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Abstract

This paper presents some preliminary results of an ongoing investigaton a
how different algorithmic building blocks contribute to solving the Maximum @#iq
problem. In detail, we consider greedy constructions, plateau seaihe more
complex schemes based on dynamic penalties and/or prohibitions, irufzartie
recently proposed technique of Dynamic Local Search and the psiyiptoposed
Reactive Local Search. The experimental results consider both ghideahhardness,
measured by the iterations needed to reach empirical maxima, and th&rg@U
per iteration.

1 Reactive search and maximum clique

Reactive Search, see [6] for a recent presentation andfdr, &minal papers, advocates
the use ofmachine learningo automate the parameter tuning process and make it an
integral and fully documented part of the algorithm. Lenagis performed on-line, and
thereforetask-dependent and local propertiebthe configuration space can be used.
In this way a single algorithmic framework maintains theifdéity to deal with related
problems through an internal feedback loop that considerptevious history of the
search, see also [13] for a recent work summarizing the-sfatee-art of self-tuning
based on instance characteristics, and [8] for a proposd¢&oning domain-specific
backtracking-based algorithms.

The Maximum Cligue problem in graphs (MC for short) is a pégathtic combinatorial
optimization problem with relevant applications [15], leding information retrieval,
computer vision, and social network analysis. Recent@éstencludes computational
biochemistry, bio-informatics and genomics, see for eXarfid, 9]. The problem is
NP-hard and strong negative results have been shown abapproximability [11],
making it an ideal testbed for search heuristics.

Let G = (V, E) be an undirected graph; = {1,2,...,n} its vertex setE C
V x V its edge set, and(S) = (S, E NS x S) the subgraph induced by, where



S is a subset of/. A graphG = (V, E) is completeif all its vertices are pairwise
adjacent, i.eVi, j € V, (i,j) € E. A clique K is a subset of/ such thatG(K) is
complete. The Maximum Clique problem asks for a clique of imaxn cardinality.
A Reactive Local Search (RLS) algorithm for the solution leé tMaximum-Clique
problem is proposed in [3, 7]. RLS is based on local searchptermented by a
feedback (history-sensitive) scheme to determine the atafudiversification. The
reaction acts on the single parameter that decides the tanygoohibition of selected
moves in the neighborhood. The performance obtained in atatipnal tests appears
to be significantly better with respect to all algorithmseesat the the second DIMACS
implementation challenge.

Recently, the authors of [16] proposed a stochastic loaaicbealgorithm (DLS-
MC), based on a clique expansion phase followed by plateancisafter a maximal
cligue is encountered. Diversification is based on varenaltiesvhich are dynamically
adjusted during the search and on a strict prohibition n@shato avoid the same
vertex being moved multiple times during a plateau sear¢te DLS-MC scheme is
actually a slight simplification of the Deep Adaptive Greeslyarch of [10]: vertex
penalties are used throughout the entire search, a "fargetnechanism decreasing
the penalties is added, and vertex degrees are not corgigethe selection. The
authors report a very good performance on the DIMACS ingtan@/hile the number
of iterations (additions or deletions of nodes to the curadigue) is in some cases
larger than that of competing techniques, the small conitylex each iteration when
the algorithm is realized through efficient supporting dettactures leads to smaller
overall CPU times.

The initial motivation of this work is threefold. First, weant to investigate
how the different algorithmic building blocks contribute ¢ffectively solving max-
cligue instances corresponding to random graphs withreiffiestatistical properties. In
particular, the investigation considers the effects afigshe vertex degree information
during the search, starting from simple to more complexriepres.

Second, we want to assess how different implementatioestaffPU times. For
example, it may be the case that larger CPU times are causedity a high-level
language implementation w.r.t. low-level "pointer aritbtic”. Having available the
original software simplified the starting point for this &rsas.

Third, the DIMACS benchmark set (developed in 1992) has la@eand for more
than a decade and there is a growing risk that the desire toegtetr and better results
on the same benchmark will bias the search of algorithms inramatural way. We
therefore decide to concentrate the experimental part orckasses of random graphs,
chosen to assess the effect of degree variability on thetaffmess of different techniques.

Because of lack of space, we present in this paper prelimiresults of a larger
ongoing investigation.

