through empirical evaluations. In the 
paper, the employed DFD measure is the Mean-Absolute-Error (MAE) per pixel and it is compared with the threshold 
TH . Typical values of TH  are between 5 and 15. 
This parameter allows also to trade off between reconstruction quality and compression ratio, since low values of TH  
imply high quality and low compression ratio, while higher values bring lower quality but higher compression ratios. 
The average behaviour of the system is represented in figure 5. 

C. Entropy minimization of the motion prediction 

In this paragraph, a lossless technique is introduced that allows to reduce the bitrate for the transmission of the motion 
field using the CB-BME scheme. 
Figure 6-a shows the histogram of the indexes transmitted by the motion prediction module, applied to a frame of the 
Flower Garden sequence. Such indexes are used at the decoder to select the correct motion vector within the prediction 
list. As it can be guessed from the observation of the chart, the statistical distribution of indexes shows a relatively high 
entropy value (2,64 bits), thus leading to a suboptimal code. 
In order to reduce the impact of the prediction on the overall bitrate, for each block a sorting procedure is applied to the 
vectors belonging to the prediction list. The underlying concept is quite simple: depending on the context, some vectors 
contained in the prediction list are more likely to be used than others. By associating the most likely vectors to the lower 
indexes, it is possible to minimize the entropy of the sequence of indexes to be transmitted. This sorting procedure 
should be of course reproducible at the decoder without requiring any extra  information, in order to achieve an effective 
gain. Different approaches can be set up to this purpose. In our tests we considered four different classes of methods, 
and we compared them in terms of effectiveness in entropy reduction and complexity: 
• the “most-frequently used” principle; 
• the “most-recently used” principle; 
• filtering of the contextual neighbors; 
• advanced predictors. 
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Figure 5. An example of the behaviour of CB-BME in terms of average number of bits per frame (a) and PSNR (b) versus the 

threshold TH  (Claire video sequence, QCIF format). 

 
The first two approaches mimic the behaviour of caching systems, where the probability of using a given object is 
considered in some way proportional to the previous use of the same object in a local context. The most-frequently-used 
method considers more probable the vector that shows a higher frequency of occurrence over a given area. 
The most-recently-used approach is similar to the former one, but includes proportionality to the topological distance of 
the used vector from the current one. Most recently used motion vectors can be simply computed by using the motion 
vectors selected for the previous block or macro-block or by estimating the probabilities of occurrence over a 
rectangular area, properly weighted on the basis of the distance from the considered block. Fig. 7-b shows sample 
weighting coefficients using city-block distance. 
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Figure 6. Statistical dis tribution of the indexes representing the chosen prediction vectors before (a) and after (b) sorting (Claire 
video sequence, QCIF format). ‘NULL’ represents the null vector, ‘PREV’ is the motion vector of the same block in the previous 

frame, ‘An’ are the terms deriving from autocompensation, and ‘Sn’ the spatial neighbors. 

The last two methods are far more complex. The filtering approach consists in applying a (linear or non-linear) filter to 
the vectors contained in the context region, and sorting the indexes of the prediction list on the basis of the Euclidean 
distance from the resulting vector. Examples of possible filters are mean, median, low pass, etc. [16] 



Real prediction techniques need a dedicated module for the estimation of the best candidate vector to drive the sorting 
procedure. Inside this class, we can mention neural network predictors, LMSE estimators, etc. Even if such kinds of 
prediction techniques are far more accurate than the other ones, they are not implemented in this paper because of the 
computational complexity as well as the relative slow speed of such approaches. However, in cases where real-time and 
low complexity are not mandatory, neural network or LMSE estimators could probably be very useful in providing a 
good and faithful prediction of the motion vectors. 
In the experimental testing presented in this paper, we preferred the most-frequently-used strategy, for it is 
characterized by a low computational complexity and a sufficiently good performance. An intuitive way to implement 
it, is the following: 
1. consider a contextual region of a maximum of 5x5 blocks (the shaded blocks in Fig. 7), and compute the usage 

statistics of the motion vectors associated to the blocks enclosed in such a region; 
2. sort the prediction list by ordering the vectors on the basis of the probability of occurrence in the contextual area; 
3. perform motion estimation for current block using the sorted prediction list, as described in paragraph 2.1 
4. transmit the index of the selected vector in the ordered list, entropy coded. 
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Figure 7. The region shaded in grey is the contextual area considered for statistics evaluation (a) and the corresponding city-block 
distance modifier (b). 

