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The Digital Kernel Perceptron

Davi de Anguita, Andrea Boni, and Sandro Ridell a.

In this paper, we show that a kernel-based perceptron
can be efficiently inplemented in digital hardware
using very few conmponents. Despite its simplicity,
the experinmental results on standard data sets show
remarkabl e performance in ternms of generalization

error.

I nt roduction: A practical way to build non-linear
classifiers is to map, via special kernel functions, the
i nput space to a higher, possibly infinite, feature space
where one can nanipulate sinpler |inear operators [1].
This is a well-known theory that exploits the Reproducing
Kernel Hilbert Space (RKHS) framework, and recently has
been applied wth success by the nachine |earning
comunity. Support Vector Mchines (SVMs), designed by
Vapni k [2], represent one of the npbst successful exanples
of a learning nmachine based on a kernel nethod. O her
algorithnms, that foll ow the sane underlying approach, have
been successfully proposed. Here we discuss the use of the
Rosenbl att’ s perceptron in t he dual , ker nel - based
formul ation: the Kernel Perceptron (KP). The choice of the
KP is justified by recent studies that have revalued its
role in classification tasks, showing the relation between
its generalization ability and the sparsity of the final
solution [3].

We show how to let the KP algorithmwork only with integer
val ues and suggest an efficient digital architecture for

its inplementation. We call this variant, the Digita



Kernel Perceptron (DKP). Tests on several data-sets show
the good performance of our proposal in terms of
architecture conplexity and generalization performance,
whi ch make the KP an appealing approach for building VLSI-

based | earni ng systens.

The Kernel Perceptron: Here we face a classification

problem where a two-class training set, (X1, y1), . . .,

(Xn yn), with x 1T A™ and vy, ={+L-3 is considered. The

si npl est machine able to classify such a set, if linearly
separable, is the perceptron:

f(x) =wxx+b (1)
Rosenbl att’s learning algorithmis well known and shown in
Table 1l1la. The final vector of the weights can be
represented as a |linear conbination of the input patterns,

as foll ows:

w=aayX (2)

Qs

1

Such an observation permts one to change the domain of
work fromthe vector W to its dual a. As a result, one
can exploit the well-known theory of kernels by using the
following final structure of function f, which allows an
implicit nonlinear transformation in a new feature space
vi a the unknown mappi ng F(>):
n n
f=aayF(x)F(x)+b=gayKlx.x)+b (3
i=1 i=1
This kind of function is well known in the machine-
learning community and wused for «classification and

function approximation tasks [4], [5]. K(,) is a kernel

function that realizes a dot product in the feature space.



Some exanpl es of typi cal kernel s are:
K(x,x,)=x =, (linear),  K(x,x,)= exp(— | - >_<j||2/25 2)( RBF)

and K()_(nl(j):(l(i XX; +1)p(pol ynomial). In this work we focus

on the RBF kernel and set b=0, as in the higher feature
space the absence of the bias does not affect, in
practice, the performance of the machine (note that the
feature space of Gaussian kernels is of infinite dinension

[6]). The dual algorithm (KP) is very sinple and
sunmari zed in Table 1b, where g :yiyjK()_(i,)_(j).

The nmost inportant KP property, which permits us to build
a very sinple architecture, is its convergence theorem (a

result by Novikoff [3]), which Iinks the maxi mum nunber K
of updates to the margin. This result applies to any

choice of the updating step h, therefore we propose to

choose h =1, because it | eads to an i nt eger

representation of the dual vector a.

The DKP architecture: The architecture sketched in Figure
1 inplements the DKP |earning algorithm The Processing

El ement (PE) acconplishes the task of conputing the
quantity MSB :sgn(é?zlajqij), then, on the basis of the

obtained value, the corresponding a;, wll be updated

according to the algorithm presented in Table 1b.
The very inportant advantage over a traditional non-linear

perceptron lies in the fact that the non-linear mapping,
inplicitly enmbedded in the kernel mtrix Q, can be

processed a priori and stored in a RAM In this way, any



conputation of nonlinear functions, during learning, is
avoi ded.

