Dynamic I nefficiencies of Intellectual Property Rightsfrom an Evolutionary/Problem-

Solving Per spective: Some Insights on Computer Software and Reverse Engineering

Luigi Marengo® andSimonetta V ezzoso”

23 Anna School of Advanced Studies, Pisa, Italy, e-mail: |.marengo@sssup.it

PLaw Department, University of Trento, Trento, Italy, e-mail: svezzoso@economia.unitn.it

Preliminary versionJune 2006.
Please, do not quote without permission

Abstract

This interdisciplinary paper focuses on an evohdiy and problem-solving approach to intellectual
property rights in order to discuss some contraakissues in the European legislation on computer
software and in some recent competition law cagg {ee Microsoft case).

Given such claims, we argue that a standard “Coaajaproach to property rights, designed to cope
with the externalities of semi public goods may Ibetappropriate for computer software, as it may
decrease both ex-ante incentives to innovatiorearabst efficiency of diffusion. On the other hand
the institutional definition of property rights matrongly influence the patterns of technological
evolution and division of labour in directions whiare not necessarily optimal.

Taking the European legislation on computer sofénaard some recent competition law cases as an
example, this paper intends to show that a morfuldralancing of costs and benefits, both in stati
and dynamic terms should be suitable for a provation IP regime and competition policy.



1. Introduction

The current legal attitude favouring a strong ietlal property rights regime is underpinned
by the economic reasoning that, unless propergy-lights for ideas are established, the
inventor would not have the necessary incentivedégote the time and effort required to
produce the invention” (Friedman, 1962, who alsteeds this reasoning to the “writer”).
Without IPR’s, others could reap the fruits of theentor’s intellectual works. This results
from two peculiar characteristics of ideas, thathsir non-excludability and non-rivarly.
Because of non-excludability, the inventor is expddo suffer free-riding problems, whereas
non-rivarly causes non optimal rationing. The propeight-like protection is therefore a
means to facilitate exchange and internalise eatdies (Demsetz, 1967).

The most recent economic literature, however, dapted a much more cautious approach in
evaluating the likely impact on innovation of inégltual property rights regimes. From the
legal scholarly community, also, many have invokadthoughtful review of the available
protection system because of its negative impactinmovation and creativity. On the
legislative side, we can witness a few, albeit gtilite hesitant, signs that a revision in the
general policy attitude overwhelmingly in favour afstrong legal protection for new ideas
may slowly be under way. This is shown, e.g., By riéiection of the European Directive on
Computer Implemented Inventions by the Europeatidda@nt or by the recent debate on the
“interoperability clause” in French copyright lacccording to some commentators, there are
also some promising signs that U.S. Supreme Coigititntake a more pro-competitive stance
towards patent law in the near future (Reichmanp620 Moreover, the European
Commission’s decision on the Microsoft competitmase, currently under judicial revision,
takes quite a critical stance towards the Redmonad claim that the refusal to provide to
competitors in the workgroup server market interapity information allegedly covered by
various forms of intellectual property rights wasstjfied by the need to protect its

investments and, by that, its innovation incenti(x#szzoso, 2006).

Much in line with the now “fashionable” critical ppach, in this paper we point to some
dynamic inefficiencies of intellectual property litg from an evolutionary/problem-solving
perspective. In particular, we contend that theattaristics of the production processes and

of learning processes themselves should deserwgch greater attention in the actual debate.



In the following we will elaborate extensively dmg approach and then move to the analysis

of the legal treatment of reverse engineering ofipater programs.

2. An evolutionary/problem-solving approach to intellectual property

The traditional perspective on property rights igratotypical application of a Coasian
perspective. The knowledge generation process dd R&xposed to the possibility of strong
positive externalities that determine underinvestim@&he Coasian solution is therefore to
define property rights and create markets for tkeereality. However, in the case of
knowledge externalities things are complicated bgva specific factors. First, the monopoly
right conferred by any property right has in thése& much more serious consequences as by
definition innovative knowledge has no (or littledmpeting fungible knowledge resources.
Assigning enforceable IPR’s amounts therefore sigasng high and persistent rents. Second,
if knowledge is non-rival (but non-rivarly is sonwet over-emphasized) then it is somehow
paradoxical that the institutional solution to theentive problem for knowledge production
our society has preferred is to introduce an ardfiscarcity for a fundamental resource for

which the curse of scarcity would not apply.

But there is another and more subtle sense in whelCoasian solution is at least in need of
further and deeper investigation, and concernssthee of the “granularity” of property rights
(Marengoet al. 2000). In principle, the Coasian perspective wonldly that property should
be granted and enforced separately on every — lewemall” — right with economic value,
and in some sense this route has been followetdyheory and practice of IPR’s in the last
decades, when, as well documented in a wide arfagmpirical studies, the domain of
(technological) knowledge has been so finely digidey property claims - on essentially
complementary pieces of information - that the amfsteassembling constituent rights in
order to engage in further research seems to begiogaa heavy burden on technological
advance. In the realm of scientific and technolalgresearch, this has taken the form of a
spiral of overlapping patent claims in the handsdifferent owners reaching ever further
upstream. This attitude towards fragmentation i€tmu line with a Coasian effort to create
as many rights as there are markets. Actuallyctirextensiveness of markets and property

rights is hailed by economic wisdom as the setiimgwhich competition can promote



efficiency at its best: no transaction costs cadipieith well defined and perfectly

exchangeable property rights lead to perfect alieeafficiency.

