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Abstract. In the last two decades, modal and description logics have been ap-
plied to numerous areas of computer science, including artificial intelligence,
formal verification, database theory, and distributed computing. For this reason,
the problem of automated reasoning in modal and description logics has been
throughly investigated.
In particular, many approaches have been proposed for efficiently handling the
satisfiability of the core normal modal logic Km, and of its notational variant, the
description logic ALC . Although simple in structure, Km/ALC is computation-
ally very hard to reason on, its satisfiability being PSPACE-complete.
In this paper we explore the idea of encoding Km/ALC -satisfiability into SAT, so
that to be handled by state-of-the-art SAT tools. We propose an efficient encoding,
and we test it on an extensive set of benchmarks, comparing the approach with
the main state-of-the-art tools available.
Although the encoding is necessarily worst-case exponential, from our experi-
ments we notice that, in practice, this approach can handle most or all the prob-
lems which are at the reach of the other approaches, with performances which are
comparable with, or even better than, those of the current state-of-the-art tools.

1 Introduction

In the last two decades, modal and description logics have been applied to numerous
areas of computer science, including artificial intelligence, formal verification, database
theory, and distributed computing. For this reason, the problem of automated reasoning
in modal and description logics has been throughly investigated (see, e.g., [5, 17, 10,
18]). Many approaches have been proposed for efficiently handling the satisfiability of
modal and description logics, in particular of the core normal modal logic Km and of
its notational variant, the description logic ALC (see, e.g., [5, 18, 7, 8, 12, 15, 14, 3, 19,
20]). Notice that, although simple in structure, Km/ALC is computationally very hard
to reason on, as its satisfiability is PSPACE-complete [17, 10].

In this paper we explore the idea of encoding Km/ALC -satisfiability into SAT, so
that to be handled by state-of-the-art SAT tools. We propose an efficient encoding,
with four simple variations. We test (the four variations of) it on an extensive set of
benchmarks, comparing the results with those of the main state-of-the-art tools for Km-
satisfiability available.

Although the encoding is necessarily worst-case exponential (unless PSPACE=NP),
from our experiments we notice that, in practice, this approach can handle most or all



the problems which are at the reach of the other approaches, with performances which
are comparable with, or even better than, those of the current state-of-the-art tools.

Related work. First, we briefly overview the most successful approaches for the
satisfiability of modal logics, and of Km in particular. The “classic” tableau-based ap-
proach [5, 17, 10, 18] is based on the construction of propositional tableau branches,
which are recursively expanded on demand by generating successor nodes in a candi-
date Kripke model. (Tools based on this approach are no more state-of-the-art.) In the
SAT-based approach [7, 8] a DPLL procedure, which treats the modal subformulas as
propositions, is used as boolean engine at each nesting level of the modal operators:
when a satisfying assignment is found, the corresponding set of modal subformulas is
recursively checked for modal consistency. Among the tools employing (and extending)
this approach, we recall KSAT [7, 6], *SAT [25], FACT and DLP [12], and RACER
[26]. 1 In the translational approach [15, 1] the modal formula is encoded into first-
order logic (FOL), and the encoded formula can be decided efficiently by a FOL the-
orem prover [1]. MSPASS [14] is the most representative tool of this approach. In the
Automata-theoretic approach, (a BDD-based symbolic representation of) a tree automa-
ton accepting all the tree models of the input formula is implicitly built and checked for
emptiness [19, 20]. KBDD [20] is the representative tool of this approach. [20] presents
also an encoding of K-satisfiability into QBF-satisfiability (that is a PSPACE-complete
problem too), combined with the use of a state-of-the-art QBF solver.

Moreover, we briefly recall some approaches based on SAT encoding which have
been successful in other domains: planning has been fruitfully encoded into SAT [16],
and a similar encoding has been proposed for the problem of (bounded) LTL model
checking [2]; in both cases, these approaches are currently state-of-the-art in the re-
spective communities. Effective encodings into SAT have been proposed also for the
satisfiability problems in some quantifier-free FOL theories which are of interest for
formal verification, including these of separation logic (SL) [24], of SL with equality
and uninterpreted functions [22], and of linear arithmetic [23].

Structure of the paper. In §2 we provide the necessary background notions. In
§3 we describe the encoding, and provide some examples. In §4 we present an exten-
sive empirical evaluation, and discuss the results. In §5 we conclude, an describe some
possible future evolutions.

2 Background

We recall some basic definitions and properties of Km. Given a non-empty set of prim-
itive propositions A = {A1,A2, . . .} and a set of m modal operators B = {21, . . . ,2m},
the language of Km is the least set of formulas containing A , closed under the set
of propositional connectives {¬,∧} and the set of modal operators in B . Notation-
ally, we use the Greek letters α,β,ϕ,ψ,ν,π to denote formulas in the language of
Km (Km-formulas hereafter). We use the standard abbreviations, that is: “3rϕ” for
“¬2r¬ϕ”, “ϕ1∨ϕ2” for “¬(¬ϕ1∧¬ϕ2)”, “ϕ1 → ϕ2” for “¬(ϕ1∧¬ϕ2)”, “ϕ1 ↔ ϕ2” for

1 Notice that, for historical reasons, tools like FACT, DLP, and RACER are called “tableau”,
although they are based on a DPLL engine and implement variants of the SAT-based schema.
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“¬(ϕ1∧¬ϕ2)∧¬(ϕ2∧¬ϕ1)”, “>” and “⊥” for the constants “true” and “false”. (Here-
after formulas like ¬¬ψ are implicitly assumed to be simplified into ψ, so that, if ψ is
¬φ, then by “¬ψ” we mean “φ”.) We call depth of ϕ, written depth(ϕ), the maximum
number of nested modal operators in ϕ. We call a propositional atom every primitive
proposition in A , and a propositional literal every propositional atom (positive literal)
or its negation (negative literal).

In order to make our presentation more uniform, we adopt from [5, 18] the repre-
sentation of Km-formulas from the following table:

α α1 α2 β β1 β2 πr πr
0 νr νr

0
(ϕ1∧ϕ2) ϕ1 ϕ2 (ϕ1∨ϕ2) ϕ1 ϕ2 3rϕ1 ϕ1 2rϕ1 ϕ1
¬(ϕ1∨ϕ2) ¬ϕ1 ¬ϕ2 ¬(ϕ1∧ϕ2) ¬ϕ1 ¬ϕ2 ¬2rϕ1 ¬ϕ1 ¬3rϕ1 ¬ϕ1
¬(ϕ1 → ϕ2) ϕ1 ¬ϕ2 (ϕ1 → ϕ2) ¬ϕ1 ϕ2

in which non-literal Km-formulas are grouped into four categories: α’s (conjunctive),
β’s (disjunctive), π’s (existential), ν’s (universal).