The DKP algorithm suggests that each update due to a
m sclassified point can be inplemented by using sinple
saturated up-counters, as described in Figure 1. Each
conponent count works as follows: when the enabl e-input EN
is active high, at the following clock transition the
counter increnents itself, if the maxi num value has not

been reached. The PE is also very sinple: the nultiplier
unit, which conputes the product between a,; and g;. can

exploit the fact that the operand stored in the register
REG takes on only integer values. MSB; is sinply the nost
significant bit of the accunulator at the end of the
el aboration. Following the DKP algorithm each MJX
connected to the EN-input of the corresponding counter is
sel ected at each step by the controller (not shown in the
figure), which supervises the correct flow of data. As a
final remark note that the UCPE is a specific control unit

that acts as the controller of the nenory, and delivers at

each step the elements a,; and Q; to the PE

Results: We tested the described architecture on different
data sets. Each element (], is coded in fixed-point math.
Qur experinments show the effectiveness of the proposed
nmethod even when only few bits are used to code each (.

This is the expected behavior, as we are only interested

in knowing the sign (instead of the exact value) of the
quantity éjajqij, for each pattern i.

The nost renmrkabl e performance was obtained on the SONAR

data set. It is known that it consists of 104 |earning
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patterns and 104 test patterns of 60 features each. As
not ed in previ ous wor ks, this is a difficult
classification problem due to its high dinmensionality and
the small overlapping of the training and test sets.
Whereas a |inear separator is expected to misclassify
approximately 22% of the test patterns, a traditional RBF-
SVM (fl oating-point sol ution) msclassifies 8 test
patterns [7]. Qur DKP, despite its sinplicity, obtains the

sanme performance, even when using only 3-bit counters and
3 bits to code each (];. Obviously, such a result does not
allow us to claim the good generalization capability of
the DKP, but it is inportant to note that it agrees wth

the theory developed in [3]. For the same problem the

Digital Support Vector Machine (DSVM needs 24 bits for

each element (; and 8 bits for a; [7].
Anot her experinment has been carried out on the well-known
t wo- di nensional synthetic data set considered in [8],

consi sting of 250 training and 1000 test patterns. The DKP

m sclassifies only 140 test patterns (14%, with
$%=0.002, 12-bits counters and 12 bit for coding each
q; wher eas t he DSVM (fl oating-point sol uti on)

m sclassifies 155 test patterns (15.5%. Note that the

fixed-point version of DSVM is not able to classify

correctly the training set, with 24 bits for q; and 14

bits for a,, making 2 and 159 training and test errors,

respectively.

Conclusions: In this paper, we have proposed a sinple
di gi tal counter-based architecture that inplements a

Kernel Perceptron. The experinents presented here show the
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hi gher ef fecti veness  of our method in terms  of
architecture conplexity and generalization performance,
when conpared with a digital inplenentation of a SVM It
is inmportant to point out that the on-going research on
kernel -based methods suggests that many classifiers
perform conparably, provided that a good kernel has been
chosen; therefore, sinple classifiers, like the DKP, are
very appealing and show their superiority when targeting

VLS| inplementations.
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Table 1. — (1a) Classic and (1b) kernel -based perceptron

al gorithms

Set:
w=0,b=0k=0
Repeat until no mistakes occur

Fori=1tondo
Compute

€ ap a
MSB =sgn gy, & WX, +b
e ej=1 23]
If MSB<0 then
w=w+hxy,
b=b+y,

k=k+1
end for

Set:

a=0k=0
Repeat until no mistakes occur
For i=1 to n do

Compute
&8 0
MSB =sngq a o1
i= a
If MSB;<0 then
a; =a; +1
k=k+1
end for




Figure 1. — The digita
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