Ideally, in a perfectly Coasian world a market wbekist for every right with an economic
value (Coase 1960). This presupposes individuapestyg rights to be perfectly (and
costlessly) defined, perfectly (and costlessly) oectéd and perfectly (and costlessly)
exchangeable. In this way every inefficient allomatwould be avoided. In turn, the whole
argument presupposes the very possibility of atlke®s separability of property rights and of
an ever finer definition thereof. National authiest both in the US and the EU, have adopted
an attitude towards patenting that clearly reflabisse principles. As a matter of fact, IP
rights are being granted on increasingly fragmeritddinks” of knowledge such as single
genes, databases, algorithms or parts thereof. owas suggested by Coase himself, the
finest possible property rights structure is veikely to induce less rather than more
competition as underlying markets will be so thwith respect to the number of agents
involved, as to induce monopolistic behaviours aondsiderable transaction costs. It thus
seems that, in the end, allocative inefficienciaghinarise which are not less serious than
those which a strong and fine-grained rights stmgctvas meant to eliminate. Indeed, a fast
growing literature, both in the economic and leg&cipline, is currently debating and
guestioning the idea that “more property rights lynmore efficiency” and the idea that

“commons, however defined and practiced are tragic”

In this respect, we suggest that the problem-sglwiature of the innovative process implies
that more property rights do not necessarily geearsore innovation and that moreover the
institutional arrangements of rights do not onlypinge upon the speed of innovation but also
upon its direction. From a theoretical point ofwjeghe Coasian argument is based upon the
(often only implicit) assumption that technologygisven, technological separable interfaces
are pre-defined by the state of technological keolgke and property rights (and transaction
costs) only determine the efficiency of differenbadination modes. This assumption is very
clearly expressed by Williamson, who begins hidyasis imagining that “in the origin there
were markets”, i.e. that markets would — if it wagar transactions costs — always provide

the most efficient mode of allocating resources.

As argued by some critics (cf. Dow, 1987, Granaret1 985, Bowles, 1985, Marengo and

Dosi 2005), both theoretical arguments and empirgsadence run strongly against this



“neutrality” assumption and contend that institnab arrangements and technologies co-
evolve and property rights and coordination modesnfluence the pace and direction of
technological change. In particular, more finelfied intellectual property rights may cause
sub-optimal technological trajectories. More in gt we submit that the efficiency and
sustainability of resource coordination systems cially depend on technological

characteristics of resources themselves and omamtnél and institutional patterns of their

usage in precise historical moments.

There can be little contention that the productadnnew software presents the typical
characteristics of problem-solving activities. Nulya it is a process of designing viable
solutions in a huge combinatorial problem spacearatterized by very diffused
interdependencies. As pointed out by Simon (19p&8blem-solving by boundedly rational
agents must necessarily proceed by decomposintpegg, complex and intractable problem
into smaller sub-problems that can be solved indegetly, by promoting what could be
called the division of problem-solving labour. Atet same time, note that the extent of the
division of problem-solving labour is limited byetexistence of interdependencies. If sub-
problem decomposition separates interdependentealsmthen solving each sub-problem
independently does not allow overall optimizatidn.this respect, an innovation, e.g. in
software, is the outcome of the search in largelipatorial spaces of components that must
be closely coordinated. A first important conseqeéer which emerges very clearly in
software design — is that decompositions are mengectures which allow to tackle complex
problems but at the same time pose limiting comdtta the kind of solutions which can then
be developed within the given decomposition. Beeafghese limits and constraint having a
variety of heterogeneous decompositions and aathites has in general positive

consequences in terms of the evolutionary proedi¢he system.

Solving (technological) problems usually requirdge tcomplex coordination of many
elements or components which present strong inpert#encies (i.e. modifying one
component has broad consequences on the perfornedmoany other components), which
are — if anything for complexity reasons — onlytlyaunderstood and grasped by problem
solvers. Thus the search space of a problem typigaksents many local optima and
marginal contributions of components can rapidlytdwfrom negative to positive values,
depending on which value is assumed by the oth@poaents. For instance, adding a more

powerful engine could lower the performance and tblability of an aircraft if other



components are not simultaneously adapted (Vinc&881). In a chess game, a notionally
optimal strategy could involve, for example, castlat a given moment in the development of
the game but the same castling as a part of somemimal (but effective) strategy could
turn out to be a losing move. Finally, introducisgme routines, practices or incentive
schemes that have proven superior in a given azgiional context could prove harmful in a
context where other elements are not appropriatehadapted. As a consequence, in the
presence of strong interdependencies, one cantiatip@ a system by separately optimizing

each element it is made of.