A Kripke structure for Km is a tuple M = 〈U,L ,R1, . . . ,Rm〉, where U is a set of
states, L is a function L : A ×U 7−→ {True,False}, and each Rr is a binary relation
on the states of U. With an abuse of notation we write “u ∈ M ” instead of “u ∈ U”.
We call a situation any pair M ,u, M being a Kripke structure and u ∈M . The binary
relation |= between a modal formula ϕ and a situation M ,u is defined as follows:

M ,u |= Ai, Ai ∈ A ⇐⇒ L(Ai,u) = True;
M ,u |= ¬Ai, Ai ∈ A ⇐⇒ L(Ai,u) = False;
M ,u |= α ⇐⇒ M ,u |= α1 and M ,u |= α2;
M ,u |= β ⇐⇒ M ,u |= β1 or M ,u |= β2;
M ,u |= πr ⇐⇒ M ,w |= πr

0 for some w ∈U s.t. Rr(u,w) holds in M ;
M ,u |= νr ⇐⇒ M ,w |= νr

0 for every w ∈U s.t. Rr(u,w) holds in M .
“M ,u |= ϕ” should be read as “M ,u satisfy ϕ in Km” (alternatively, “M ,u Km-satisfies
ϕ”). We say that a Km-formula ϕ is satisfiable in Km (Km-satisfiable from now on) if
and only if there exist M and u ∈ M s.t. M ,u |= ϕ. (When this causes no ambiguity,
we sometimes drop the prefix “Km-”.) We say that w is a successor of u through Rr iff
Rr(u,w) holds in M .

The problem of determining the Km-satisfiability of a Km-formula ϕ is decidable and
PSPACE-complete [17, 10], even restricting the language to a single boolean atom (i.e.,
A = {A1}) [9]; if we impose a bound on the modal depth of the Km-formulas, the prob-
lem reduces to NP-complete [9]. For a more detailed description on Km— including,
e.g., axiomatic characterization, decidability and complexity results — see [10, 9].

A Km-formula is said to be in Negative Normal Form (NNF) if it is written in terms
of the symbols 2r, 3r, ∧, ∨ and propositional literals Ai, ¬Ai (i.e., if all negations occur
only before propositional atoms in A). Every Km-formula ϕ can be converted into an
equivalent one NNF(ϕ) by recursively applying the rewriting rules: ¬2rϕ=⇒3r¬ϕ,
¬3rϕ=⇒2r¬ϕ, ¬(ϕ1∧ϕ2)=⇒(¬ϕ1∨¬ϕ2), ¬(ϕ1∨ϕ2)=⇒(¬ϕ1∧¬ϕ2), ¬¬ϕ=⇒ϕ.

A Km-formula is said to be in Box Normal Form (BNF) [19, 20] if it is written
in terms of the symbols 2r, ¬2r, ∧, ∨, and propositional literals Ai, ¬Ai (i.e., if no
diamonds are there, and all negations occurs only before boxes or before propositional
atoms in A). Every Km-formula ϕ can be converted into an equivalent one BNF(ϕ) by
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recursively applying the rewriting rules: 3rϕ=⇒¬2r¬ϕ, ¬(ϕ1∧ϕ2)=⇒(¬ϕ1∨¬ϕ2),
¬(ϕ1∨ϕ2)=⇒(¬ϕ1∧¬ϕ2), ¬¬ϕ=⇒ϕ.

3 The Encoding

We borrow some notation from the Single Step Tableau (SST) framework [18, 4]. We
represent univocally states in M as labels σ, represented as non empty sequences of
integers 1.nr1

1 .nr2
2 . ... .nrk

k , s.t. the label 1 represents the root state, and σ.nr represents
the n-th successor of σ through the relation Rr. With a little abuse of notation, hereafter
we may say “a state σ” meaning “a state labeled by σ”.

Notationally, we often write “(
V

i li) →
W

j l j” for the clause “
W

j¬li ∨
W

j l j”, and
“(
V

i li)→ (
V

j l j)” for the conjunction of clauses “
V

j(
W

i¬li∨ l j)”.

3.1 The Basic Encoding

Let A[, ] be an injective function which maps a pair 〈σ,ψ〉, s.t. σ is a state label and ψ
is a Km-formula which is not in the form ¬φ, into a boolean variable A[σ, ψ]. Let L[σ, ψ]
denote ¬A[σ, φ] if ψ is in the form ¬φ, A[σ, ψ] otherwise. Given a Km-formula ϕ, the
encoder Km2SAT builds a boolean CNF formula as follows:

Km2SAT (ϕ) := A[1, ϕ]∧De f (1, ϕ), (1)
De f (σ, Ai), := > (2)

De f (σ, ¬Ai) := > (3)
De f (σ, α) := (L[σ, α] → (L[σ, α1]∧L[σ, α2]))∧De f (σ, α1)∧De f (σ, α2) (4)
De f (σ, β) := (L[σ, β] → (L[σ, β1]∨L[σ, β2]))∧De f (σ, β1)∧De f (σ, β2) (5)

De f (σ, πr, j) := (L[σ, πr, j ] → L[σ. j, πr, j
0 ])∧De f (σ. j, πr, j

0 ) (6)

De f (σ, νr) :=
^

〈σ:πr,i〉
((L[σ, νr ]∧L[σ, πr,i])→ L[σ.i, νr

0]) ∧
^

〈σ:πr,i〉
De f (σ.i, νr

0). (7)

We assume that the Km-formulas are represented as DAGs, so that to avoid the expan-
sion of the same De f (σ, ψ) more than once. Moreover, following [18], we assume that,
for each σ, the De f (σ, ψ)’s are expanded in the order: α,β,π,ν. Thus, each De f (σ, νr)
is expanded after the expansion of all De f (σ, πr,i)’s, so that De f (σ, νr) will generate
one clause ((L[σ, πr,i]∧L[σ, 2rνr

0])→ L[σ.i, νr
0]) and one novel definition De f (σ.i, νr

0) for
each De f (σ, πr,i) expanded.

Intuitively, it is easy to see that Km2SAT (ϕ) mimics the construction of an SST
tableau expansion [18, 4]. We have the following fact.

Theorem 1. A Km-formula ϕ is Km-satisfiable if and only if the corresponding boolean
formula Km2SAT (ϕ) is satisfiable.

The complete proof of Theorem 1 can be found in the Appendix.
Notice that, due to (7), the number of variables and clauses in Km2SAT (ϕ) may

grow exponentially with depth(ϕ). This is in accordance to what stated in [9].
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3.2 Variants

Before the encoding, some potentially useful preprocessing can be performed.