2 Algorithmic building blocks of increasing complexity
In the local search algorithms, the basic moves consistsoétilition to or removal of

single nodes from the current clique (a swap of nodes carnigly decomposed into
two separate moves). Two sets are involved in the execufitmagic moves: the set



of theimproving neighbor$?0ssIBLEADD which contains nodes connected to all the
elements of the clique, and the set of teeel neighbor®ONEMISSING containing the
nodes connected to all but one element of the clique, sed Flget's fix the notation.
The various simple building blocks considered, are namboWng the BasicScheme

- CandidateSelectiostructure. ThdBasicSchemdescribes how the greedy expansion
and plateau search strategies are combined, possibly wattihitions or penalties.
TheCandidateSelectiospecifies whether the vertex degree information is useehguri
the selection of the next candidate move. If it is used, tlageetwo possibilities: of
using the static node degreeGhor the dynamic degree in the subgraph induced by the
POsSsSIBLEADD set.

Figure 1: Neighborhood of current clique.

2.1 Exp-Rand

This basic algorithm is the starting point for all the sustesmodifications and improvements,
see Fig. 2 for the pseudo-code. It searches for the maximiguecin the graph

by means of repeated greedy constructions (also calledheipes), selecting from
PossIBLEADD a node at random and restarting from a random node when nosirpa

is possible anymore.

ExP-RAND (mazIterations)

[ iterations « 0

whileiterations < maxIterations do
C —randomv eV

[ EXPAND (C)

S A

EXPAND (C)
™ while POSSIBLEADD # () do
C «— CUrandom v € POSSIBLEADD
|: iterations < iterations + 1

© ® N o°

Figure 2: Greedy expansion algorithm.



2.2 Exp-StatDegree

Instead of choosing a random element fromsBIBLEADD, a random node is chosen
among the candidates having the highest degre@.inThe EXPAND sub-routine in
Fig 2 is modified by substituting line 8 with:

C «— C U { random v € POSSIBLEADD such thatlegg (v) is mazimum}.

2.3 Exp-DynDegree

In this version, the selection of the candidate is not basetth® degree of the nodes in
G, but on the degree indsSIBLEADD. Line 8 becomes:
C « C U{ random v € POSSIBLEADD such thatlegpgsss. gADD (V) I8 mazimum}.

2.4 ExpPlat-Rand

This algorithm alternates between a greedy expansion atateap phase, choosing
between the possible candidate nodes at random.

During theexpansiorphase, new vertices are chosen randomly fras fiBLEADD
and moved to the current clique. Whem$SIBLEADD is empty and therefore no
further expansion is possible, tptateauphase starts. In this phase, a node belonging
to thelevel neighborhoodNEMISSINGis swapped with the only node not connected
to it in the current clique. Thplateauphase does not increment the size of the current
cligue and it terminates as soon as there is at least an eléem#he ROSSIBLEADD
set, or if no candidates are available INEMISSING. As it is done in [16], nodes
cannot be selected twice in the same plateau phase. In ordeoid infinite loops, the
number of plateau searches is limitedaxPlateauSteps

Starting from EXP-RAND, the base algorithm is adapted to deal with the alternation
of the two phases, see Fig. 3. Let us note that, KTEAU returns with ®SSIBLEADD # ()
then a new expansion is tried as described in line 5-7. Thatites are incremented
by 2 during a swap because it is counted as a deletion folldwyexh addition.

2.5 ExpPlat-StatDegree

This algorithm alternates between an expansion and a platkase, choosing the
possible candidate having the highest degree. The restddne after starting from
a random node. This algorithm is a modified version gPPLAT-RAND (Fig. 3) with
the static degree selection 0kB-STATDEGREE

2.6 ExpPlat-DynDegree

This algorithm is the same of¥®-DYNDEGREE, having a plateau phase.

The dynamic degree heuristic affects only the selectiorhefrtext candidate for
the expansion phase, while in the plateau phase the seledtimodes is based on the
static degree.



EXPPLAT-RAND (maxIterations, maxPlateauSteps)
[ iterations <+ 0O
whileiterations < mazxlterations do
C «—randomv eV
while POSSIBLEADD # () do
EXPAND (C)
[ PLATEAU (C, max PlateauSteps)

U L o

8. PLATEAU (C, maxPlateauSteps)

o [ count«—0

10. while POSSIBLEADD = () and ONEMISSING # ()
1. and count < maxPlateauSteps do

12 C «— C Urandom v € ONEMISSING

13, remove from C the node not connected to v
14, iterations «— iterations + 2

1. count <« count + 1

Figure 3: EXPPLAT-RAND algorithm, alternating betweeBxPAND and PLATEAU
phases.