It is important to remark that the introduction aify decentralized interaction mechanism,
such as a competitive market for each componert dog in general, solve the problem in an
optimal way. For instance, if we assume that eamimponent is traded in a competitive
market, superior components might never be selettads, interdependencies undermine the
effectiveness of the selection process as a déaradaptive optimization and they introduce
forms of path-dependency with lock-in into sub-opl states that do not originate from the
frictions and costs connected to the selection @rgism, but from the internal complexity of

the entities undergoing selection.

As Simon (1969) pointed out, an optimal decompaosifji.e. a decomposition that divides
into separate sub-problems all and only the elesntirat are independent from each other)
can only be designed by someone who has a perfegtl&dge of the problem (including its

optimal solution). On the contrary, boundedly rasib agents will normally be forced to

design near-decompositions, that is decompositibatstry to put together, within the same
sub-problem, only those components whose interdbgpees are (or, we shall add, agents
believe to be) more important for the overall syst@erformance. However, near-

decompositions involve a fundamental trade-off: tbe one hand, finer decompositions
exploit the advantages of decentralized local adept, that is, the use of a selection
mechanism for achieving coordination “for free” étiger with parallelism and adaptation
speed. But on the other hand, finer decompositionply a higher probability that

interdependent components are separated into efitfeub-problems and therefore cannot, in
general, be optimally adjusted together. As shawklarengo and Dosi (2005) and Marengo
et al. (2000), in domains of highly interdependent eesitisuch as complementary patents,

there are delicate trade-offs between the expioitaif the advantages of decentralization and



the need to control for complex interdependencied #hat optimal dynamic search path

usually are not generated by highly fragmentecctires.

One way of expressing the limits that interdepengEeEnpose to the division of problem-
solving labour is that market performance signate aot able to effectively drive
decentralized search in the problem space. Localesn the “right direction” might well
decrease the overall performance if some other exlesnare not properly tuned. As Simon
puts it, since an entity (e.g. an organism in @gler an organization in economics) only
receives feedback from the environment concermieditness of the whole entity, only under
conditions of near independence can the usual tsmleprocesses work successfully for
complex systems (Simon 2002). A further aspect eorscthe property that, in general, the
search space of a problem is not given exogenobslyjs constructed by individuals and
organizations as a subjective representation optbklem itself and through the very process
of problem-solving which defines a focal framewdwok future representations. If the division
of problem-solving labour is limited by interdependies, the structure of interdependencies
itself depends on how the problem is framed by l@roksolvers. Sometimes problem-solvers
make major leaps forward by reframing the samelprolin a novel way. As shown by many
case studies, major innovations often appear wheonus elements that were well-known are
recombined and put together under a different getsge. Indeed, one can go as far as to say
that it is the representation of a problem thaeeines its purported difficulty and that one
of the fundamental functions of organizations iseqgwely to implement collective

representations of the problems they face.

As we have briefly recalled above, the economisaoaang underlying the current policy
attitude towards intellectual property rights canheld to mainly reflect the Coasian view on
economic organisation. Admittedly, the definitiohmany markets or IPR’s could provide,
under certain circumstances, a good solution tarthevation problem (but perhaps only if
opportunism, agency and other problems are neglecbe fact, the higher the degree of
decentralization the smaller the portion of therdeapace and therefore the speed and the
directions of the decentralized local adaptationwEver, near decomposability can be an
exceedingly powerful architecture for effective amgzation of a complex problem like
innovation in many sectors. This is likely to yielelchnological trajectories that are not
optimal. In more formal terms, if the entities undelection are made of many components

which are interacting in a complex way, the resagltselection landscape will present many



local optima (Kaufman 1993) and selection forcels va unlikely to drive such entities to the
global optima. The higher the degree of decentttibn the smaller the portion of the search
space which is explored and the lower thereforeptiobability that the optimal solutions are
included in such a small portion of space. Subroglity and diversity of organizational
structures can persistently survive in spite obrgfr selection forces (Levinthal 1997). Sub-
optimality is due to the persistence of inferioatiedes which cannot be selected out because
of their tight connections with other favourablatiges. In other words, whenever the entities
under selection have some complex internal stracttire power of selective pressure is

limited by the laws governing internal structures.

The main point here is that the incentives or miaskdéution for innovation is most likely to
produce less technological efficiency. The evohaigy/problem-solving approach is also
able to show that there are quite delicate trdtiebetween different levels of suboptimality
in the achieved solution and different speeds daptation. Careful consideration of the
characteristics of production processes and ohiegrprocesses would therefore seem to
suggest that market-like decentralized mechanismnsodl provide appropriate signals in this
early problem-solving/innovation phase. As searcbc@eds and a local peak (a set of
standards in the techno-organizational design proplis selected, the degree of
decentralization can be greatly increased in ormeilow for fast climbing of this peak (and
indeed transaction costs factors can very welldspansible at this stage for variations of the
degree of integration), but the more decentrabizais pushed forward, the more

unlikely it will be that new and better local opantan be discovered. This would seem to
involve the important policy consideration that sstem should allow for a more flexible
coordination of interdependent elements (“piecekraiwledge”) than the Coasian market
solution would allow for. In the next Section wellvélaborate on these insights taking the

rules of reverse engineering of computer softwararaexample.