First, the input Km-formulas can be converted into NNF (like, e.g., in [18, 4]) or
into BNF (like, e.g., in [7, 19]). One potential advantage of the latter is that, when one
2rψ occurs both positively and negatively (like, e.g., in (2rψ∨ ...)∧ (¬2rψ∨ ...)∧ ...),
then both occurrences of 2rψ are labeled by the same boolean atom A[σ, 2rψ], and hence
they are always assigned the same truth value by DPLL; with NNF, instead, the negative
occurrence ¬2rψ is rewritten into 3r¬ψ, so that two distinct boolean atoms A[σ, 2rψ]
and A[σ, 3r¬ψ] are generated; DPLL can assign them the same truth value, creating a
hidden conflict which may require some extra boolean search to reveal.

Example 1 (NNF). Let ϕnn f be (3A1∨3(A2∨A3)) ∧ 2¬A1 ∧ 2¬A2 ∧ 2¬A3.2 It is
easy to see that ϕnn f is K1-unsatisfiable. Km2SAT (ϕnn f ) is:

1. A[1, ϕnn f ]
2. ∧ ( A[1, ϕnn f ] → (A[1, 3A1∨3(A2∨A3)]∧A[1, 2¬A1]∧A[1, 2¬A2]∧A[1, 2¬A3]) )
3. ∧ ( A[1, 3A1∨3(A2∨A3)] → (A[1, 3A1]∨A[1, 3(A2∨A3)]) )
4. ∧ ( A[1, 3A1] → A[1.1, A1] )
5. ∧ ( A[1, 3(A2∨A3)] → A[1.2, A2∨A3] )
6. ∧ ( (A[1, 2¬A1]∧A[1, 3A1])→¬A[1.1, A1] )
7. ∧ ( (A[1, 2¬A2]∧A[1, 3A1])→¬A[1.1, A2] )
8. ∧ ( (A[1, 2¬A3]∧A[1, 3A1])→¬A[1.1, A3] )
9. ∧ ( (A[1, 2¬A1]∧A[1, 3(A2∨A3)])→¬A[1.2, A1] )

10. ∧ ( (A[1, 2¬A2]∧A[1, 3(A2∨A3)])→¬A[1.2, A2] )
11. ∧ ( (A[1, 2¬A3]∧A[1, 3(A2∨A3)])→¬A[1.2, A3] )
12. ∧ ( A[1.2, A2∨A3] → (A[1.2, A2]∨A[1.2, A3]) )

After a run of BCP, 3. reduces to a disjunction. If the first element A[1, 3A1] is assigned,
then by BCP we have a conflict on 4.,6. If the second element A[1, 3(A2∨A3)] is assigned,
then by BCP we have a conflict on 12. Thus Km2SAT (ϕnn f ) is unsatisfiable. ¦

Example 2 (BNF). Let ϕbn f = (¬2¬A1∨¬2(¬A2∧¬A3)) ∧ 2¬A1 ∧ 2¬A2 ∧ 2¬A3.
It is easy to see that ϕbn f is K1-unsatisfiable. Km2SAT (ϕbn f ) is: 3

2 For K1 formulas, we omit the box and diamond indexes.
3 Notice that the valid clause 6. can be omitted.
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1. A[1, ϕbn f ]
2. ∧ ( A[1, ϕbn f ] → (A[1, (¬2¬A1∨¬2(¬A2∧¬A3))]∧A[1, 2¬A1]∧A[1, 2¬A2]∧A[1, 2¬A3]) )
3. ∧ ( A[1, (¬2¬A1∨¬2(¬A2∧¬A3))] → (¬A[1, 2¬A1]∨¬A[1, 2(¬A2∧¬A3)]) )
4. ∧ ( ¬A[1, 2¬A1] → A[1.1, A1] )
5. ∧ ( ¬A[1, 2(¬A2∧¬A3)] →¬A[1.2, (¬A2∧¬A3)] )
6. ∧ ( (A[1, 2¬A1]∧¬A[1, 2¬A1])→¬A[1.1, A1] )
7. ∧ ( (A[1, 2¬A2]∧¬A[1, 2¬A1])→¬A[1.1, A2] )
8. ∧ ( (A[1, 2¬A3]∧¬A[1, 2¬A1])→¬A[1.1, A3] )
9. ∧ ( (A[1, 2¬A1]∧¬A[1, 2(¬A2∧¬A3)])→¬A[1.2, A1] )

10. ∧ ( (A[1, 2¬A2]∧¬A[1, 2(¬A2∧¬A3)])→¬A[1.2, A2] )
11. ∧ ( (A[1, 2¬A3]∧¬A[1, 2(¬A2∧¬A3)])→¬A[1.2, A3] )
12. ∧ ( ¬A[1.2, (¬A2∧¬A3)] → (A[1.2, A2]∨A[1.2, A3]) )

Unlike with NNF, Km2SAT (ϕbn f ) is found unsatisfiable directly by BCP. Notice that the
unit-propagation of A[1, 2¬A1] from 2. causes ¬A[1, 2¬A1] in 3. to be false, so that one of
the two (unsatisfiable) branches induced by the disjunction is cut a priori. With NNF,
the corresponding atoms A[1, 2¬A1] and A[1, 3A1] are not recognized to be one the nega-
tion of the other, s.t. DPLL may need exploring one boolean branch more. ¦

Second, the (NNF or BNF) Km-formula can also be rewritten by recursively apply-
ing the validity-preserving “box/diamond lifting rules”:

(2rϕ1∧2rϕ2) =⇒ 2r(ϕ1∧ϕ2), (3rϕ1∨3rϕ2) =⇒ 3r(ϕ1∨ϕ2). (8)

This has the potential benefit of reducing the number of πr,i formulas, and hence the
number of labels σ.i to take into account in the expansion of the De f (σ, νr)’s (7).