27 DLSMC

This is the algorithm proposed in [16]. To achieve diversiflen during the search,
penalties are assigned to vertices of the graph and thegird&uthe selection of nodes.
The algorithm alternates between expansion and plateaeph&election is done by
choosing the best candidate among the set of the nodes iretgkehborhood having

minimum penalty.

When the algorithm starts, the penalty value of every nodgiiilized to 0 and
when no further expansion or plateau moves are possiblpetieties of nodes belonging
to the clique are incremented by one. All penalties are aeented by one aftesd
(penalty delayrestarts, see the cited paper for additional details aswlte

2.8 ExpPlatProhibition-Rand

This algorithm is the same algorithm okEPLAT-RAND, but it also uses prohibitions.
Every time a node is added or removed from current cliqus,gtohibited for the next

T iterations. Prohibited nodes cannot be considered amencpiididates of expansion
and plateau phases. When all the moves are prohibited atriegtarformed.

29 RLS

RLS [7] alternates between expansion and plateau phasef)liS-MC, but it selects
the nodes among the non-prohibited ones which have thestighgree in BSSIBLEADD.
The prohibition time is adjusted reactively depending amdkarch history. Restarts



are executed only when the algorithm cannot improve theeatigonfiguration within
a fixed number of iterations, see the paper for details.

210 RLS-StatDegree

This algorithm is a modification of RLS which uses the staggme instead of the
dynamic degree selection.

3 Computational experiments
Performance and scalability tests are made on two diffelesses of random graphs:

Binomial random graphs A binomial graphGIL(n, p), belonging to Gilbert’s model

G(n,p) is constructed by starting fromnodes and adding up 1?.5"2;1) undirected
edges, independently with probability< p < 1. See [2] for generation details.

Preferential Attachment Model A graph instanc& AT (n, d), of the preferential attachment
model, introduced in [1] is built by starting from a singledsoand adding
successively the remaining nodes. The edges of the the ragldiyd nodes are
connected tal existing nodes, with preferential attachment to nodesritpai
higher degree, i.e. with probability proportional to themwher of edges present
between the existing nodes.

In binomial graphs, the degree distribution for the difféneodes will be peaked on the
average value, while in the preferential attachment madtielprobability that a node
is connected t@& other nodes decreases following a power-law Pék) ~ k7 with

v > 1.

In the experiments, the graphs are generated using the Netibrary [12], for
a number of nodes ranging from 100 to 1500. Because of thenassdof MC, the
optimal solutions of large instances cannot be computedomedmust resort to the
empirical maximumTheempirical maximunconsidered in the experiments is the best
clique that RLS is able to find in 10 runs of 5 million steps edomo case DLS-MC
with penalty delay equal to 1 is able to find bigger cliquestfer same number of
iterations. The sizes of the empirical maximum cliques antharious graphs are listed
in Table 1.

The algorithms are tested against our data set (availablequrest by the authors),
to compute the empirical distribution function of the itévas needed to find the
empirical maximum The maximum number of steps per iteration is set to 10 millio
and each test is repeated on the same graph instance 100 thoethe algorithms
having a plateau phasmaxPlateauStefs setto 100. RLS code is the latest implementation
in C++ of the algorithm presented in [7] with more efficientalatructures.

We count as one iteration each add- or drop-move executdteatiue. The CPU
time spent by each iteration is measured on our referenchingdaving one Xeon
processor at 2.8 GHz and 512 MB RAM. The operating system isladh GNU/Linux
3.0 with kernel 2.6.8-2-686-smp. All the algorithms are pdied with g++ compiler
with “-O3 -mcpu=pentium4”.



[ Nodes [ GIL(n,0.3) [ PAT(n,n/3) |
100 6 13
200 7 19
300 8 25
400 8 31
500 8 37
600 8 42
700 9 48
800 9 54
900 9 57
1000 9 60
1100 10 64
1200 10 70
1300 10 74
1400 10 79
1500 10 86

Table 1: Best empirical maximum cliques in the graphs.