3. An application: the case of reverse engineering of computer software

3.1 The IP protection of computer programs in a nutshell
IPR’s norms can be seen as the most relevant ofibe game providing for the institutional
structure of innovation systems. Among IPR’s regmef different states or

intergovernmental organisations (like the Europ€ommunity as far as e.g. community



trade marks are concerned), there still exist suisii differences, and this in spite of policy
moves towards globally harmonized standards of eptatn. Moreover, the levels of
exclusivity accorded by the various intellectuagerty titles vary significantly.

On the one end of the spectrum we possibly havedbent system. The conditions to be met
in order to enjoy patent protection are somehowenstringent than those for other forms of
IPR’s. In Europe, for example, an invention mayogrprotection from patent law provided it
is novel, it is susceptible of industrial applicatj and involves an inventive step. Patent
protection grants that the results of individuarsé for solutions become “proprietary” and
cannot be freely used by others. More precisepatant covers the inventive idea as such (as
expressed in the patent claims defining the médtrewhich the protection in sought in terms
of technical features), and can be invoked evennag@ndependent inventors of the same
idea. Further, not only a third party’s devise goovcess) that falls within the literal scope of a
patent claim infringes the patent, but also a detggjuivalent” to the claimed invention may
face infringing liability. Improvements of the invion and follow-on innovations can be
actively prevented by the patent owner (or hismaes), and this in spite of the fact that most
leading patent regimes contain experimental useesearch exemptions, albeit of a very
narrow extent. As part of the patent "bargain,” theuld-be patentee must disclose the
specifications of his work. This requirement ainhigg&ing the public technological know-
how, and it is obviously particularly important whénventions are not easily reverse-
engineered, or, in economic terms, are pagtijudable ideas (whereas, for inventions like
e.g. pharmaceuticals, bringing the product to tlaeket as such normally implies disclosure).
Moreover, most patent laws foresee provisions éongulsory licensing, but they apply only
under very strict conditions. Finally, in patenwlahere are no further explicit “fair use”

provisions.

Starting from the 1960s, U.S. courts had been hglthat software was not eligible for patent
protection, since it was considered similar to ustideas and laws of nature. Since the 1981
Diamond v. Diehr landmarkdecision, however, both the U.S. courts and the. B&ent
Office gradually broadened the scope of protectjeanted to software-related inventions,.
Today, Courts apply the so called “useful, concesté tangible result” test to software patent
claims, and do not require the operation of theggram to affect the physical world in any
tangible way. As seen above, the would-be pateriequired by law to disclose the

specifications of his work. Unfortunately, however,the case of computer software this



requirement prove scarcely effective, since whbee gatentability of computer software is
admitted, as in the U.S., there is no obligatiodiszlose the implementing source code of the
program. Finally, since in patent law there ardurther explicit “fair use” provisions, reverse
engineering through decompiling would most probatdyjudged illegal under patent law,
and certainly so in case of pure software claimgatt, the very moment a patented program
is run on a computer for decompilation, a objealec@opy of the program in the RAM
memory is realized which could be interpreted amamgement (Cohen and Lemley 2001).

In Europe, the Convention on the granting of Euasp@atents (EPC in the following)
expressly excludes patent protection for computegiams (non-patentability because of the
subject matter)Therefore, for pure software to be protected onhkhgis of patents, the exclusion
under Article 52 EPC should have to be remoeaimputer implemented inventions (e.g. where a
devise is controlled by embedded processors - rhgps), though, have increasingly been
granted patent protection by the European PateinteOfwhich issues “bundles” of national
patents). This evolution within Europe has beenkediby some landmark cases.Koch &
Serzel/X-ray, for instance, the Board of Appeals ruled thaif the program controls the
operation of a conventional general-purpose compst as technically to alter its
functioning, the unit consisting of program and pomer combined may be a patentable
invention”. Moreover, the Board recognized thatclaim directed to a technical process
carried out under the control of a program (whethgiemented in hardware or in software)
cannot be regarded as relating to a computer progsasuch within the meaning of Article
52 EPC”. Admittedly, making a distinction betweeoftware eligible for patents under
European law and software that is not cannot bardegl as an easy task. With this problem
in mind, the “technical contribution requirementasvput at the core of the 2002 European
Commission’s proposal of a directive on the patailitga of computer-implemented
inventions, which was then rebutted by the EuropRariiament. As many commentators
have stressed, however, the notion of “technicaptyt forth by the Commission would have

hardly improved legal certainty.

On the opposite end of the spectrum, we encouhéefdpen movement” in connection with
computer programs (“open source”) and now increggimartistic works (“open content”,
mostly associated with the Creative Commons prpjéctcase of open source software, the
idea is also by itself proprietary but it is freelyailable to others in the form of source code.

Users of open source are typically permitted tq aepy, distribute and modify the software,

10



but only as long as they abide by the rules ofdpen source licence agreements they have
agreed to (General Public License, Lesser Genenblid® License, MIT License, etc.).
Interestingly, there are significant differencesoaign open source license agreements. Some
require for instance the obligation by the licenseeelease and license back to the open
source community all modifications of the sourcdesowhereas others permit modifications

of the code to be kept proprietary under certamddmns.

