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Abstract

This paper presents some preliminary results of an ongoing investigation about
how different algorithmic building blocks contribute to solving the Maximum Clique
problem. In detail, we consider greedy constructions, plateau searches, and more
complex schemes based on dynamic penalties and/or prohibitions, in particular the
recently proposed technique of Dynamic Local Search and the previously proposed
Reactive Local Search. The experimental results consider both the empirical hardness,
measured by the iterations needed to reach empirical maxima, and the CPUtime
per iteration.

1 Reactive search and maximum clique

Reactive Search, see [6] for a recent presentation and [4, 5]for seminal papers, advocates
the use ofmachine learningto automate the parameter tuning process and make it an
integral and fully documented part of the algorithm. Learning is performed on-line, and
thereforetask-dependent and local propertiesof the configuration space can be used.
In this way a single algorithmic framework maintains the flexibility to deal with related
problems through an internal feedback loop that considers the previous history of the
search, see also [13] for a recent work summarizing the state-of-the-art of self-tuning
based on instance characteristics, and [8] for a proposal for learning domain-specific
backtracking-based algorithms.

The Maximum Clique problem in graphs (MC for short) is a paradigmatic combinatorial
optimization problem with relevant applications [15], including information retrieval,
computer vision, and social network analysis. Recent interest includes computational
biochemistry, bio-informatics and genomics, see for example [14, 9]. The problem is
NP-hard and strong negative results have been shown about its approximability [11],
making it an ideal testbed for search heuristics.

Let G = (V,E) be an undirected graph,V = {1, 2, . . . , n} its vertex set,E ⊆
V × V its edge set, andG(S) = (S,E ∩ S × S) the subgraph induced byS, where
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S is a subset ofV . A graphG = (V,E) is completeif all its vertices are pairwise
adjacent, i.e.∀i, j ∈ V, (i, j) ∈ E. A clique K is a subset ofV such thatG(K) is
complete. The Maximum Clique problem asks for a clique of maximum cardinality.
A Reactive Local Search (RLS) algorithm for the solution of the Maximum-Clique
problem is proposed in [3, 7]. RLS is based on local search complemented by a
feedback (history-sensitive) scheme to determine the amount of diversification. The
reaction acts on the single parameter that decides the temporaryprohibitionof selected
moves in the neighborhood. The performance obtained in computational tests appears
to be significantly better with respect to all algorithms tested at the the second DIMACS
implementation challenge.

Recently, the authors of [16] proposed a stochastic local search algorithm (DLS-
MC), based on a clique expansion phase followed by plateau search after a maximal
clique is encountered. Diversification is based on vertexpenaltieswhich are dynamically
adjusted during the search and on a strict prohibition mechanism to avoid the same
vertex being moved multiple times during a plateau search. The DLS-MC scheme is
actually a slight simplification of the Deep Adaptive GreedySearch of [10]: vertex
penalties are used throughout the entire search, a ”forgetting” mechanism decreasing
the penalties is added, and vertex degrees are not considered in the selection. The
authors report a very good performance on the DIMACS instances. While the number
of iterations (additions or deletions of nodes to the current clique) is in some cases
larger than that of competing techniques, the small complexity of each iteration when
the algorithm is realized through efficient supporting datastructures leads to smaller
overall CPU times.

The initial motivation of this work is threefold. First, we want to investigate
how the different algorithmic building blocks contribute to effectively solving max-
clique instances corresponding to random graphs with different statistical properties. In
particular, the investigation considers the effects of using the vertex degree information
during the search, starting from simple to more complex techniques.

Second, we want to assess how different implementations affect CPU times. For
example, it may be the case that larger CPU times are caused byusing a high-level
language implementation w.r.t. low-level ”pointer arithmetic”. Having available the
original software simplified the starting point for this analysis.

Third, the DIMACS benchmark set (developed in 1992) has beenaround for more
than a decade and there is a growing risk that the desire to getbetter and better results
on the same benchmark will bias the search of algorithms in anunnatural way. We
therefore decide to concentrate the experimental part on two classes of random graphs,
chosen to assess the effect of degree variability on the effectiveness of different techniques.

Because of lack of space, we present in this paper preliminary results of a larger
ongoing investigation.