Example 3 (NNF with LIFT). Let ϕnn f li f t = 3(A1∨A2∨A3) ∧ 2(¬A1∧¬A2∧¬A3).
It is easy to see that ϕbn f li f t is K1-unsatisfiable. Km2SAT (ϕbn f li f t) is:

A[1, ϕnn f li f t ]
∧ ( A[1, ϕnn f li f t ] → (A[1, 3(A1∨A2∨A3)]∧A[1, 2(¬A1∧¬A2∧¬A3)]) )
∧ ( A[1, 3(A1∨A2∨A3)] → A[1.1, A1∨A2∨A3] )
∧ ( (A[1, 2(¬A1∧¬A2∧¬A3)]∧A[1, 3(A1∨A2∨A3)])→ A[1.1, (¬A1∧¬A2∧¬A3)] )
∧ ( A[1.1, A1∨A2∨A3] → (A[1.1, A1]∨A[1.1, A2]∨A[1.1, A3]) )
∧ ( A[1.1, (¬A1∧¬A2∧¬A3)] → (¬A[1.1, A1]∧¬A[1.1, A2]∧¬A[1.1, A3]) )

Km2SAT (ϕnn f li f t) is found unsatisfiable by BCP. ¦
Example 4 (BNF with LIFT). Let ϕbn f li f t = ¬2(¬A1∧¬A2∧¬A3) ∧ 2(¬A1∧¬A2∧¬A3).
It is easy to see that ϕbn f li f t is K1-unsatisfiable. Km2SAT (ϕbn f li f t) is:

1. A[1, ϕbn f li f t ]
2. ∧ ( A[1, ϕbn f li f t ] → (¬A[1, 2(¬A1∧¬A2∧¬A3)]∧A[1, 2(¬A1∧¬A2∧¬A3)]) )
3. ∧ ( ¬A[1, 2(¬A1∧¬A2∧¬A3)] →¬A[1.1, (¬A1∧¬A2∧¬A3)] )
4. ∧ ( ¬A[1.1, (¬A1∧¬A2∧¬A3)] → (A[1.1, A1]∨A[1.1, A2]∨A[1.1, A3]) )

Km2SAT (ϕbn f li f t) is found unsatisfiable by BCP. ¦
One potential drawback of applying the lifting rules is that, by collapsing (2rϕ1 ∧
2rϕ2) into 2r(ϕ1∧ϕ2) and (3rϕ1∨3rϕ2) into 3r(ϕ1∨ϕ2), the possibility of sharing
box/diamond subformulas in the DAG representation of ϕ is reduced.
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4 Empirical Evaluation

In order to verify empirically the effectiveness of this approach, we have performed an
extensive empirical test session. We have implemented the encoder Km2SAT in C++,
with two flags: NNF/BNF, performing a pre-conversion into NNF/BNF before the en-
coding, and lift/nolift, performing box lifting before the encoding. We have tried
many SAT solvers on our encoded formulas (including ZCHAFF 2004.11.15, SIEGE
v4, BERKMIN 5.6.1, MINISAT v1.13, SAT-ELITE v1.0 and SAT-ELITE GTI 2005
submission). ). After a preliminary evaluation, we have selected ZCHAFF and SAT-
ELITE GTI (hereafter SAT-ELITE).

Among the state-of-the-art tools for Km-satisfiability, we have selected RACER [26]
and *SAT [25] as the best representers of the tableaux/DPLL-based tools, MSPASS
[15, 14] as the best representer of the FOL-encoding approach, 4 KBDD [19, 20] 5

as the representer of the automata-theoretic approach, and the K-QBF translator [20]
combined with the SEMPROP QBF solver (which seems to be the best QBF solver for
these kinds of problems 6 ) as representant of the QBF-encoding approach. 7

All tests presented in this section have been performed on a two-processor Intel
Xeon 3.0GHz computer, with 1 MByte Cache each processor, 4 GByte RAM, with
Red Hat Linux 3.0 Enterprise Server, where four processes can run in parallel. When
reporting the results for one Km2SAT +DPLL version, the CPU times reported are the
sums of both the encoding and DPLL solving times.

In order to make the results reproducible, the encoder, the benchmarks and the files
with all the plots are available. 8

4.1 Test description

As a first group of benchmark formulas we used the LWB benchmark suite used in
a comparison at Tableaux’98 [11]. It consists on 9 classes of parameterized formulas
(each in two versions, valid “ p” or invalid “ n”), for a total amount of 378 formulas.
The parameter allows for creating formulas of increasing size and difficulty.

The benchmark methodology is to test formulas from each class, in increasing dif-
ficulty, until one formula cannot be solved within a given timeout (1000 seconds in our
tests)9. The result from this class is the parameter’s value of the largest (and hardest)
formula that can be solved within the time limit. (The parameter ranges only from 1 to

4 We have run MSPASS with the options -EMLTranslation=2 -EMLFuncNary=1
-Sorts=0 -CNFOptSkolem=0 -CNFStrSkolem=0 -Select=2 -Split=-1 -DocProof=0
-PProblem=0 -PKept=0 -PGiven=0, which are suggested for Km-formulas in the MSPASS

README file.
5 KBDD has been run with the default internal memory bound of 384MB.
6 In results we report only SEMPROP times, since the time spent by K-QBF is almost negli-

giable.
7 Other tools like LEANK, 2KE, LWB, KRIS are not competitive with the ones listed above

[13]. Tools like DLP and FACT are similar in spirit and performances to RACER and *SAT.
KSAT [7, 8, 6] has been reimplemented into *SAT.

8 Available at http://www.dit.unitn.it/˜rseba/sat06/allmaterial.tar.gz.
9 We also set a 1GB file-size limit for the encoding produced by Km2SAT .
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21 so that, if a system can solve all 21 instances of a class, the result is given as 21.) For
a discussion on this benchmark suite, we refer the reader to [11, 13].

As a second group of benchmark formulas, we have selected the random 2m-CNF
testbed described in [13, 21]. This is a generalization of the well-known random k-SAT
test methods, and is the final result on a long discussion in the communities of modal
and description logics on how to to obtain significant and flawless random benchmarks
for modal/description logics (see [7, 15, 6, 13, 21]).

In the 2m-CNF test methodology, a 2m-CNF formula is randomly generated ac-
cording to the following parameters:

– the (maximum) modal depth d;
– the number of top-level clauses L;
– the number of literal per clause clauses k;
– the number of distinct propositional variables N;
– the number of distinct box symbols m;
– the percentage p of purely propositional literals in clauses occurring at depth < d. 10

(We refer the reader to [13, 21] for a more detailed description.)
A typical problem set is characterized by fixed values of d, k, N, m, and p: L is

varied in such a way as to empirically cover the “100% satisfiable—100% unsatisfiable”
transition. Then, for each tuple of the five values in a problem set, a certain number of
2m-CNF formulas are randomly generated, and the resulting formulas are given in input
to the procedure under test, with a maximum time bound. The fraction of formulas
which were solved within a given timeout, and the median/percentile values of CPU
times are plotted against the ratio L/N. Also, the fraction of satisfiable/unsatisfiable
formulas is plotted for a better understanding.