Moreover, software owners can rely on trade setaetgor the protection of their intellectual
works. This further property-like right lasts amd) as computer program’s unique character
remains confidential. Reverse engineering is péechitwithout limitations. But the
“weakness” of a trade secret is that it vanishezanis broken. Of course, the risk of a trade
secret being lost is particularly high if the sadte is licensed.

The last, and somehow more “traditional” and pemeagorm of IP for software is copyright
protection. According to Article 10 of TRIPS (Agreent on Trade-Related Aspects of
International Property Rights), computer programbether in source or object code, are
protected as literary works provided that they arnginal and tangible. Under Article 9,
copyright protects the actual code of toenputer program, and the way the instructions have
been drawn up, but not the ideaderlying them. Therefore, as well as for patetits,
solutions covered by copyright law cannot be fraedgd; but copyright protects not the idea
as such but its “original expression”. Thus, foample, copyright covers the particular form
of a statuette used as a lamp base, but not theoidesing a statuette of a human figure as a
lamp base. In similar terms, for what concerns aaepsoftware, source code and object
code are typically protected against literal cogyibut not the program’s ultimate function.
The idea underlying a given software could therubed to “build” a different progranMoreover,

and differently from patent protection, no discl@sabligation is foreseen.

Copyright is the form of software’s IP protectiore wvill deal with in more detail. In

particular, our main focus in the following will ben the legal treatment of the reverse
engineering of computer programs. First of all, develop an economic problem-solving
perspective on reverse engineering, and then wdake a closer look at the relevant rules of
law, especially following European Directive 91/26@ the legal protection of computer

programs.

11



3.2 On the economics of reverse-engineering from an evolutionary/problem-solving

per spective

Reverse engineering is widely diffused in compugtdtware, but usually not for the purpose
of making a copy of the good itself, as it is oftee case in reverse engineering of physical
artefacts. On the one hand, in fact, in order t&are perfect copy of a piece of software one
does not have to understand anything of its intestracture and functioning, but simply to
duplicate the executable files. On the other hdedpmpiling and fully reverse engineering a
computer program in the form of an executable gedalfile is usually more difficult, time
consuming and expensive than writing from scratetew program which performs similar

tasks.

Reverse engineering in physical artefacts is ndyneakried out with the purpose of acquiring
information on know-how (how the good is designledw it works, how specific technical
problems are solved, etc.) which is not availableadified version. Computer software is
indeed a “perfect” codification of its own desidanctions and operations, but if the source
code is not made public, the object or executablies are not understandable by a human
reader. This obvious observation gives an interggberspective on the much debated issue
of the legal treatment of reverse engineeringvéf expressly consider copyright law, this
debate seems somehow paradoxical in its very existeCopyright has always been applied
to artefacts whose inner structure was largelysfparent and easily grasped by any customer.
When reading a book the very act of consuming thedgs nothing but a form of reverse
engineering, in which the inner structure and thehmical solution employed become
perfectly transparent at least to an experiencedcaitivated reader. On the same token, for
consumers having sufficient technical skills, Istgy to a musical composition or looking at a
painting or sculpture reveals all the secrets ©treation. An important consequence is that
consumers can freely learn from copyrighted mdterixuse it and re-combine it with
elements of other (copyrighted or non-copyrightediterial in order to produce new ideas
and materials or simply to enhance own educati&ils sand competencies. J.S. Bach’s
sublime art of counterpoint is made of a serietecifinical solutions to composition problems,
which have been freely studied, acquired, re-ussthpted to their own needs by the
following generations of composers. In a senséhallcumulative process of culture has been
based upon the free reverse engineering of (pgssduyrighted) creations of other people’s

minds. Compiled computer code is an exception aobgbly the first one in history, as it is

12



indeed a totally codified piece of knowledge bwt ttode is not understandable by even an
expert human reader. The process of building kndgdeupon knowledge which is normally

allowed under copyright regime is therefore hindarethe case of closed source software.

All'in all, reverse engineering of computer progsaisi not something the average user would
aim to, already quite satisfied if the program rwmoothly on his hardware. Reverse
engineering is a matter for specific categorieas#rs, such as those whose peculiar needs are
not fully accommodated by the purchased produdt, fanthe broader category of software
developers. Most reverse engineering in softwar@cigally carried out with the purpose of
learning: learning programming techniques, learmsalgitions to specific technical problems,
learning the functioning of specific routines irder to modify them for user’s customized
needs, learning, especially, the functional speaiibns necessary to make a compatible
program. The issues therefore should not be whethey possibly, to which extent reverse
engineering is legal, but whether copyrighting stimmg written in a language which keeps
its content hidden to customers should be allowed.

In spite of the obvious knowledge-creating andudiifig characteristic of reverse engineering,
in a Coasian world this activity would hardly fiadsafe place. The individual (or collective)
discovery attempts should be viewed as acts ofrfddeg in an otherwise well functioning
IPR market. A party interested in knowing the insecrets of an item for some commercial
purpose which could prejudice the economic intereétthe IP rights owner should attempt
to obtain that information by way of licence. Ircfathanks to the licensing system, the IP
owner recovers its research and development dbstgpassing licensing by way of reverse
engineering were allowed, according to this vidweré would not be other means of finding
out what is efficient and what rights should therefbe enforced. Unless some clear source
of market failure is identified, the IP owner’'sengst to license and by that reap the economic
benefits from any market use of its ideas shouldbeointerfered with. Only uses that could

not have been reasonably licensed anyway shouicdédor use.