2 Algorithmic building blocks of increasing complexity

In the local search algorithms, the basic moves consist of the addition to or removal of
single nodes from the current clique (a swap of nodes can be trivially decomposed into
two separate moves). Two sets are involved in the execution of basic moves: the set
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of the improving neighborsPOSSIBLEADD which contains nodes connected to all the
elements of the clique, and the set of thelevel neighborsONEM ISSING containing the
nodes connected to all but one element of the clique, see Fig.1. Let’s fix the notation.
The various simple building blocks considered, are named following theBasicScheme
- CandidateSelectionstructure. TheBasicSchemedescribes how the greedy expansion
and plateau search strategies are combined, possibly with prohibitions or penalties.
TheCandidateSelectionspecifies whether the vertex degree information is used during
the selection of the next candidate move. If it is used, thereare two possibilities: of
using the static node degree inG or the dynamic degree in the subgraph induced by the
POSSIBLEADD set.

V

OneMissing

PossibleAdd

CurrentClique

Figure 1: Neighborhood of current clique.

2.1 Exp-Rand

This basic algorithm is the starting point for all the successive modifications and improvements,
see Fig. 2 for the pseudo-code. It searches for the maximum clique in the graph
by means of repeated greedy constructions (also called expansions), selecting from
POSSIBLEADD a node at random and restarting from a random node when no expansion
is possible anymore.

1. EXP-RAND (maxIterations)
2. iterations← 0
3. while iterations < maxIterations do
4. C ← random v ∈ V
5. EXPAND (C)

6. EXPAND (C)
7. while POSSIBLEADD 6= ∅ do
8. C ← C ∪ random v ∈ POSSIBLEADD

9. iterations← iterations + 1

Figure 2: Greedy expansion algorithm.
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2.2 Exp-StatDegree

Instead of choosing a random element from POSSIBLEADD, a random node is chosen
among the candidates having the highest degree inG. The EXPAND sub-routine in
Fig 2 is modified by substituting line 8 with:
C ← C ∪ { random v ∈ POSSIBLEADD such thatdegG(v) is maximum}.

2.3 Exp-DynDegree

In this version, the selection of the candidate is not based on the degree of the nodes in
G, but on the degree in POSSIBLEADD. Line 8 becomes:
C ← C ∪ { random v ∈ POSSIBLEADD such thatdegPOSSIBLEADD(v) is maximum}.

2.4 ExpPlat-Rand

This algorithm alternates between a greedy expansion and a plateau phase, choosing
between the possible candidate nodes at random.

During theexpansionphase, new vertices are chosen randomly from POSSIBLEADD

and moved to the current clique. When POSSIBLEADD is empty and therefore no
further expansion is possible, theplateauphase starts. In this phase, a node belonging
to thelevel neighborhoodONEM ISSING is swapped with the only node not connected
to it in the current clique. Theplateauphase does not increment the size of the current
clique and it terminates as soon as there is at least an element in the POSSIBLEADD

set, or if no candidates are available in ONEM ISSING. As it is done in [16], nodes
cannot be selected twice in the same plateau phase. In order to avoid infinite loops, the
number of plateau searches is limited tomaxPlateauSteps.

Starting from EXP-RAND, the base algorithm is adapted to deal with the alternation
of the two phases, see Fig. 3. Let us note that, ifPLATEAU returns with POSSIBLEADD 6= ∅
then a new expansion is tried as described in line 5-7. The iterations are incremented
by 2 during a swap because it is counted as a deletion followedby an addition.

2.5 ExpPlat-StatDegree

This algorithm alternates between an expansion and a plateau phase, choosing the
possible candidate having the highest degree. The restart is done after starting from
a random node. This algorithm is a modified version of EXPPLAT-RAND (Fig. 3) with
the static degree selection of EXP-STATDEGREE.

2.6 ExpPlat-DynDegree

This algorithm is the same of EXP-DYNDEGREE, having a plateau phase.
The dynamic degree heuristic affects only the selection of the next candidate for

the expansion phase, while in the plateau phase the selection of nodes is based on the
static degree.
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1. EXPPLAT-RAND (maxIterations, maxPlateauSteps)
2. iterations← 0
3. while iterations < maxIterations do
4. C ← random v ∈ V
5. while POSSIBLEADD 6= ∅ do
6. EXPAND (C)
7. PLATEAU (C , maxPlateauSteps)

8. PLATEAU (C , maxPlateauSteps)
9. count← 0
10. while POSSIBLEADD = ∅ and ONEM ISSING 6= ∅
11. and count < maxP lateauSteps do
12. C ← C ∪ random v ∈ ONEM ISSING

13. remove from C the node not connected to v
14. iterations← iterations + 2
15. count← count + 1

Figure 3: EXPPLAT-RAND algorithm, alternating betweenEXPAND and PLATEAU

phases.