Following [13, 21], we have fixed m = 1, k = 3 and 100 samples/point in all our tests,
and we have selected two groups: d = 1, p = 0.5, and N = 6,7,8,9, L/N = 10..60, and
d = 2, p = 0.5,0.6, N = 3,4, L/N = 30..150, for a total amount of 12,000 formulas. In
each test, we imposed a timeout of 500 seconds per sample 11 and we plot the number
of samples which were solved within the timeout, and the 50%th and 90%th percentiles
of CPU time. In order to correlate the performances with the (un)satisfiability of the
sample formulas, in the background of each plot we plot the satisfiable/unsatisfiable
ratio.

For both benchmark suites, for all formulas, all tools under test —both all the vari-
ants of Km2SAT +DPLL and all the state-of-the-art Km-satisfiability solvers— agreed
on the satisfiability/unsatisfiability result when terminating within the timeout.

4.2 An empirical comparison of the different variants of Km2SAT

We have evaluated the four variants of the encoding, with both ZCHAFF and SAT-
ELITE.
10 Each modal clause of length k contains on average p · k randomly-picked boolean literals and

k− p ·k randomly-generated modal literals 2rψ, ¬2rψ. More precisely, the number of boolean
literals in a clause is bp ·kc (resp. dp ·ke) with probability dp ·ke− p ·k (resp. 1−(dp ·ke− p ·k)).
Notice that typically the smaller is p, the harder is the problem [13, 21].

11 With also a 512MB file-size limit for the encoding produced by Km2SAT
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number of variables (·103) number of clauses (·103) ZCHAFF SAT-ELITE

Encoding NNF BNF NNF BNF NNF BNF NNF BNF
Lifting yes no yes no yes no yes no yes no yes no yes no yes no
k branch n 1000 1000 1000 1000 1000 1000 1000 1000 4 4 4 4 4 4 4 4
k branch p 1000 1000 1000 1000 1000 1000 1000 1000 4 4 4 4 4 4 4 4
k d4 n 500 2000 2000 1000 600 2000 3000 2000 4 4 6 6 5 6 5 5
k d4 p 5000 5000 9000 9000 6000 6000 11000 11000 9 9 9 9 9 9 10 10
k dum n 5000 5000 5000 5000 6000 6000 6000 6000 18 18 18 18 18 18 18 17
k dum p 7000 7000 5000 6000 8000 9000 7000 7000 17 17 17 17 16 16 16 15
k grz n 10 10 10 10 10 10 10 10 21 21 21 21 21 21 21 21
k grz p 10 10 9 8 10 10 9 8 21 21 21 21 21 21 21 21
k lin n 30 30 30 30 50 50 500 50 21 21 21 21 21 21 21 21
k lin p 4 10 4 10 5 10 5 10 21 21 21 21 21 21 21 21
k path n 2000 2000 2000 2000 2000 2000 2000 2000 5 5 5 6 6 6 6 6
k path p 2000 12000 2000 11000 2000 14000 2000 13000 7 7 7 7 7 8 7 8
k ph n 300 50 300 50 300 50 300 50 21 21 21 21 21 21 21 21
k ph p 10 4 10 5 10 5 10 6 11 11 11 12 11 11 10 11
k poly n 20 200 20 200 20 200 20 200 21 21 21 21 21 21 21 21
k poly p 20 200 20 200 20 200 20 200 21 21 21 21 21 21 21 21
k t4p n 800 1000 3000 4000 900 1000 3000 4000 4 4 5 5 4 4 5 4
k t4p p 3000 3000 4000 4000 3000 4000 4000 5000 8 8 9 9 8 8 9 9

Table 1. Comparison of the variants of Km2SAT +ZCHAFF/SAT-ELITE on the LWB benchmarks.

The results on the LWB benchmark are summarized in Table 1. The first block
reports the number of variables and clauses of Km2SAT (ϕ) (referring to the highest
case solved). The second block reports the maximum parameter’s value of the hardest
formula solved within the timeout. (E.g., the BNF-nolifting encoding of k d4 p(10)
contains 9 · 106 variables and 11 · 106 clauses, it is the hardest k d4 p problem solved
by SAT-ELITE, and it is the first which is not solved by ZCHAFF.)

Looking at the number of clauses and variables, we notice a few facts: first, lifting
in many cases reduces the size of the encoded formula (e.g., in k path p), with a few
exceptions (e.g., in k grz p); second, BNF in many cases produces smaller formulas
than NNF (e.g., in k dum p), with a few exceptions (e.g., in k ph p).

Looking at the CPU times, we notice that the performance gaps are rather small,
and there is no absolute winner neither between the SAT solvers nor among the en-
codings, although the BNF-nolifting version with ZCHAFF seems to behave slightly
better than the others on the whole. We also notice that there seems not to be an absolute
correlation between a reduction in size of the encoded formula and an improvement of
performances. (E.g., with k path p and BNF, lifting reduces significantly the size of the
formula, but it causes a worse performance of SAT-ELITE.)

In the random 2m-CNF benchmarks the gaps are more relevant. (For better read-
ability, we report only the results for ZCHAFF because it turned out to be significantly
better then SAT-ELITE on these formula, with a noteworthy exception of the second
row in Figure 4, where we reported also the values for SAT-ELITE.)
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For lack of space, we do not present the plots of the number of variables and clauses
of the encoded formulas. Anyway, we report a few facts: first, in all the tests, these
values grow linearly (or slightly sub-linearly 12) with the number of clauses L of the Km-
formula; second, the values are very regular: the gaps between 50% and 90% percentiles
are negligible; third, BNF produces slightly smaller formulas than NNF in most cases, but
the gaps are small; fourth, lifting increases significantly the number of variables and
clauses generated. 13 To give a coarse idea of the values, with the hardest problems
(d = 2, p = 0.5, N = 4, L/N = 150) and the worst encoder (lift, NNF), we have about
2.5 ·106 clauses and 1.5 ·106 variables, whilst with the best encoder (nolift, BNF) we
have about 1.2 ·106 clauses and 0.7 ·106 variables.

The CPU times are reported in Figures 1 and 2. The tests of Figure 1 are simply
too easy for Km2SAT +ZCHAFF (but not for its competitors, see later) which solved
every sample formula in less than 1 second. The tests of Figure 2 are more challenging.
In general, it seems that in the majority of cases nolifting beats lifting and BNF
beats NNF, although this seems not to be a general rule. In the hardest benchmark with
p = 0.5 and N = 4 (2nd row), we also reported the SAT-ELITE plots, because it beats
significantly ZCHAFF.