On the contrary, we suggest that reverse engirge@simot in itself a threat to a firm’s
incentives to produce innovative software, as thigat comes rather from the so-called
(almost) infinite expansibility (David, 1992), i.the possibility to copy digital goods in form
of computer files very cheaply. It is rather a Hirto a firm’s strategy to keep a proprietary

position on interoperability standards, i.e. on thterfaces between platforms, operating

13



systems and application software which play a atucole in competition. Designing

computer software is in fact a prototypical exampfea complex quasi-decomposable
problem: designers make conjectural decompositafinthe hugely complex problem and
establish communication protocols between the esgsarated components. Such
communication protocols are sometimes key integdoe interoperability as they constitute

the fundamental links between different parts obdrerwise unitary system.

From a firm’s perspective the choice between makungh protocols freely available or not is
a difficult one. If protocols are freely availabte system becomes open, and it is very likely
that other producers will start developing comgatikoftware and more customers will be
attracted by the system. But, on the other haredfitm itself may loose control of its initial
advantage and be exposed to too much competitioalldhe parts of the system. A vivid
example is represented by IBM, which opted for parosystem. From the system’s point of
view this strategy was certainly successful as IBMiodel of pc has come to dominate the
market, but it was not such a success from IBM'®pof view, as the latter quickly lost its
competitive advantage both in the hardware marj&inat specialized and more cost efficient
component producers and in the software marketagalicrosoft, which on the contrary
tried to keep the system as closed as possiblau#t be also pointed out that because of
various well known technological and market reasamghe meantime the most profitable

part of the market has progressively moved fronalfare to software.

Also closed interfaces, however, may be detrimdraan the firm’s perspective as they may
hinder the diffusion of the system if there exismpeting ones which, thanks to openness,
offer a wider range of applications and higher apputy to respond to specific customers’

needs.

From a social welfare perspective, instead, thenrgaestion is whether developers of closed
systems would choose not to develop them if fortedeveal interface standards, or to

tolerate individual or collective attempts to gathlee relevant information. As we have

previously argued, the issue is not the dangeate lexpensively developed programs copied
and reproduced at almost zero cost, but to havepentdent producers entering the market
with compatible alternative programs. The questioes not have an easy answer, but the
empirical evidence which shows the widespread dstexce of open and closed systems

providing similar services seems to suggest thageriess is not sine qua non condition.

14



From a problem solving perspective there is lidleubt that the inevitable inefficiencies
determined by conjecturally decomposing systemschvipresent strong and widespread
interdependencies, should at least be compensayedhdo advantages of introducing
competitive markets for each quasi-separated cosmgdmecause, if the architecture is kept
under a strict monopoly, there is no room for adamh driven by competition. Moreover, as
discussed above, closed source codes hinder amamial collective learning mechanism

and is bound to reduce knowledge cumulation.

Therefore, from an evolutionary/problem-solving gmactive, the act of reverse engineering
would seem to acquire quite a different signifi@né&s we have already pointed out,

interdependencies among “chunks of knowledge” aglistinctive pieces of software are
not known in advance to anyone but make out a anbat part of the trial-and-error activities

conducted by agents working on complex problemspide the fact that these attempts are
mostly of a “commercial” nature and also potenyiable to prejudice the economic interests
of those who can already claim IP rights on “chuok&nowledge”, their social value per se

can hardly be denied. Given the complexity of thebfem, it seems, a collective search
strategy quite opposite to the “market partitioriippilosophy would seem a more efficient

solution from a technological point of view. In ghrespect, it is not evident that reverse
engineering is a free taking of somebody’s elséitagte rewards for his innovative efforts.

On the contrary, it resembles more a collectivaouative activity to discover

interdependencies among elements that form a comsgtem.

3.3 An evolutionary/problem solving preliminary assessment of the rules on reverse
engineering of computer programsin the EU

All modern IPR’s regimes provide for some levemspering the IP owner’s assertion of the
exclusive right to use “his own” ideas. They seekitaw a balance between, on the one hand,
providing an incentive for the creation of workssided by society and, on the other hand,
insuring enough freedom (“public domain”) to perrdaiter comers to build on the existing
intellectual achievements for further technologiaatl cultural advances. Much in line with
this fundamental trade-off, the European Direc81é250 on the legal protection of computer
programs (in the following European Software Dirgx}, aiming at the harmonization of the
laws of member States of the Ftdntains a so-called decompilation exception fappses

of developing interoperable programs.