2.7 DLS-MC

This is the algorithm proposed in [16]. To achieve diversification during the search,
penalties are assigned to vertices of the graph and they influence the selection of nodes.
The algorithm alternates between expansion and plateau phases. Selection is done by
choosing the best candidate among the set of the nodes in the neighborhood having
minimum penalty.

When the algorithm starts, the penalty value of every node is initialized to 0 and
when no further expansion or plateau moves are possible, thepenalties of nodes belonging
to the clique are incremented by one. All penalties are decremented by one afterpd
(penalty delay) restarts, see the cited paper for additional details and results.

2.8 ExpPlatProhibition-Rand

This algorithm is the same algorithm of EXPPLAT-RAND, but it also uses prohibitions.
Every time a node is added or removed from current clique, it is prohibited for the next
T iterations. Prohibited nodes cannot be considered among the candidates of expansion
and plateau phases. When all the moves are prohibited a restart is performed.

2.9 RLS

RLS [7] alternates between expansion and plateau phases, like DLS-MC, but it selects
the nodes among the non-prohibited ones which have the highest degree in POSSIBLEADD.
The prohibition time is adjusted reactively depending on the search history. Restarts
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are executed only when the algorithm cannot improve the current configuration within
a fixed number of iterations, see the paper for details.

2.10 RLS-StatDegree

This algorithm is a modification of RLS which uses the static degree instead of the
dynamic degree selection.

3 Computational experiments

Performance and scalability tests are made on two differentclasses of random graphs:

Binomial random graphs A binomial graphGIL(n, p), belonging to Gilbert’s model
G(n, p) is constructed by starting fromn nodes and adding up ton(n−1)

2 undirected
edges, independently with probability0 < p < 1. See [2] for generation details.

Preferential Attachment Model A graph instancePAT (n, d), of the preferential attachment
model, introduced in [1] is built by starting from a single node and adding
successively the remaining nodes. The edges of the the newlyadded nodes are
connected tod existing nodes, with preferential attachment to nodes having a
higher degree, i.e. with probability proportional to the number of edges present
between the existing nodes.

In binomial graphs, the degree distribution for the different nodes will be peaked on the
average value, while in the preferential attachment model,the probability that a node
is connected tok other nodes decreases following a power-law i.e.P (k) ∼ k−γ with
γ > 1.

In the experiments, the graphs are generated using the NetworkX library [12], for
a number of nodes ranging from 100 to 1500. Because of the hardness of MC, the
optimal solutions of large instances cannot be computed andone must resort to the
empirical maximum. Theempirical maximumconsidered in the experiments is the best
clique that RLS is able to find in 10 runs of 5 million steps each. In no case DLS-MC
with penalty delay equal to 1 is able to find bigger cliques forthe same number of
iterations. The sizes of the empirical maximum cliques in the various graphs are listed
in Table 1.

The algorithms are tested against our data set (available onrequest by the authors),
to compute the empirical distribution function of the iterations needed to find the
empirical maximum. The maximum number of steps per iteration is set to 10 million
and each test is repeated on the same graph instance 100 times. For the algorithms
having a plateau phase,maxPlateauStepsis set to 100. RLS code is the latest implementation
in C++ of the algorithm presented in [7] with more efficient data structures.

We count as one iteration each add- or drop-move executed on the clique. The CPU
time spent by each iteration is measured on our reference machine, having one Xeon
processor at 2.8 GHz and 512 MB RAM. The operating system is a Debian GNU/Linux
3.0 with kernel 2.6.8-2-686-smp. All the algorithms are compiled with g++ compiler
with “-O3 -mcpu=pentium4”.
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Nodes GIL(n, 0.3) PAT (n, n/3)

100 6 13
200 7 19
300 8 25
400 8 31
500 8 37
600 8 42
700 9 48
800 9 54
900 9 57
1000 9 60
1100 10 64
1200 10 70
1300 10 74
1400 10 79
1500 10 86

Table 1: Best empirical maximum cliques in the graphs.