Fig. 6-b shows the results of the above algorithm. It can be observed that this approach exploits the notable amount of 
local correlation between vectors belonging to the same motion field. This is due to the fact that, in a given region of a 
frame, motion vectors associated to neighboring blocks have similar orientation, since “moving objects” in the scene 
usually span over several adjacent blocks. 
The statistical distribution of the indexes deriving from the use of this technique is characterized by an effective 
reduction of the entropy (in the example 1.05 bits instead of 2.64), and consequently by a more compact code. 
Moreover, it does not require any information overhead, since the decoder is able to build the statistics directly from the 
decoded stream. The only cost of the operation is represented by the extra computation required by the sorting 
procedure (to be applied at both encoder and decoder), which is almost negligible as explained in the following. 
A further problem is how to notify the decoder about the need of sending prediction correction vectors. An efficient 
solution lies in adding a new index to the prediction list )k,r(Lp  in position 1+)k,r(n p , having the meaning of a 
prediction fault. When the compensation error is higher than the thres hold TH , the prediction fault index is sent, 
followed by the actual prediction vector )k,r(l*p  and the correction vector, in sequence. The correction vector is 
usually estimated over a 3x3 search window centered on )k,r(l*p . No entropy coding is used for the correction vector, 
since the average statistical distribution of symbols is nearly uniform. An alternative solution after a prediction fault, is 
to transmit the complete motion vector computed with a fast method. This approach ensures the maximum protection 
against error propagation, but increases the computational complexity, due to the need of performing a block-based 
motion estimation over a large window. 

D. Computational complexity 

The computational load of the motion estimation procedure is not fixed, and mainly depends onto two factors: the level 
of temporal activity of the sequence and the accuracy of the initial motion prediction. The first parameter influences the 
dimension of the prediction list )k,r(n p , while the second affects the number of refinements required, and is 
proportional to the probability ( )H

min
p T)k,r(eP >  that a given prediction provides an unsatisfactory compensation. 

Calling this last probability P fault, we can write the mean number of DFD measures per block (Γ) as follows: 
NPn faultp ⋅+=Γ     (1) 

where np  is the mean length of the prediction lists and N  is the number of the allowed correction vectors (8 in the 
case of a refining window of 3x3 pixels). 
In Eq. 1, the operations required to build the prediction list are not taken into account, since it can be easily observed 
that the prediction vectors can be achieved by just addressing the motion field of the reference frame. More comp lex 
prediction strategies require of course additional computation. 
In addition, for each block of the current frame the sorting procedure of the prediction list requires a number of 
comparisons Λ which can be evaluated by the well-known formula [17]: 



( )1
8
3 2 −=Λ pn      (2) 

where n p  represents again the mean length of the prediction lists. 

The computational load deriving from Λ comparisons is in general negligible as compared to the computation of the 
DFD measures indicated by the parameter Γ . 

III. EXPERIMENTAL RESULTS 

 
The CB-BME algorithm was tested on several CIF- and QCIF-format video sequences. In this section, the results are 
presented for three widely available video clips, namely: Flower Garden, Silent, and Mobile and Calendar. These 
sequences show different type of activity (camera motion, several objects with different motion) and a wide range of 
textures and details. 
The algorithm demonstrated a good robustness with respect to the only tunable parameter, which is the threshold TH