15



Similarly, some key decisions by U.S. courts exgicconsidered, and allowed, reverse
engineering for that purpose. Thus, it has beetedtay that reverse engineering object code
to discern the unprotectable ideas in a computegramme is fair use. Thusega v.
Accolade involved computer games producers. Sega was dinteeproducing the Genesis
console and had a leading position in the markéott consoles and games also thanks to its
policy of not revealing the specifications necegdarhave non-Sega produced or licensed
games running on the same console. Accolade dictlgxaat: by reverse engineering they
acquired such specifications and started sellingokale produced games running on Sega
consoles. The Ninth Circuit affirmed that “[D]isassbly of copyrighted object code is, as a
matter of law, a fair use of the copyrighted wdrkuch disassembly provides the only means
of access to those elements of the code that ategbed by copyright and the copier has a

legitimate reason for seeking such access”.

Whereas the U.S. courts rely on the broad fairfuseision in copyright law to assert the

lawfulness of reverse engineering, in the Europdaion a specific rule is provided, stating

that copyright in a computer program, under certincumstances, is not infringed by

decompilation activities. Thus, under Art. 6(1) thle European Software Directive, the
authorization of the IP rightholder is not requiredhere reproduction of the code and
translation of its form are indispensable to obtie information necessary to achieve the
interoperability of an independently created corapprogram. This decompilation exception
is enforced by the provision of Art.9(1) that aieompilation clauses in software contracts
are null and void. One of the preliminary issuesehs to understand what it is exactly meant
under interoperability and the Directive define%as the ability to exchange information and
mutually to use the information which has been axged’. Interoperability under the

Software Directive, therefore, refers to the apiltf a software to exchange information
(communicate) with another softwaseffware-to software interoperability).

However, under the European Software Directive,esaniditional conditions should be met,
among which that the information necessary to aghiateroperability has not previously
been readily available to the person decompiling @rogram and that the acts of
decompilation are confined to the parts of the inabprogram which are necessary to
achieve interoperability. Moreover, the informatiobtained thanks to decompilation should

not be used for goals other than to achieve trexaperability of the independently created

16



computer program and should not be given to othexsept when necessary for the
interoperability of the independently created cotapiprogram. Finally, that information
should not be used for the development, produatiomarketing of a computer program

substantially similar in its expression, or for atiier act which infringes copyright.

Apparently, the interoperability provision underetkuropean Software Directive was the
result of a compromise, aiming at accommodatingtsuttially diverging interests. Thus, for
instance, major U.S. computer companies had lobbigensively not to have a
decompilation-for-interoperability exception ins&ttin the final text of the Council Directive.
At least some commentators and interested partesgdwagree that it has worked rather well
since its adoption, almost 15 years ago. Indeecgcant European Commission’s Report
concludes that "the [Software]Directive and in jgatar the decompilation provisions were
the result of intensive debate among all interestezles and the balance found then appears
to be still valid today" (EC Commission, 2004).

From an evolutionary/problem-solving perspectivereverse engineering, however, it could
be argued that the decompilation clause under thopgean Software Directive is too
narrowly crafted. In fact, it would seem to neglestme essential characteristics of the
production and learning processes we briefly redalh the previous Sections. In particular,
interdependencies among distinctive pieces of soéiwery often are not known in advance
to anyone but are gradually discovered thanks i-dnd-error activities conducted by
agents. From a technological point of view, thidlemtive search strategy to discover
interdependencies among elements that form a coarmnsgitem has an indisputable value, that
should be reflected on the legal treatment of @ngineering. In this respect, the statutory
limitation to only those which are actually cregticompatible product, would seem to create
a heavy and unnecessary burden on the partiesngettl@ application of the decompilation
provision. This becomes even more apparent consglénat there is no research-exception,
or error correction-exception for decompilationstead,Sega v. Accolade, mentioned above,

states that there may be other legitimate purp@sesecompilation.

Moreover, the European Directive limits follow-oses that can be made of information
obtained in the course of decompilation. The dedt@npannot publish information learned
during reverse engineering. In fact, Article 6(2)tlee Directive prevents the publication or

trafficking in information by those who have decaleg existing programs. Decompilers are

17



therefore prevented from diffusing the informatibey learned in the course of their reverse
engineering efforts, by that at least partly recogp their expenses From an
evolutionary/problem solving perspective, it seethere could be sound reasons to rebut this

ample restriction on the uses the decompiler cakernathe information acquired.

A more general question, raised in the context thle EuropearnMicrosoft case under
competition law, is whether a reverse engineerikagption should in most cases be regarded
as appropriate, or, under certain circumstancespldigation to disclose interoperability
information should be imposed. As the European Cmsion itself affirmed in its Microsoft
Europe decision “(D)epending on the size of thegmm to be decompiled, reverse-
engineering may be very costly and time-consumigg there may also be technical
barriers”. Moreover, through legitimate actionstsas upgrading the software, compatibility
could easily be broken. Therefore, the Commissimmcluded that “reverse engineering . as
opposed to disclosures from Microsoft, does notstitate a viable solution for companies
willing to compete with Microsoft on the work groggrver operating system market” (paras.
36 and 683-687 ff.). The Commission is certainlyrect in pointing out the difficulties,
uncertainties and costs of reverse engineeringmFtbe evolutionary/problem solving
perspective, however, a broadly framed decompiatoovision, fostering not only the
competitors’ individual but also collective discoyeendeavours would possibly seem more

adequate.