Finally, we notice that for Km2SAT +ZCHAFF the problems tend to be harder within
the satisfiability/unsatisfiability transition area. This fact holds also for RACER and
*SAT, see figures 1 and 2. This seems to confirm the fact that the easy-hard-easy pattern
of random k-SAT extends also to 2m-CNF, as already observed in [7, 8, 6, 13, 21].

4.3 An empirical comparison wrt. other approaches

We have evaluated the Km2SAT +DPLL approach against the other Km-satisfiability
solvers listed above.

The results on the LWB benchmark are summarized in Table 2. We notice a few
facts: first, RACER and *SAT are the best scorers (confirming the analysis in [13]); sec-
ond, there is no definite winner between KBDD and MSPASS; third, K-QBF +SEMPROP
is the worst performer among the state-of-the-art tools, way below the performances of
RACER and *SAT; fourth, Km2SAT +DPLL is the worst performer on k branch, k d4,
k dum the second worst performer on k path, k t4p, it equals the competitors on k grz
and k lin, and it is (one of) the best performer(s) on k ph and k Pol.

In the random 2m-CNF benchmarks the results are much better for Km2SAT . In Fig-
ure 3 (center and right) Km2SAT +ZCHAFF is nearly always the best scorer, followed by
*SAT and RACER. From Figure 3 (left) notice that K-QBF +SEMPROP, MSPASS, and
KBDD do not terminate within the timeout for most values, whilst Km2SAT +ZCHAFF
always terminates (below 1 second). In Figure 4 (center and right) we notice that, for
p = 0.5 (1st and 2nd row) Km2SAT +ZCHAFF is nearly always the best scorer (notice
that with N = 4 SAT-ELITE beats ZCHAFF); for p = 0.6 (3rd and 4th row) Km2SAT
+ZCHAFF is beaten only by *SAT. In all these tests, K-QBF +SEMPROP, MSPASS and
KBDD are not competitive.
12 The more clauses are a in 2m-CNF formula, the higher are the chances of sharing sub-

formulas.
13 We believe that this may be due to the fact that random 2m-CNF formulas may contain lots of

shared subformulas 2rψ, so that lifting may cause a reduction of such sharing (see §3).
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state-of-the-art tools Km2SAT best
K-QBF (BNF-nolift + ZCHAFF)

test + SEMPROP KBDD MSPASS RACER *SAT solved encoded
k branch n 10 8 10 15 14 4 4
k branch p 10 8 10 21 21 4 4
k d4 n 9 21 21 21 21 6 7
k d4 p 15 21 21 21 21 9 11
k dum n 21 21 21 21 21 18 20
k dum p 21 21 21 21 21 17 19
k grz n 11 21 21 21 21 21 21
k grz p 13 21 21 21 21 21 21
k lin n 21 21 21 21 21 21 21
k lin p 3 21 3 21 21 21 21
k path n 9 10 4 21 21 5 7
k path p 10 15 5 21 21 7 8
k ph n 8 4 12 21 13 21 21
k ph p 7 4 8 9 9 11 21
k poly n 21 8 7 21 21 21 21
k poly p 21 7 7 21 21 21 21
k t4p n 4 21 12 21 21 5 6
k t4p p 6 21 21 21 21 9 11

Table 2. Comparison of Km2SAT +ZCHAFF againts the state-of-the-art tools on the LWB bench-
marks. The righmost columns represents the biggest formula encoded within the 1GB bound.

4.4 Discussion

As highlighted in [6, 13], the satisfiability problem in modal logics like Km is charac-
terized by the alternation of two orthogonal components of reasoning: a boolean com-
ponent, performing boolean reasoning within each state, and a modal component, gen-
erating the successor states of each state. The latter must cope with the fact that the
candidate models may be up to exponentially big wrt. depth(ϕ), whilst the former must
cope with the fact that there may be up to exponentially many candidate (sub)models to
explore. In the Km2SAT +DPLL approach the encoder has to handle the whole modal
component ((6) and (7)), whilst the handling of the whole boolean component is dele-
gated to the SAT solver.

From the results displayed in this section we notice that, there are formulas for
which the Km2SAT +DPLL approach is much more inefficient than other state-of-the-
art approaches (e.g., the k branch n formulas), and others for which it is much more
efficient (e.g., the k ph p or the 2m-CNF formulas with d = 1).

On one extreme, the k branch n formulas are very hard from the perspective of
modal reasoning, because they require finding one model M with 2d+1−1 states [10]
(but no boolean reasoning within each state is really required [6, 13] 14). Thus, the size
of the Km2SAT (ϕ) formulas blows up very quickly. On the other extreme, k ph p(d)

14 A tool like *SAT solves k branch n(d) with 2d+1− 1 calls to its embedded DPLL engine,
one for each state of M , each call solved by BCP only.
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is the modal encoding of a hard boolean problem [11], so that the modal component
of reasoning is limited. Thus, the Km2SAT (ϕ) formulas have a reasonable size even
for d = 21, although they are very hard boolean formulas even for d = 12 (anyway,
ZCHAFF can handle them much better than other tools can handle the corresponding
Km-formulas).

On the whole, the Km2SAT +DPLL approach is outperformed by other approaches
on problems where the modal component of reasoning dominates (like, e.g., the k branch n
formulas), and outperforms them on problems where the boolean component of reason-
ing dominates (like, e.g., the k ph n or the 2m-CNF formulas with d = 1), For for-
mulas in which both components are relevant (e.g., the 2m-CNF formulas with d = 2
and p = 0.5, see [21]), the Km2SAT +DPLL approach is competitive wrt. the other
approaches, although no absolute winner can be established.

5 Conclusions and future work

In this paper we have explored the idea of encoding Km/ALC -satisfiability into SAT,
so that to be handled by state-of-the-art SAT tools. We have showed that, despite the
intrinsic risk of blowup in the size of the encoded formulas, the performances of this
approach are comparable with those of current state-of-the-art tools on a rather exten-
sive variety of empirical tests. (Notice that, as a byproduct of this work, the encoding
of hard Km-formulas could be used as benchmarks for SAT solvers.)

We see many possible direction to explore in order to enhance and extend this ap-
proach. First, our current implementation of the encoder is very straightforward, and
optimizations for making the formula more compact can be introduced. Second, tech-
niques implemented in other approaches (e.g., the pure literal optimization of [20])
could be imported. Third, hybrid approaches between Km2SAT and KSAT-style tools
could be investigated.