 on 
the prediction error. As a matter of fact, the results presented in the following charts are achieved with a unique 
threshold TH = 5, independently of the characteristics of the video sequence. This corresponded to an average 
percentage of error-corrected blocks around 25 %. The threshold TH = 5 was selected as a good trade-off between 
bitrate reduction and quality preservation: looking back at the charts in Fig. 5, it is evident that for very low values of 
TH  the bitrate grows exponentially, while for high values of TH  the additional bitrate gain is not sufficient to justify a 
further quality loss. The block size and the search window were fixed to 8 and ±15 pixels, respectively, for 
compatibility with the current standards. 
The charts in Fig. 8 compare the PSNR performance achieved by CB-BME with the full-search (FS) algorithm (that 
provides the best match) and two well-known fast search methods: the two-dimensional logarithmic search (TDLS) and 
the cross-search (CS). In detail, the graph shows the quality loss, expressed in dB, attained by CB-BME, TDLS and CS 
with respect to full search, for a set of consecutive frames. It can be observed that CB-BME outperforms the other fast 
approaches, but also provides a more uniform behavior (i.e., a quite constant PSNR loss, around 0.7 dB). 
In Fig. 9 the performance of CB-BME is analyzed in terms of computational efficiency. Again, the complexity of the 
technique is compared to TDLS and CS in terms of percentage reduction of the computation with respect to FS, over a 
set of consecutive frames. It is possible to observe that CB-BME requires an almost constant processing, and is around 
three times faster than CS and five times faster than TDLS. As compared to full-search it provides a speed-up around 
140. 
Furthermore, the entropy of the motion information was analyzed, in order to verify the possibility of an efficient 
encoding of the data stream. The charts in Fig. 10 present the relevant results: in this case, CB-BME was tested with 
and without the error correction and compared with FS, TDLS and CS. The best performance was obtained by CB-
BME without error correction, thus demonstrating the effectiveness of the prediction strategy and the usability of this 
method for low-bitrate applications. Also CB-BME with correction provided a good result, almost always superior to 
CS and greatly better than TDLS and FS. 
For the sake of completeness, CB-BME was also implemented and tested within a H.263 codec [18]. Table 1 presents 
the average results in terms of PSNR for different bitrates. It is to be pointed out that, besides the reduction in 
complexity of the block matching procedure which provides a significant speed-up of the encoder, the proposed 
method offers a non negligible benefit from the viewpoint of the overall reconstruction quality, thanks to the allocation 
of the bits saved in the transmission of the motion information to the DFD encoder. 
Finally, in Fig. 11 a graph is proposed that summarizes the comparison among the three motion estimation techniques 
(CB-BME, TDLS, CS). Here the complexity (percentage reduction as compared to FS) and distortion (PSNR loss in 
dB compared to FS) parameters are averaged and plotted in a single chart for the three methods and for the three test 
sequences, thus providing a very intuitive overview of the relative performance. 
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Figure 8. Distortion expressed in loss versus full-search for three test sequences : (a) Flower Garden, (b) Silent, and 

(c) Mobile&Calendar 
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Figure 9. Complexity expressed in percentage versus full search for three test sequences : 

(a) Flower Garden, (b) Silent, and 
(c) Mobile&Calendar 
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Figure 10. Comparison between FS-BME, logarithmic search, cross search, CB-BME with and without correction in terms of 

entropy of the resulting bitstream. 30 consecutive frames for each test sequence are considered: (a) Flower Garden, (b) Silent, and (c) 
Mobile&Calendar 



 

IV.  CONCLUSIONS 

An algorithm for efficient motion estimation and coding in video sequences was presented, based on the concepts of 
spatio-temporal context and predictive coding. The technique provides a sharp bitrate and complexity reduction over 
other existing approaches. Experimental results showed that the proposed method is very advantageous also when 
compared to other fast search methods, for it is able to lower bitrate and complexity at the same time. The trade-off 
between distortion and complexity can be modulated by a single parameter, which was experimentally proven to be 
non critical for the performance of the technique. Furthermore, a very convenient representation the motion field is 
proposed that allows to achieve a very compact encoding. 
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