Finally, even more serious threats to the revenggneering of software under copyright law
could derive from the legal reinforcement of theht@ical measures to protect digital content.
The underlying, alleged reason for outlawing cirgention measures was that, otherwise,
copyrighted works provided digitally would have beeo vulnerable to infringements The
1996 WIPO Copyright Treaty foresees that the mengitates should provide “adequate
protection” and “effective remedies” against ciraxention of technical protection measures,
and both the U.S. and the European legislators Inaaee it illegal to circumvent those
measures. Already, there have been a few attempfaros in the U.S. to prevent their
competitors from circumventing technological measun order to reverse engineer products.
Moreover, at the European level, some advocatentheduction for computer programs of
anti-circumvention provisions, with the possiblefeet of preventing or restricting the
application of the decompilation-for-interoperatyilexception provided for in the European

Software Directive.

18



4. Preliminary conclusions

The production of new software presents the typidahracteristics of problem-solving

activities. It is based upon conjectural sub-probecompositions, whereby a decomposition
establishes an overall design which on the onevalt® search for solution of sub-problems
of manageable complexity, along with division didar and specialization, but on the other
hand puts clear limits on the type of solution vhican be produced within that given

architecture and almost inevitably generates ioiefficies and bottlenecks in the search
process. In addition, the production of new sofewvdisplays strong cumulativeness, mutual
learning effects, re-usability, and, being part afcomplex system, suffers from the

interoperability problem.

In this paper we have argued that a traditionalsizeaperspective on intellectual property
rights does not give a satisfactory account ofelmeculiarities, as it is entirely focused upon
the solution of a purported externality “problenWe could say on the contrary that in
problem-solving technologies externalities are agtroblem but a part of the solution. In
particular, we have suggested that reverse engnmgeir not usually carried out in computer
software with the purpose of merely producing cleeagppies of other people’s innovative

products, but with the purpose of learning and engunteroperability.

From a legal point of view, the evolutionary/prabksolving perspective could possibly
provide distinctive arguments supporting a cleapi®vision in favour of reverse engineering
(see e.g. Samuelson and Scotchmer 2002 and Coldehemmley 2001 for other potential
benefits of reverse engineering). Of course, assasoftware is covered by patent law, this
branch of law should foresee the possibility tofldly decompile other parties’ software, not
only to achieve interoperability but also for (egsch, albeit commercial, purposes. Where a
reverse engineering exception is expressly proviied as in the case of Art. 6 of the
European Software Directive, this, it seems, shbeldramed in much broader terms than the

current legal rule.

19



References

Bowles, S.: 1985, The production process in a coitnge economy: Neo-hobbesian and
marxian modelsAmerican Economic Review vol .75, 16-36.

Coase, R.H. (1960), The problem of social costJaurnal of Law and Economics, Vol.3, pp.
1-44

Cohen, J. E. and Lemley, Mark A. (2001), Patentp8cand Innovation in the Software
Industry, in: 89%California Law Review 1, pp.1-58.

David, P.A.(1992), Knowledge, property, and thetesrysdynamics of technological change,
in: Proceedings of the World Bank Annual Conference on Development Economics, pp.
215-248.

Demsetz, H. (1967), Toward a theory of propertyhtsg in: American Economic Review,
Vol. 57, May, pp. 347-359.

Dow, G. K.: 1987, The function of authority in tsattion-cost economicsournal of
Economic Behavior and Organization vol. 8, 13-38.

EC Commission (2004), Commission Staff Working RPampe the Review of the EC Legal
Framework in the Field of Copyright and RelatedH®sg

Farrell, J. and Salomer, G. (1985), Standardizat@empatibility, and Innovation, in: Rand
Journal of Economics, Vol. 16, pp. 70-83

Friedman, Milton (1962), Capitalism and FreedomiMersity of Chicago Press.

Granovetter, M.: 1985, Economic action and sodiaicture: The problem of embeddedness,
American Journal of Sociology vol. 91, 481-510.

Levinthal, D.: 1997, Adaptation on rugged landssapéanagement Science Vol. 43, 934-
950.

Marengo, L. and G. Dosi (2005), “Division of LabdBrganizational Coordination and
Market Mechanisms in Collective Problem-Solvinggurnal of Economic Behavior
and Organization, vol. 58, 2005, pp. 303-326.

Marengo L., Pasquali C. and Valente M. (2005), “@aposability and modularity of
economic interactions”, in W. Callebaut and D. Ras$&utman (eds. )Modularity:
Understanding the Development and Evolution of Complex Natural Systems, The
Vienna Series in Theoretical Biology, Cambridge MAT Press, pp. 835-897.

Reichman, J.H. (2006), Patent Law Harmonization géwedDraft SPLT, Paper presented to
the World Intellectual Property Organization’s (P Open Forum on the Draft
Substantive Patent Law Treaty (SPLT), Geneva, &ward, 1-3 March.

20



Samuelson, P. and Scotchmer, S. (2002), The Lave@&mics of Reverse Engineering, in:
111 Yale Law Journal, pp. 1575-1663.

Vezzoso, S. (2006), The Incentives Balance TesterEU Microsoft Case: A Pro-Innovation
"Economics-Based" Approach?", in: Europgaompetition Law Review, Vol. 7, pp.
382-390.

21