Another important open research line is to explore encodings for other modal and
description logics. Whilst for logics like Tm the extension should be straightforward,
logics like S4m, or more elaborated description logics than ALC , should be challenging.
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Appendix: The proof of correctness & completeness

Some further notation

Let ψ be a Km-formula. We denote by ψ the representation of ¬ψ in the current formal-
ism: in NNF, 3rψ := 2rψ, 2rψ := 3rψ, ψ1∧ψ2 := ψ1 ∨ψ2, ψ1∨ψ2 := ψ1 ∧ψ2,
Ai := ¬Ai, ¬Ai := Ai; in BNF, ¬2rψ := 2rψ, 2rψ := ¬2rψ, ψ1∧ψ2 := ψ1 ∨ψ2,
ψ1∨ψ2 := ψ1∧ψ2, Ai := ¬Ai, ¬Ai := Ai.

We represent a truth assignment µ as a set of literals, with the intended meaning
that a positive literal Ai (resp. negative literal ¬Ai) in µ means that Ai is assigned to true
(resp. false). We say that µ assigns a literal l if it assigns a truth value to the atom of l.
We say that a literal l occurs in a boolean formula φ iff its atom occurs in φ.

Let M denote a Kripke model, and let σ (the label of) a generic state in M . We
denote by “1” is the root state of M . By “〈σ : ψ〉 ∈ M ” we mean that σ ∈ M and
M ,σ |= ψ. Thus, for every σ ∈M , either 〈σ : ψ〉 ∈M or 〈σ : ψ〉 ∈M .

For convenience, instead of (7) sometimes we use the equivalent definition:

De f (σ, νr) := (L[σ, νr ] →
^

〈σ:πr,i〉
(L[σ, πr,i] → L[σ.i, νr

0])) ∧
^

〈σ:πr,i〉
De f (σ.i, νr

0). (9)

Notice that each De f (σ, ψ) in (4), (5), (6), (9) is written in the general form

(L[σ, ψ] →Φ〈σ:ψ〉)∧
^

〈σ′:ψ′〉
De f (σ′, ψ′). (10)

We call definition implication for De f (σ, ψ) the expressions “(L[σ, ψ] →Φ〈σ:ψ〉)”.

The proof

Let ϕ be a Km-formula. We prove the following theorem, which states the soundness
and completeness of Km2SAT .

Theorem 2. A Km-formula ϕ is Km-satisfiable if and only if Km2SAT (ϕ) is satisfiable.

Proof. It is a direct consequence of the following Lemmas 1 and 2. 2.
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Lemma 1. Given a Km-formula ϕ, if Km2SAT (ϕ) is satisfiable, then there exists a
Kripke model M s.t. M ,1 |= ϕ.

Proof. Let µ be a total truth assignment satisfying Km2SAT (ϕ). We build from µ a
Kripke model M = 〈U,L ,R1, . . . ,Rm〉 as follows:

U := {σ : A[σ, ψ] occurs in Km2SAT (ϕ) f or some ψ} (11)

L(σ,Ai) :=
{

True i f L[σ, Ai] ∈ µ
False i f ¬L[σ, Ai] ∈ µ (12)

Rr := {〈σ,σ.i〉 : L[σ, πr,i] ∈ µ}. (13)

We show by induction on the structure of ϕ that, for every 〈σ : ψ〉 s.t. L[σ, ψ] occurs
on Km2SAT (ϕ),

〈σ : ψ〉 ∈M if L[σ, ψ] ∈ µ. (14)

Base.

ψ = Ai or ψ = ¬Ai. Then (14) follows trivially from (12).

Step.

ψ = α. Let L[σ, α] ∈ µ.
As µ satisfies (4), L[σ, αi] ∈ µ for every i ∈ {1,2}.
By inductive hypothesis, 〈σ : αi〉 ∈M for every i ∈ {1,2}.
Then, by definition, 〈σ : α〉 ∈M .
Thus, 〈σ : α〉 ∈M if L[σ, α] ∈ µ.

ψ = β. Let L[σ, β] ∈ µ.
As µ satisfies (5), L[σ, βi] ∈ µ for some i ∈ {1,2}.
By inductive hypothesis, 〈σ : βi〉 ∈M for some i ∈ {1,2}.
Then, by definition, 〈σ : β〉 ∈M .
Thus, 〈σ : β〉 ∈M if L[σ, β] ∈ µ.

ψ = πr, j. Let L[σ, πr, j ] ∈ µ.
As µ satisfies (6), L[σ. j, πr, j ] ∈ µ.

By inductive hypothesis, 〈σ. j : πr, j
0 〉 ∈M .

Then, by definition and by (13), 〈σ : πr, j〉 ∈M .
Thus, 〈σ : πr, j〉 ∈M if L[σ, πr, j ] ∈ µ.

ψ = νr. Let L[σ, νr ] ∈ µ.
As µ satisfies (7), for every 〈σ : πr,i〉 s.t. L[σ, πr,i] ∈ µ, we have that L[σ.i, νr

0] ∈ µ.
By inductive hypothesis, we have that 〈σ : πr,i〉 ∈M and 〈σ.i : νr

0〉 ∈M .
Then, by definition and by (13), 〈σ : νr〉 ∈M .
Thus, 〈σ : νr〉 ∈M if L[σ, νr ] ∈ µ.

If µ |= Km2SAT (ϕ), then A[1, ϕ] ∈ µ. Thus, by (14), 〈1 : ϕ〉 ∈M , i.e., M ,1 |= ϕ. 2
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Lemma 2. Given a Km-formula ϕ, if there exists a Kripke model M s.t. M ,1 |= ϕ, then
Km2SAT (ϕ) is satisfiable.

Proof. Let M be a Kripke model s.t. M ,1 |= ϕ. We build from M a truth assignment
µ for Km2SAT (ϕ) recursively as follows: 15

µ := µM ∪µM (15)

µM := {L[σ, ψ] ∈ Km2SAT (ϕ) : 〈σ : ψ〉 ∈M } (16)
∪ {¬L[σ, ψ] ∈ Km2SAT (ϕ) : 〈σ : ψ〉 ∈M }

µM := µπν∪µαβ (17)

µπν := {¬L[σ, πr,i] ∈ Km2SAT (ϕ) : σ 6∈M } (18)

∪ {L[σ, νr ] ∈ Km2SAT (ϕ) : σ 6∈M }
µαβ := {L[σ, α] ∈ Km2SAT (ϕ) : σ 6∈M and L[σ, αi] ∈ µM f or every i ∈ {1,2}} (19)

∪ {¬L[σ, α] ∈ Km2SAT (ϕ) : σ 6∈M and ¬L[σ, αi] ∈ µM f or some i ∈ {1,2}}
∪ {L[σ, β] ∈ Km2SAT (ϕ) : σ 6∈M and L[σ, βi] ∈ µM f or some i ∈ {1,2}}
∪ {¬L[σ, β] ∈ Km2SAT (ϕ) : σ 6∈M and ¬L[σ, βi] ∈ µM f or every i ∈ {1,2}}.