3.1 Empirical Hardness

Fig. 4 and Fig. 5 summarize with standard box-and-whisketspihe medians, the
quartiles, and the outliers of the iterations byAPLAT-RAND. Fig. 4 shows that there
are some instances which are significantly harder thanstfitie sawtooth trend of the
plot is due to the fact thatX@PLAT-RAND needs on average more iterations to solve
instances of the Gilbert model corresponding to the ineredsthe expected clique
size in Table 1. Instances become then easier when the nwhipedes increases
and the maximum clique remains of the same size. This is coediralso by all other
algorithms considered.

The sawtooth behavior is hardly visible in Fig 5 because eflifferent granularity
of the cliques dimension with respect to the graph sizesidered.
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Figure 4. Iterations of EPPLAT-RAND to find the empirical maximunxlique in
GIL(n,0.3). Y axis is logarithmic.
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Figure 5: Iterations of EPPLAT-RAND to find the empirical maximunclique in
PAT(n,n/3). Y axis is logarithmic.

3.2 Resultssummary

Because of lack of space, Table 2 presents the results onpeaifis instances of
random graphs&7L(1100,0.3) andPAT(1100, 366). The choice of77L (1100, 0.3)

is determined by the fact that it is empirically the most difft instance of our data
set, while PAT (1100, 366) is chosen with the same number of nodes. The results
presented in Table 2 and discussed later are for 100 runs diffé@nt instances.

[ GIL(1100,0.3) [ PAT(1100,366) |
Algorithm [ lter. | Cost us) | lter. | Cost us) |
EXP-RAND [92%]* 9.00 [0%]* 3.80
EXP-STATDEGREE [0%]* 8.20 | [40%]* 3.90
ExP-DYNDEGREE [10%]* 226.70 [0%]* 27.75
EXPPLAT-RAND 74697 6.40 273 3.50
EXPPLAT-STATDEGREE [60%]* 6.20 189 3.40
EXPPLAT-DYNDEGREE 75577 52.25 191 14.65
DLS-MC(pd=2) 75943 6.50 423 3.65
DLS-MC(pd=4) 63467 6.50 | [99%]* 3.65
DLS-MC(pd=8) 73831 6.50 | [85%]* 3.70
EXPPLAT PRO.-RAND(T=2) 65994 6.50 310 3.60
EXPPLAT PRO.-RAND(T=4) 67082 6.40 333 3.60
EXPPLAT PRO.-RAND(T=8) 67329 6.30 329 3.60
RLS 49456 9.56 75 5.10
RLS-STATDEGREE 44588 6.95 86 4.70

Table 2: Results summary with the medians of the empiriegdsstistribution and the
average time per iteration. (*) The algorithm is not alwapteao find the maximum
cligue; success ratio is reported.
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Figure 6: Iterations to find thempirical maximuntlique inGIL(1100,0.3). Results
for the most significant algorithms are reported.

3.3 DegreevsPenalties

From Table 2, it is clear that algorithms based only on greexfyansions are not
always able to find the maximum clique in the given iterationtd, especially ohard
instances The plateau phase increases the success rate by reduamgtarally the
iterations and therefore achieving the expected resuttinvthe iterations bound. Not
surprisingly the introduction of the degree evaluatiorhia $election of the candidates
is effective in the Preferential Attachment model, whileditbert’s graphs, where the
nodes tend to have similar degrees, penalty- or prohibliimed algorithms win. The
reduction in iterations achieved byxBPLAT-STATDEGREE over ExPPLAT-RAND
on PAT(1100,366) is about 31%. OnGIL(1100,0.3) DLS-MC(pd=4) finds the
maximum clique on average with 15% less iterations thaRFLAT-RAND.

On the contrary, algorithms using degree information ha@er performances on
Gilbert's graphs, if compared with their completely randoounterparts. For example
ExPPLAT-STAT DEGREEfinds the maximum clique i&*7 L(1100, 0.3) only in the 60%
of the runs. The same can be noticed for penalty and protibliased algorithms
whose performance is worse tharx#PLAT-RAND in the Preferential Attachment
model.

Table 2 shows also that selections based on dynamic degeewaasening the
algorithm performance in most cases, leading to parts afeéhech space not containing
the maximum clique. This is true also for RLS and RLSASDEGREE which in any
case find the maximum clique in less iterations on averageat#he other algorithms.

