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The Digital Kernel Perceptron

Davide Anguita, Andrea Boni, and Sandro Ridella.

In this paper, we show that a kernel-based perceptron

can be efficiently implemented in digital hardware

using very few components. Despite its simplicity,

the experimental results on standard data sets show

remarkable performance in terms of generalization

error.

Introduction: A practical way to build non-linear

classifiers is to map, via special kernel functions, the

input space to a higher, possibly infinite, feature space

where one can manipulate simpler linear operators [1].

This is a well-known theory that exploits the Reproducing

Kernel Hilbert Space (RKHS) framework, and recently has

been applied with success by the machine learning

community. Support Vector Machines (SVMs), designed by

Vapnik [2], represent one of the most successful examples

of a learning machine based on a kernel method. Other

algorithms, that follow the same underlying approach, have

been successfully proposed. Here we discuss the use of the

Rosenblatt’s perceptron in the dual, kernel-based

formulation: the Kernel Perceptron (KP). The choice of the

KP is justified by recent studies that have revalued its

role in classification tasks, showing the relation between

its generalization ability and the sparsity of the final

solution [3].

We show how to let the KP algorithm work only with integer

values and suggest an efficient digital architecture for

its implementation. We call this variant, the Digital
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Kernel Perceptron (DKP). Tests on several data-sets show

the good performance of our proposal in terms of

architecture complexity and generalization performance,

which make the KP an appealing approach for building VLSI-

based learning systems.

The Kernel Perceptron: Here we face a classification

problem, where a two-class training set, (x1,y1), . . .,

(xn, yn), with 
m

ix ℜ∈  and }1,1{ −+=iy  is considered. The

simplest machine able to classify such a set, if linearly

separable, is the perceptron:

bxwxf +⋅=)( (1)

Rosenblatt’s learning algorithm is well known and shown in

Table 1a. The final vector of the weights can be

represented as a linear combination of the input patterns,

as follows:

∑
=

=
n

i
iii xyw

1

α (2)

Such an observation permits one to change the domain of

work from the vector w to its dual α . As a result, one

can exploit the well-known theory of kernels by using the

following final structure of function f , which allows an

implicit nonlinear transformation in a new feature space

via the unknown mapping ( )⋅Φ :

( ) ( ) ( ) bxxKybxxyxf
n

i
iii

n

i
iii +=+Φ⋅Φ= ∑∑

== 11

,)( αα (3)

This kind of function is well known in the machine-

learning community and used for classification and

function approximation tasks [4], [5]. ( ),K  is a kernel

function that realizes a dot product in the feature space.
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Some examples of typical kernels are:

( ) jiji xxxxK ⋅=, (linear), ( ) ( )22
2/exp, σjiji xxxxK −−= (RBF)

and ( ) ( )p

jiji xxxxK 1, +⋅= (polynomial). In this work we focus

on the RBF kernel and set 0=b , as in the higher feature

space the absence of the bias does not affect, in

practice, the performance of the machine (note that the

feature space of Gaussian kernels is of infinite dimension

[6]). The dual algorithm (KP) is very simple and

summarized in Table 1b, where ( )jijiij xxKyyq ,= .

The most important KP property, which permits us to build

a very simple architecture, is its convergence theorem (a

result by Novikoff [3]), which links the maximum number k

of updates to the margin. This result applies to any

choice of the updating step η , therefore we propose to

choose 1=η , because it leads to an integer

representation of the dual vector α .

The DKP architecture: The architecture sketched in Figure

1 implements the DKP learning algorithm. The Processing

Element (PE) accomplishes the task of computing the

quantity ( )∑ =
= n

j ijji qMSB
1

sgn α , then, on the basis of the

obtained value, the corresponding iα  will be updated

according to the algorithm presented in Table 1b.

The very important advantage over a traditional non-linear

perceptron lies in the fact that the non-linear mapping,

implicitly embedded in the kernel matrix Q , can be

processed a priori and stored in a RAM. In this way, any
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computation of nonlinear functions, during learning, is

avoided.

The DKP algorithm suggests that each update due to a

misclassified point can be implemented by using simple

saturated up-counters, as described in Figure 1. Each

component count works as follows: when the enable-input EN

is active high, at the following clock transition the

counter increments itself, if the maximum value has not

been reached. The PE is also very simple: the multiplier

unit, which computes the product between jα  and ijq , can

exploit the fact that the operand stored in the register

REG takes on only integer values. MSBi is simply the most

significant bit of the accumulator at the end of the

elaboration. Following the DKP algorithm, each MUX

connected to the EN-input of the corresponding counter is

selected at each step by the controller (not shown in the

figure), which supervises the correct flow of data. As a

final remark note that the UCPE is a specific control unit

that acts as the controller of the memory, and delivers at

each step the elements jα  and ijq  to the PE.

Results: We tested the described architecture on different

data sets. Each element ijq  is coded in fixed-point math.

Our experiments show the effectiveness of the proposed

method even when only few bits are used to code each ijq .

This is the expected behavior, as we are only interested

in knowing the sign (instead of the exact value) of the

quantity ∑ j ijjqα , for each pattern i.

The most remarkable performance was obtained on the SONAR

data set. It is known that it consists of 104 learning
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patterns and 104 test patterns of 60 features each. As

noted in previous works, this is a difficult

classification problem, due to its high dimensionality and

the small overlapping of the training and test sets.

Whereas a linear separator is expected to misclassify

approximately 22% of the test patterns, a traditional RBF-

SVM (floating-point solution) misclassifies 8 test

patterns [7]. Our DKP, despite its simplicity, obtains the

same performance, even when using only 3-bit counters and

3 bits to code each ijq . Obviously, such a result does not

allow us to claim the good generalization capability of

the DKP, but it is important to note that it agrees with

the theory developed in [3]. For the same problem, the

Digital Support Vector Machine (DSVM) needs 24 bits for

each element ijq  and 8 bits for iα  [7].

Another experiment has been carried out on the well-known

two-dimensional synthetic data set considered in [8],

consisting of 250 training and 1000 test patterns. The DKP

misclassifies only 140 test patterns (14%), with

002.02 =σ , 12-bits counters and 12 bit for coding each

ijq , whereas the DSVM (floating-point solution)

misclassifies 155 test patterns (15.5%). Note that the

fixed-point version of DSVM is not able to classify

correctly the training set, with 24 bits for ijq  and 14

bits for iα , making 2 and 159 training and test errors,

respectively.

Conclusions: In this paper, we have proposed a simple

digital counter-based architecture that implements a

Kernel Perceptron. The experiments presented here show the
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higher effectiveness of our method in terms of

architecture complexity and generalization performance,

when compared with a digital implementation of a SVM. It

is important to point out that the on-going research on

kernel-based methods suggests that many classifiers

perform comparably, provided that a good kernel has been

chosen; therefore, simple classifiers, like the DKP, are

very appealing and show their superiority when targeting

VLSI implementations.
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Table 1. – (1a) Classic and (1b) kernel-based perceptron

algorithms

Set:
           0,0,0 === kbw
Repeat until no mistakes occur
For i=1 to n do
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end for
1a 1b



10

 Figure 1. – The digital architecture for the DKP.
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