3.1 Empirical Hardness

Fig. 4 and Fig. 5 summarize with standard box-and-whisker plots the medians, the
quartiles, and the outliers of the iterations by EXPPLAT-RAND. Fig. 4 shows that there
are some instances which are significantly harder than others. The sawtooth trend of the
plot is due to the fact that EXPPLAT-RAND needs on average more iterations to solve
instances of the Gilbert model corresponding to the increase of the expected clique
size in Table 1. Instances become then easier when the numberof nodes increases
and the maximum clique remains of the same size. This is confirmed also by all other
algorithms considered.

The sawtooth behavior is hardly visible in Fig 5 because of the different granularity
of the cliques dimension with respect to the graph sizes considered.
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Figure 4: Iterations of EXPPLAT-RAND to find the empirical maximumclique in
GIL(n, 0.3). Y axis is logarithmic.
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Figure 5: Iterations of EXPPLAT-RAND to find the empirical maximumclique in
PAT (n, n/3). Y axis is logarithmic.

3.2 Results summary

Because of lack of space, Table 2 presents the results on two specific instances of
random graphs:GIL(1100, 0.3) andPAT (1100, 366). The choice ofGIL(1100, 0.3)
is determined by the fact that it is empirically the most difficult instance of our data
set, whilePAT (1100, 366) is chosen with the same number of nodes. The results
presented in Table 2 and discussed later are for 100 runs on 10different instances.

GIL(1100, 0.3) PAT (1100, 366)
Algorithm Iter. Cost (µs) Iter. Cost (µs)

EXP-RAND [92%]* 9.00 [0%]* 3.80
EXP-STATDEGREE [0%]* 8.20 [40%]* 3.90
EXP-DYNDEGREE [10%]* 226.70 [0%]* 27.75
EXPPLAT-RAND 74697 6.40 273 3.50
EXPPLAT-STATDEGREE [60%]* 6.20 189 3.40
EXPPLAT-DYNDEGREE 75577 52.25 191 14.65
DLS-MC(pd=2) 75943 6.50 423 3.65
DLS-MC(pd=4) 63467 6.50 [99%]* 3.65
DLS-MC(pd=8) 73831 6.50 [85%]* 3.70
EXPPLAT PRO.-RAND(T=2) 65994 6.50 310 3.60
EXPPLAT PRO.-RAND(T=4) 67082 6.40 333 3.60
EXPPLAT PRO.-RAND(T=8) 67329 6.30 329 3.60
RLS 49456 9.56 75 5.10
RLS-STATDEGREE 44588 6.95 86 4.70

Table 2: Results summary with the medians of the empirical steps distribution and the
average time per iteration. (*) The algorithm is not always able to find the maximum
clique; success ratio is reported.
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3.3 Degree vs Penalties

From Table 2, it is clear that algorithms based only on greedyexpansions are not
always able to find the maximum clique in the given iteration bound, especially onhard
instances. The plateau phase increases the success rate by reducing dramatically the
iterations and therefore achieving the expected result within the iterations bound. Not
surprisingly the introduction of the degree evaluation in the selection of the candidates
is effective in the Preferential Attachment model, while inGilbert’s graphs, where the
nodes tend to have similar degrees, penalty- or prohibition-based algorithms win. The
reduction in iterations achieved by EXPPLAT-STATDEGREE over EXPPLAT-RAND

on PAT (1100, 366) is about 31%. OnGIL(1100, 0.3) DLS-MC(pd=4) finds the
maximum clique on average with 15% less iterations than EXPPLAT-RAND.

On the contrary, algorithms using degree information have poorer performances on
Gilbert’s graphs, if compared with their completely randomcounterparts. For example
EXPPLAT-STATDEGREEfinds the maximum clique inGIL(1100, 0.3) only in the 60%
of the runs. The same can be noticed for penalty and prohibition-based algorithms
whose performance is worse than EXPPLAT-RAND in the Preferential Attachment
model.

Table 2 shows also that selections based on dynamic degree are worsening the
algorithm performance in most cases, leading to parts of thesearch space not containing
the maximum clique. This is true also for RLS and RLS-STATDEGREE, which in any
case find the maximum clique in less iterations on average than all the other algorithms.