3.4 Penaltiesvs Prohibitions

As shown in Table 2, DLS-MC is not always able to find the besiue on PAT
graphs while prohibition-based heuristic is always susftgsOur results confirm that
the penalty heuristic tends to be less robust than the gtmhikbased heuristic. A
significant dependency between DLS-MC performance andtbie of thepenalty



delayparameter is also discussed in [16]. Further investigatisammarized in Fig. 7,
show the success rate of DLS-MC compared with that PP AT PROHIBITION-
RAND for different values of thgenalty delayand prohibition timeparameters. The
tests are on all instances of tieAT graphs of our data set.

EXPPLAT PROHIBITION-RAND is always able to find the maximum clique within
100,000 iterations, while DLS-MC fails for sevepanalty delayalues even incrementing
the maximum number of iterations by a factor of 10 or 100.
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Figure 7: Success ratio of penalty- and prohibition-badgdrithms on instances of
the Preferential Attachment model.

3.5 Cost per iteration

The average CPU time per iteration is measured empiricgligubning the algorithm
for 100,000 iterations and computing the time spent by dsiibgration. The measure
is repeated 10 times and averaged to reduce measurememss err

The cost per iteration can therefore change significantlgragdifferent instances
and it also depends on the directions taken in the searadedpeathe algorithms.

For example, the plateau phase does not only decrease thregavweumber of
iterations needed to find the maximum clique, but also the sment by each single
iteration. With a plateau phase, in fact, the less frequestarts have a reduced impact
on the average cost per iteration.

Table 2 shows that ¥ PLAT-DYNDEGREE spends 47% less time per iteration
than Bxp-DYNDEGREE in PAT(1100,366). The improvement is even bigger in
GIL(1100,0.3) where degree-based selections are less appropriate.

The reason for this reduction is that the algorithms spendtrabtheir time in
the expansion and plateau phases, more precisely updatirggriental structures after
a node has been added or dropped from the current clique. drelexity of the
incremental update algorithm used in all the algorithmsasraed to the degree in
the complementary graph of the node added or dropped fronerduconfiguration
[7]. This is also the reason why the algorithms run faster emseé graphs. In case of
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dynamic degree selection, the incremental update routingptexity depends also on
the size of the BSSIBLEADD set. With plateau phases the search is longer and the
PossIBLEADD set is on average smaller.

RLS, which has a different and less frequent restart pdibgrnates between short
expansions and plateaus. Therefore thes&BLEADD set remains on average smaller
than in Exp-DYNDEGREE or EXPPLAT-DYNDEGREE and the cost per iteration is
smaller.

Fig. 8 shows the average CPU time per iteration on Gilberéiplas in log-log scale.
The regression lines have a slope of 2.09, 0.98 and 0.90atggdg, confirming an
approximate cost per iteration oXEPLAT-DYNDEGREEgrowing asn?, while RLS,
even having a candidate selection based on the dynamicejegmvs approximately
linearly.

By multiplying the values in Table 2, the CPU time needed cerage by RLS-
STATDEGREEtO find the maximum clique in Gilbert’'s hard instance is 63%ilod
time required by DLS-MC(pd=2). RLSI8TDEGREENeeds 310 milliseconds while
DLS-MC 494 milliseconds.
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Figure 8: Empirical cost per iteration jrseconds on Gilbert’s graphs. Log-log scale.

4 Conclusions

The results of the tests on the instances of the two graplsedashow clearly that
the plateau search is necessary to find the maximum cliquarth ihstances and in
any case to reduce the average number of iterations. Thelewitypadded to the

algorithms doesn'’t increase the cost per iteration. On tmerary, especially for the
algorithms using the dynamic degree for candidate selestibreduces the CPU time
per iteration.

On Gilbert’s graphs, where the nodes have the same degreei@ya, prohibition-
or penalty-based algorithms perform better than pure narskdections. On instances
of the Preferential Attachment model, algorithms selegtive nodes using information
about the degree are faster.
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On the contrary, degree-based algorithms have poorerrpgaface than random-
selection algorithms in Gilbert’s graphs, while prohibiti and penalty-based algorithms
are disadvantageous in the Preferential Attachment madtiel penalty heuristic is less
robust then the prohibition heuristic, depending on theragmpate selection of the
panalty value.

RLS and RLS-$ATDEGREE always perform better then the other algorithms.
The cost per iteration of RLS48T DEGREEISs similar to the one of DLS-MC, but the
fewer steps needed on average to find the best cliques maleshest choice for the
two graph models considered in this paper.
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