By construction, for every L[σ, ψ] in Km2SAT (ϕ), µ assigns L[σ, ψ] to true iff it assigns
L[σ, ψ] to false and vice versa, so that µ is a consistent truth assignment.

First, we show that µM satisfies the definition implications of all De f (σ, ψ)’s and
De f (σ, ψ)’ s.t. σ ∈M . Let σ ∈M . We distinguish four cases.

ψ = α. Thus ψ = β s.t. β1 = α1 and β2 = α2.
• If 〈σ : α〉 ∈M (and hence 〈σ : β〉 6∈M ), then for both i’s 〈σ : αi〉 ∈M and 〈σ :

βi〉 6∈ M . Thus, by (16), {L[σ, α1],L[σ, α2],¬L[σ, β]} ⊆ µM , so that µM satisfies
the definition implications of both De f (σ, α) and De f (σ, β).

• If 〈σ : α〉 6∈ M (and hence 〈σ : β〉 ∈ M ), then for some i 〈σ : αi〉 6∈ M and
〈σ : βi〉 ∈ M . Thus, by (16), {¬L[σ, α],L[σ, βi]} ⊆ µM , so that µM satisfies the
definition implications of both De f (σ, α) and De f (σ, β).

ψ = β. Like in the previous case, inverting ψ and ψ.

ψ = πr, j. Thus ψ = νr s.t. νr
0 = πr, j

0 .
• If 〈σ : πr, j〉 ∈M (and hence 〈σ : νr〉 6∈M ), then 〈σ. j : πr, j

0 〉 ∈M . Thus, by (16),
{L[σ. j, πr, j

0 ],¬L[σ, νr ]} ⊆ µM , so that µM satisfies the definition implications of

both De f (σ, πr, j) and De f (σ, νr).
• If 〈σ : πr, j〉 6∈ M (and hence 〈σ : νr〉 ∈ M ), then by (16) ¬L[σ, πr, j ] ∈ µM , so

that µM satisfies the definition implications of De f (σ, πr, j).

15 We assume that µM , µπν and µαβ are generated in order, so that µαβ is generated recursively
starting from µπν. Intuitively, µM assigns the literals L[σ, ψ] s.t. σ ∈M in such a way to mimic
M ; µM assigns the other literals in such a way to mimic the fact that no state outside those
in M is generated (i.e., all L[σ, π]’s are assigned false and the L[σ, ν]’s, L[σ, α]’s, L[σ, β]’s are
assigned consequently).
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As far as De f (σ, νr) is concerned, we partition the clauses in (7):

((L[σ, νr ]∧L[σ, πr,i])→ L[σ.i, νr
0]) (20)

into two subsets. The first is the set of clauses (20) for which 〈σ : πr,i〉 ∈M . As
〈σ : νr〉 ∈M , we have that 〈σ.i : νr

0〉 ∈M . Thus, by (16), L[σ.i, νr
0] ∈ µM , so that

µM satisfies (20). The second is the set of clauses (20) for which 〈σ : πr,i〉 6∈
M . By (16) we have that ¬L[σ, πr,i] ∈ µM , so that µM satisfies (20). Thus, µM
satisfies the definition implications also of De f (σ, νr).

ψ = νr. Like in the previous case, inverting ψ and ψ.

Notice that, if σ 6∈M , then σ.i 6∈M for every i. Thus, for every De f (σ, ψ) s.t. σ 6∈M ,
all atoms in the implication definition of De f (σ, ψ) are not assigned by µM .

Second, we show by induction on the recursive structure of µM that µM satisfies the
definition implications of all De f (σ, ψ)’s and De f (σ, ψ)’s s.t. σ 6∈M . Let σ 6∈M .

As a base step, by (18), µπν satisfies the definition implications of all De f (σ, πr,i)’s
and De f (σ, νr)’s because it assigns false to all L[σ, πr,i]’s.

As inductive step, we show on the inductive structure of µαβ that µαβ satisfies the
definition implications of all De f (σ, α)’s and De f (σ, β)’s. Let ψ := α and ψ = β s.t.
βi = αi (or vice versa). Then we have that:

– if both L[σ, αi]’s are assigned true by µM (and hence both L[σ, βi]’s are assigned
false), then by (19) L[σ, α] is assigned true and L[σ, β] is assigned false by µαβ, which
satisfies the definition implications of both De f (σ, α) and De f (σ, β);

– if one L[σ, αi] is assigned false by µM (and hence L[σ, βi] is assigned true), then by
(19) L[σ, α] is assigned false and L[σ, β] is assigned true by µαβ, which satisfies the
definition implications of both De f (σ, α) and De f (σ, β).

Thus µM satisfies the definition implications of all De f (σ, ψ)’s and De f (σ, ψ)’s s.t.
σ 6∈M .

On the whole, µ |= De f (σ, ψ) for every De f (σ, ψ). By construction, µM |= A[1, ϕ].
Therefore µ |= Km2SAT (ϕ). 2
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Fig. 1. Comparison among different variants of Km2SAT +ZCHAFF on random problems, d = 1,
p = 0.5, 100 samples/point. X axis: #clauses/N. Y axis: 1st column: % of problems solved
within the timeout; 2nd and 3rd columns: CPU time, 50th and 90th percentiles. 1st to 4th row:
N = 6,7,8,9. Background: % of satisfiable instances.
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Fig. 2. Comparison among different variants of Km2SAT +ZCHAFF on random problems, d = 2,
100 samples/point. X axis: #clauses/N. Y axis: 1st column: % of problems solved within the
timeout; 2nd and 3rd columns: CPU time, 50th and 90th percentiles. 1st and 2nd row: p = 0.5,
N = 3,4; 3rd and 4th row: p = 0.6, N = 3,4. Background: % of satisfiable instances.
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Fig. 3. Comparison against other approaches on random problems, d = 1, p = 0.5, 100 sam-
ples/point. X axis: #clauses/N. Y axis: 1st column: % of problems solved within the timeout;
2nd and 3rd columns: CPU time, 50th and 90th percentiles. 1st to 4th row: N = 6,7,8,9. Back-
ground: % of satisfiable instances.
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Fig. 4. Comparison against other approaches on random problems, d = 2, 100 samples/point. X
axis: #clauses/N. Y axis: 1st column: % of problems solved within the timeout; 2nd and 3rd
columns: CPU time, 50th and 90th percentiles. 1st and 2nd row: p = 0.5, N = 3,4; 3rd and 4th
row: p = 0.6, N = 3,4. Background: % of satisfiable instances.
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