3.4 Penalties vs Prohibitions

As shown in Table 2, DLS-MC is not always able to find the best clique onPAT
graphs while prohibition-based heuristic is always successful. Our results confirm that
the penalty heuristic tends to be less robust than the prohibition-based heuristic. A
significant dependency between DLS-MC performance and the choice of thepenalty
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delayparameter is also discussed in [16]. Further investigations, summarized in Fig. 7,
show the success rate of DLS-MC compared with that of EXPPLAT PROHIBITION-
RAND for different values of thepenalty delayandprohibition timeparameters. The
tests are on all instances of thePAT graphs of our data set.

EXPPLAT PROHIBITION-RAND is always able to find the maximum clique within
100,000 iterations, while DLS-MC fails for severalpenalty delayvalues even incrementing
the maximum number of iterations by a factor of 10 or 100.
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Figure 7: Success ratio of penalty- and prohibition-based algorithms on instances of
the Preferential Attachment model.

3.5 Cost per iteration

The average CPU time per iteration is measured empirically by running the algorithm
for 100,000 iterations and computing the time spent by a single iteration. The measure
is repeated 10 times and averaged to reduce measurements errors.

The cost per iteration can therefore change significantly among different instances
and it also depends on the directions taken in the search-space by the algorithms.

For example, the plateau phase does not only decrease the average number of
iterations needed to find the maximum clique, but also the time spent by each single
iteration. With a plateau phase, in fact, the less frequent restarts have a reduced impact
on the average cost per iteration.

Table 2 shows that EXPPLAT-DYNDEGREE spends 47% less time per iteration
than EXP-DYNDEGREE in PAT (1100, 366). The improvement is even bigger in
GIL(1100, 0.3) where degree-based selections are less appropriate.

The reason for this reduction is that the algorithms spend most of their time in
the expansion and plateau phases, more precisely updating incremental structures after
a node has been added or dropped from the current clique. The complexity of the
incremental update algorithm used in all the algorithms is bounded to the degree in
the complementary graph of the node added or dropped from current configuration
[7]. This is also the reason why the algorithms run faster on dense graphs. In case of
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dynamic degree selection, the incremental update routine complexity depends also on
the size of the POSSIBLEADD set. With plateau phases the search is longer and the
POSSIBLEADD set is on average smaller.

RLS, which has a different and less frequent restart policy,alternates between short
expansions and plateaus. Therefore the POSSIBLEADD set remains on average smaller
than in EXP-DYNDEGREE or EXPPLAT-DYNDEGREE and the cost per iteration is
smaller.

Fig. 8 shows the average CPU time per iteration on Gilbert’s graphs in log-log scale.
The regression lines have a slope of 2.09, 0.98 and 0.90 respectively, confirming an
approximate cost per iteration of EXPPLAT-DYNDEGREEgrowing asn2, while RLS,
even having a candidate selection based on the dynamic degree, grows approximately
linearly.

By multiplying the values in Table 2, the CPU time needed on average by RLS-
STATDEGREE to find the maximum clique in Gilbert’s hard instance is 63% ofthe
time required by DLS-MC(pd=2). RLS-STATDEGREEneeds 310 milliseconds while
DLS-MC 494 milliseconds.
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Figure 8: Empirical cost per iteration inµseconds on Gilbert’s graphs. Log-log scale.

4 Conclusions

The results of the tests on the instances of the two graph classes show clearly that
the plateau search is necessary to find the maximum clique in hard instances and in
any case to reduce the average number of iterations. The complexity added to the
algorithms doesn’t increase the cost per iteration. On the contrary, especially for the
algorithms using the dynamic degree for candidate selections, it reduces the CPU time
per iteration.

On Gilbert’s graphs, where the nodes have the same degree on average, prohibition-
or penalty-based algorithms perform better than pure random selections. On instances
of the Preferential Attachment model, algorithms selecting the nodes using information
about the degree are faster.
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On the contrary, degree-based algorithms have poorer performance than random-
selection algorithms in Gilbert’s graphs, while prohibition- and penalty-based algorithms
are disadvantageous in the Preferential Attachment model.The penalty heuristic is less
robust then the prohibition heuristic, depending on the appropriate selection of the
panalty value.

RLS and RLS-STATDEGREE, always perform better then the other algorithms.
The cost per iteration of RLS-STATDEGREEis similar to the one of DLS-MC, but the
fewer steps needed on average to find the best cliques make it the best choice for the
two graph models considered in this paper.
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